

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Midterm Examination November 03, 2019 15:30 – 17:30 Good Luck!

NAME-SURNAME:

SIGNATURE:

ID:

DEPARTMENT:

INSTRUCTOR:

DURATION: 120 minutes

 \diamond Answer all the questions.

 \diamond Write the solutions explicitly and clearly. Use the physical terminology.

- ◊ You are allowed to use Formulae Sheet.
- \diamond Calculator is allowed.

 \diamond You are not allowed to use any other electronic equipment in the exam.

Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110

This page is intentionally left blank. Use the space if needed.

1. A) A point charge $q_1 = 8 nC$ is at the origin and a second point charge $q_2 = 12 nC$ is on the x-axis at x=4 m. Find the net electric force they exert on $q_3 = -5 nC$ located on the y-axis at y=3.0 m in vector notation, magnitude and angle.

F314 = F31 + F32 93=-5m IF31 him 9,= 8nc 9,= 12nc = 4×108N 1F32 = K 19311921 = 2.16×10 € 32,x= $\frac{1}{2}|\cos\theta=2$ 52/Su 3 +1.7320 N2 5.6×10 9 720

B) Semicircular wire shown in figure below has a non-uniform charge distribution $\lambda(\theta) = \lambda_0 Cos\theta$.

dE=k θ No los O compone concelling due to s dEy=1dE1Cus de O= kA ds interns of 3 ORdo=1

2. A proton moves at $4.5 \times 10^5 \ m/s$ in the horizontal direction. It enters a uniform vertical electric field with a magnitude of $9.6 \times 10^3 \ N/C$.

Ignoring any gravitational effects, find

- i the time required for the proton to travel 5 cm horizontally,
- iii the horizontal and vertical components of the velocity after the proton has traveled 5 cm horizontally.

$$F = \frac{1}{11} \qquad (v = 4.5 \times 10^{5} m/s & E = 9.6 \times 10^{3} n/c \\ (uniform) \\ a = a_{y} & a_{x} = 0 \\ aeceloration \\ aeceloratio$$

- 3. Figure below shows a section of a conducting rod of radius $R_1 = 1.30 \ mm$ and length $L = 11.00 \ m$ inside a thin-walled coaxial conducting cylindrical shell of radius $R_2 = 10.0R_1$ and the (same) length L. The net charge on the rod is $Q_1 = +3.40 \times 10^{-12} \ C$; that on the shell is $Q_2 = -2.00Q_1$
- i What are the magnitude E and direction (radially inward or outward) of the electric field at radial distance $r = 2.00R_2$? ii What are E and the direction at r = $5.00R_1?$ iii What is the charge on the interior and exterior surface of the shell? Q_2 $\begin{array}{c} (1) \\ (2) \\$

4. An electric dipole of two opposite charges of magnitude $q = 1.50 \ \mu C$, separated by a distance $d = 1.20 \ cm$ is placed near an infinitely large plane of charge of uniform charge density $\sigma = 1.77 \ \mu C/m^2$. The axis of the electric dipole makes an angle of $\varphi = 37^{\circ}$ with the plane, as shown in the figure.

- i Find the magnitude of the electric field due to the plane. Show its direction on the figure.
- ii Calculate the magnitude of the electric dipole moment. Show its direction on the figure.
- iii Calculate the magnitude of the torque acting on the electric dipole. Show its direction on the figure.
- iv How much work must be done by an external agent to turn the electric dipole by 90° in clockwise direction?

* 1.20×10 m= 1.8×10 p=1.50×10 C $\frac{1}{p \times E} \sim |\vec{z}| = |\vec{p}| |\vec{E}| S_{im53} = (1.8 \times 10^{\circ} \text{ cm})(0^{\circ} \text{ s}/2) \stackrel{\text{P}}{=} \frac{1}{p} |\vec{E}| S_{im53} = (1.8 \times 10^{\circ} \text{ cm})(0^{\circ} \text{ s}/2) \stackrel{\text{P}}{=} \frac{1}{p} |\vec{E}| S_{im53} = p_{im53} p_{$

5. Four capacitors are connected as shown in Figure.

$$\begin{aligned} i)_{\alpha} = \begin{cases} -11 + 16^{2} \\ -16^{2$$