

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Final Examination January 14, 2022 11:00 – 12:30 Good Luck!

NAME-SURNAME:

SIGNATURE:

ID:

DEPARTMENT:

INSTRUCTOR:

DURATION: 90 minutes

 \diamond Answer all the questions.

 \diamond Write the solutions explicitly and clearly.

Use the physical terminology.

 \diamond You are allowed to use Formulae Sheet.

 \diamond Calculator is allowed.

 \diamond You are not allowed to use any other

electronic equipment in the exam.

 \diamond I declare hereby that I fulfilled the requirements for the attendance according to the University regulations and I accept that my examination will not be valid otherwise.

Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110

This page is intentionally left blank. Use the space if needed.

1. A) In Figure, $R_1 = 2.0 \ \Omega$, $R_2 = 6.0 \ \Omega$, and the ideal battery has emf $\varepsilon = 4.0 \ V$.

- i What are the size and direction (left or right) of current i_1 ?
- ii How much energy is dissipated by all four resistors in 3.00 minutes?

- B) A 15.0 $k\Omega$ resistor and a capacitor are connected in series and then a 12.0 V potential difference is suddenly applied across them. The potential difference across the capacitor rises to 5.0 V in 1.30 μs .
 - a) Calculate the time constant of the circuit.
 - b) Find the capacitance of the capacitor.

Charging capaulor: $q = C \in (1 - e^{-t/Rc}) \otimes Z = RC$ $V(t) = E(1 - e^{-t/Rc}) = Z$ $i) \quad V(t) = E(1 - e^{-t/Rc}) = 5V = 12V(1 - e^{-\frac{1.3 \times 10^{5} \text{s}}{15 \times 10^{3} n C})$ $-\frac{1.3 \times 10^{6} \text{s}/c}{e} = 1 - \frac{5}{12} \rightarrow ln \ e^{-\frac{1.3 \times 10^{5} \text{s}}{2}} = ln \ \frac{7}{12}$ $\sim -1.3 \times 10^{5} \text{s}/c = ln \ \frac{7}{12} \sim Z = -\frac{1.3 \times 10^{-6} \text{s}}{ln \ \frac{7}{12}} = -\frac{1.3 \times 10^{-6} \text{s}}{0.54}$ $\frac{1}{12} = RC \rightarrow C = \frac{1}{R} = \frac{2.41 \times 10^{6} \text{ s}}{15 \times 10^{3} \Omega} = 1.61 \times 10^{-10} \text{ F}$

2. In Figure, an electron accelerated from rest through potential difference $V_1 = 1.00 \ kV$ enters the gap between two parallel plates having separation $d = 10.0 \ mm$ and potential difference $V_2 = 50 \ V$. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates.

In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?

 $V_{1} = 1 \text{ kV } & \mathcal{L} d = 10 \text{ } 10^{2} \text{ m}, V_{2} = 50 \text{ V}, Me = 9.11 \times 10^{3} \text{ kg}$ $higher potential stratight line <math>\Rightarrow |F_{B}| = |F_{E}|$ $V_{1} = 1 \quad V_{2} $lower potentail (2) \quad Me = \frac{50 \text{ V}}{10 \times 10^{3} \text{ m}} \quad \frac{9.11 \times 10^{-31 \text{ kg}}}{2 \times 1.6 \times 10^{3} \text{ K}} \quad V_{2} = \frac{50 \text{ V}}{10 \times 10^{3} \text{ m}} \quad \frac{9.11 \times 10^{-31 \text{ kg}}}{2 \times 1.6 \times 10^{3} \text{ K}} \quad V_{2} = \frac{50 \text{ V}}{10 \times 10^{3} \text{ m}} \quad V_{2} = 10^{3} \text{ M}$ $SK = \frac{1}{2} \text{ m}_{2} \text{ M}^{2} \quad S = \frac{1}{2} \text{ M} \quad B = 2.67 \times 10^{4} \text{ T} \quad V_{2} \rightarrow n$ = (1-6x10 DU= DK=

3. A long wire carries a 10 A current from left to right. An electron 1.0 cm above the wire is traveling to the right at a speed of 1.0×10^7 m/s. What are the magnitude and the direction of the magnetic force on the electrons?

0=1.0×10m/s 0 O permi ->10A 0 8 Co B a a = (471 ×10 TM/A) 10A B= 2 Trd $F_{B} = 9 \vec{w} \times \vec{B} \Rightarrow 1 \vec{F}_{B} 1 = (1.602 \times 10^{-19} (1.0 \times 10^{-14} f_{S}) (2 \times 10^{-4} T)$ $= 3.2 \times 10^{-16} N$

4. In Figure, two semicircular arcs have radii $R_2 = 3.9 \ cm$ and $R_1 = 1.575 \ cm$, carry current $i = 0.1405 \ A$, and share the same center of curvature C.

What are the

i magnitude

ii direction (into or out of the page, why?)

of the net magnetic field at C? **Hint:** Use Biot-Savart Law.

dB = Mo ids ds=Rdø Biot-Savart B= SdB= MO angle > Solut Ø=TT $B=B_1+B_2=4$ 1.1405A ii) into the page = 1.67×10

5. A square wire loop with 3.00 m sides and resistance 3 Ω is perpendicular to a uniform magnetic field, with half the area of the loop in the field as shown in figure. The loop contains an ideal battery with emf (ε) 20.0 V. The magnitude of the field varies with time according to B = 0.0420 - 0.3870t, with B in teslas and t in second.

- i Find the value and direction of the induced ε .
- ii What is the net emf in the circuit?
- iii Find the magnitude and the direction of the net current around the loop?

Hint: Magnetic field is decreasing.

 $\begin{array}{c} \begin{array}{c} L = 2.00 \ m \\ R = 3 \ vL \\ E_{B} = 20.0 \ v \\ B = 0.0420 - 0.870 \ t \\ A = L^{2}L^{2} \end{array} \qquad \begin{array}{c} \left(\frac{1}{2} \frac{1}{2$