

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Midterm Examination November 11, 2021 17:00 – 18:30 Good Luck!

NAME-SURNAME:

SIGNATURE:

ID:

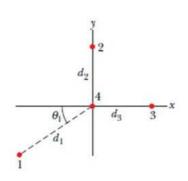
DEPARTMENT:

INSTRUCTOR:

DURATION: 90 minutes

 \diamond Answer all the questions.

 \diamond Write the solutions explicitly and clearly. Use the physical terminology.

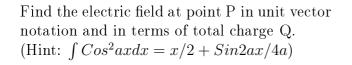

- ◊ You are allowed to use Formulae Sheet.
- \diamond Calculator is allowed.

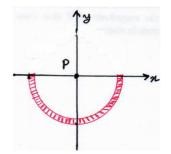
 \diamond You are not allowed to use any other electronic equipment in the exam.

Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110

This page is intentionally left blank. Use the space if needed.

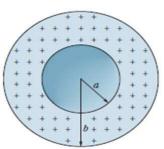
1. A) In figure, all four particles are fixed in the xy-plane, and $q_1 = -3.20 \times 10^{-19} C$, $q_2 = +3.20 \times 10^{-19} C$, $q_3 = +6.40 \times 10^{-19} C$, $q_4 = +3.20 \times 10^{-19} C$, $\theta_1 = 35.0^\circ$, $d_1 = 3.00 \ cm$ and $d_2 = d_3 = 2.00 \ cm$.


What are the magnitude and direction of the net electrostatic force on particle 4 due to the other three particles?

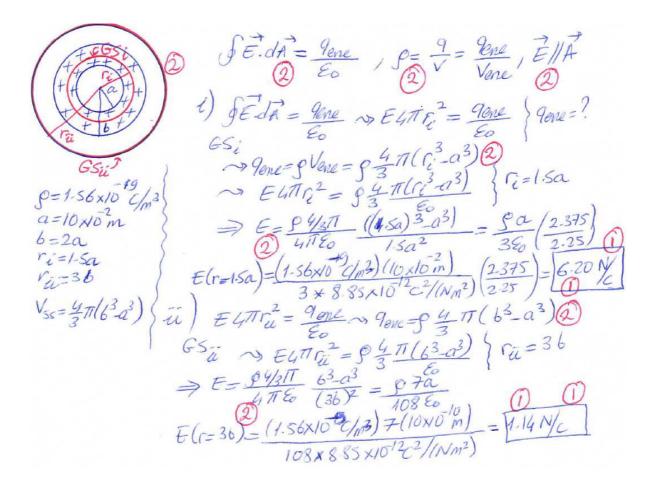

4 $q_{1}=-3.2\times10^{-19}$ $q_{2}=1q_{1}1$ $q_{3}=21q_{1}1$ $q_{3}=21q_{1}1$ $q_{4}=1q_{1}1$ $q_{4}=35^{\circ}_{2}$ $d_{1}=35^{\circ}_{2}$ $d_{3}=2\times10^{-20}$ $F_{4},nel_{1}x=F_{4}3,x+F_{4}1,n$ $F_{4},nel_{2}x=F_{4}3,x+F_{4}1,n$ $F_{4},nel_{2}y=F_{4}2,y+F_{4}1,y$ aget particle: $\Rightarrow F_{4}net_{y} = -F_{43} - |F_{41}| Cos 35$ $F_{4}net_{y} = -F_{42}, y + F_{41}, F_{4}net_{y} = -F_{42}, y + F_{41}, F_{4}net_{y} = -F_{42} - |F_{41}| Sim F_{4}net_{y} = -F_{4} - |F_{41}| Sim F_{4}net_{y} = -$ Funting = - (899×10 Not/2)(32×10-19) (3×10m)2) $F_{ynet} = \sqrt{F_{ynet}} + F_{ynet} = (-5.44 \times 10^{-24})^2 + 1-280 \times 10^{-24})^2 = 6.16 \times 10^{-24}

B) The density of conduction electrons in aluminum is $2.1 \times 10^{29} m^{-3}$. What is the drift velocity in an aluminum conductor that has a 2.0 μm by 3.0 μm rectangular cross section and when a 32.0 mA current flows through the conductor?

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$= \boxed{\begin{array}{c} 0.016 \text{ m/s} \\ \hline \end{array}} \qquad \qquad \begin{array}{c} A \\ \hline M^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^3 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^2 \text{m}^2 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^2 \text{m}^2 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^2 \text{m}^2 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^2 \text{m}^2 c \\ \hline \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^2 \text{m}^2 c \\ \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^2 \text{m}^2 c \\ \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^2 \text{m}^2 c \\ \end{array} \qquad \begin{array}{c} M \text{m}^2 \text{m}^2 \text{m}^2 c \\ \end{array} $	


2. Semicircular wire shown in figure below has a non-uniform charge distribution $\lambda(\theta) = \lambda_0 Cos\theta$.

y Ter	de=kdg=kArdo-kAdo R=2.650=KA.650 do
P de	x-components are concelling due to symmetry
	$E_{y} = E_{z} \frac{k \lambda_{0}}{R} \frac{k \lambda_{0}}{2} $
dq sds	R _T/ 000 = KAO (0 + Sin 28) 12
	$= \frac{k \lambda_0}{k} \frac{\pi}{2} \sim \overline{C} = \frac{k \lambda_0 \pi}{2R} (3) \qquad
	$ \overrightarrow{F} = \frac{1}{4\pi\epsilon_0} \frac{Q}{2R} \frac{\pi}{2R} \frac{3}{3} = \begin{bmatrix} Q \\ 0 \\ 16\pi\epsilon_0 R^2 \end{bmatrix} \frac{-\pi}{2R} \frac{1}{2R} \frac$
	110 CK W 16 HERE


3. Figure shows a spherical shell with uniform volume charge density $\rho = (1.56 \times 10^{-9} \ C/m^3)$, inner radius $a = 10 \ cm$, and outer radius b = 2.00a.

What is the magnitude of the electric field at radial distances

i r = 1.5aii r = 3.00b

Hints: Use Gauss' Law. Volume of the spherical shell: $\frac{4}{3}\pi(b^3-a^3)$.

4. The electric potential at points in an xy plane is given by $V = 4x^2 - 2y^3$. In unit vector notations, what is the electric field at point (1m, 2m)?

V12, y)=422-2y3 & Es=-2V $\vec{E}(x=1_{m}, y=2_{m}) = \left[-8\hat{i}+24\hat{j}\right]$

5. In figure below, the parallel plate capacitor of plate area $2 \times 10^{-2} m^2$ is filled with two dielectric slabs, each with thickness 2.00 mm. One slab has dielectric constant 3.00, and the other, 4.00. How much charge does the 7.00V battery store on the capacitor?

A=2×10 m d=2×10m K1=3 fK2=4 V-9=? In Eo A= 4 Eo A/d C2=K2C0 3 52 ×10 F Nm² m ~ F~ g = g unit cheek ~ 14g ~ 9 = Cegu = (1.52x 1.06×10