

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Midterm Examination November 11, 2021 17:00 – 18:30 Good Luck!

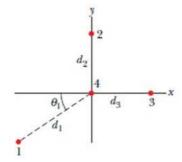
NAME-SURNAME:

SIGNATURE:

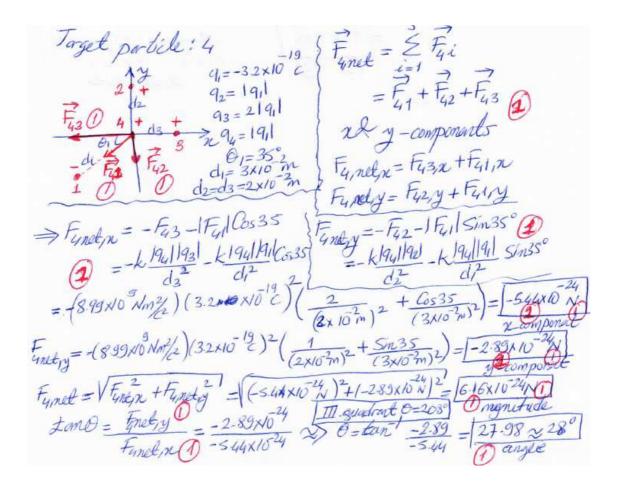
ID:

DEPARTMENT:

INSTRUCTOR:

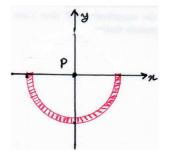

DURATION: 90 minutes

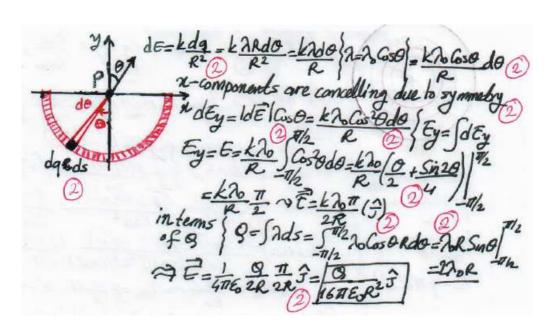
- ♦ Answer all the questions.
- ♦ Write the solutions explicitly and clearly. Use the physical terminology.
- You are allowed to use Formulae Sheet.
- ⋄ Calculator is allowed.
- ♦ You are not allowed to use any other electronic equipment in the exam.


Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110

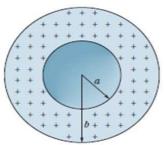
This page is intentionally left blank. Use the space if needed.

1. A) In figure, all four particles are fixed in the xy-plane, and $q_1 = -3.20 \times 10^{-19}~C, q_2 = +3.20 \times 10^{-19}~C, q_3 = +6.40 \times 10^{-19}~C, q_4 = +3.20 \times 10^{-19}~C, \theta_1 = 35.0^{\circ}, d_1 = 3.00~cm$ and $d_2 = d_3 = 2.00~cm$.


What are the magnitude and direction of the net electrostatic force on particle 4 due to the other three particles?

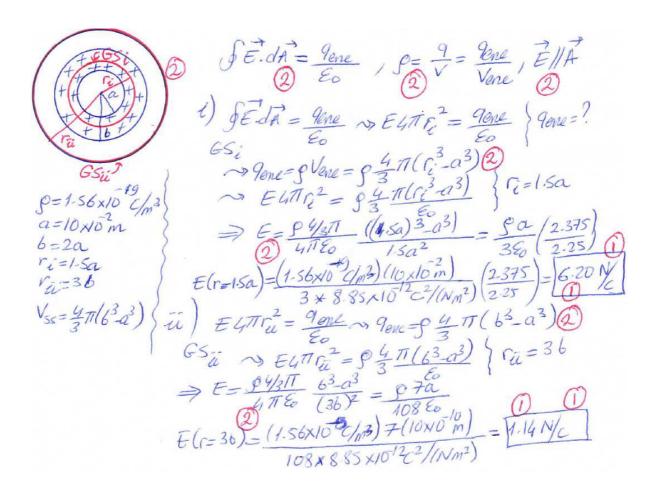


B) The density of conduction electrons in aluminum is $2.1 \times 10^{29}~m^{-3}$. What is the drift velocity in an aluminum conductor that has a $2.0~\mu m$ by $3.0~\mu m$ rectangular cross section and when a 32.0~mA current flows through the conductor?


2. Semicircular wire shown in figure below has a non-uniform charge distribution $\lambda(\theta) = \lambda_0 Cos\theta$.

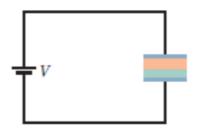
Find the electric field at point P in unit vector notation and in terms of total charge Q. (Hint: $\int Cos^2 ax dx = x/2 + Sin2ax/4a$)

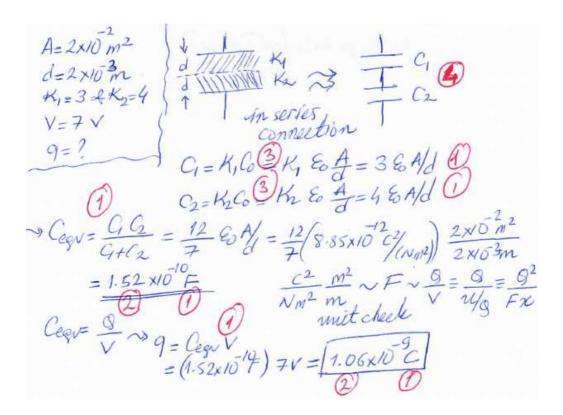
3. Figure shows a spherical shell with uniform volume charge density $\rho = (1.56 \times 10^{-9} \ C/m^3$, inner radius $a = 10 \ cm$, and outer radius b = 2.00a.



What is the magnitude of the electric field at radial distances

i
$$r = 1.5a$$


ii
$$r = 3.00b$$


Hints: Use Gauss' Law. Volume of the spherical shell: $\frac{4}{3}\pi(b^3-a^3)$.

4. The electric potential at points in an xy plane is given by $V = 4x^2 - 2y^3$. In unit vector notations, what is the electric field at point (1m, 2m)?

 $V(x_{1}y) = 4x^{2} - 2y^{3}$ & $E_{s} = -\frac{2V}{2s}$ $\overrightarrow{E} = -\frac{2V}{2x} \widehat{c} - \frac{2V}{2y} \widehat{f} = -8x \widehat{c} + 6y^{2} \widehat{f}$ $\overrightarrow{E}(x = 1_{m}, y = 2_{m}) = [-8 \widehat{c} + 24 \widehat{f}]$ 5. In figure below, the parallel plate capacitor of plate area $2\times 10^{-2}~m^2$ is filled with two dielectric slabs , each with thickness 2.00 mm. One slab has dielectric constant 3.00, and the other, 4.00 . How much charge does the 7.00V battery store on the capacitor?

İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Midterm Examination November 03, 2019 15:30 – 17:30 Good Luck!

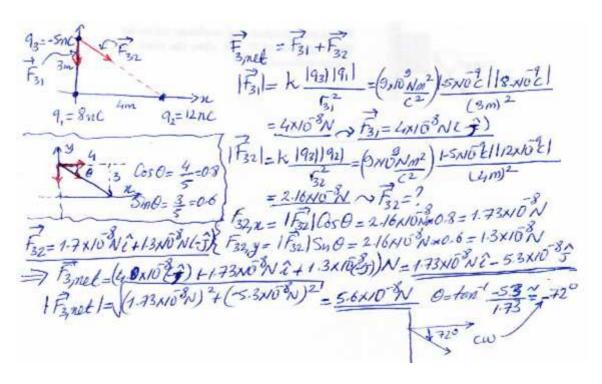
NAME-SURNAME:

SIGNATURE:

ID:

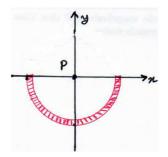
DEPARTMENT:

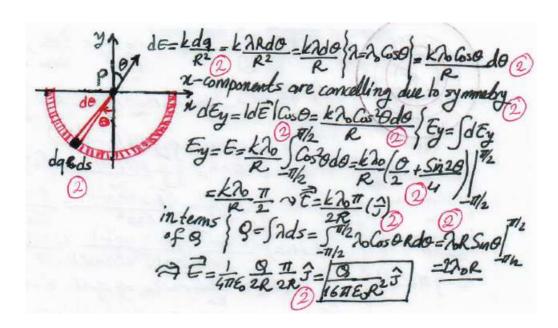
INSTRUCTOR:


DURATION: 120 minutes

- ♦ Answer all the questions.
- Write the solutions explicitly and clearly.Use the physical terminology.
- You are allowed to use Formulae Sheet.
- ♦ Calculator is allowed.
- ♦ You are not allowed to use any other electronic equipment in the exam.

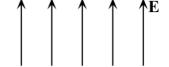
Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110


This page is intentionally left blank. Use the space if needed.

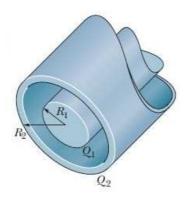

1. A) A point charge $q_1 = 8 nC$ is at the origin and a second point charge $q_2 = 12 nC$ is on the x-axis at x=4 m. Find the net electric force they exert on $q_3 = -5 nC$ located on the y-axis at y=3.0 m in vector notation, magnitude and angle.

B) Semicircular wire shown in figure below has a non-uniform charge distribution $\lambda(\theta) = \lambda_0 Cos\theta$.

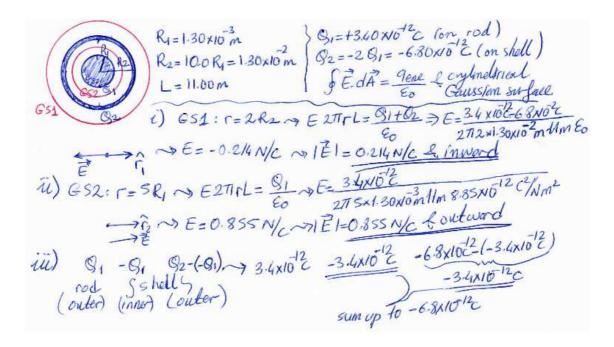
Find the electric field at point P in unit vector notation and in terms of total charge Q. (Hint: $\int Cos^2 ax dx = x/2 + Sin2ax/4a$)



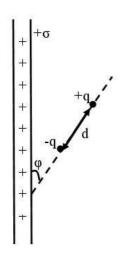
2. A proton moves at 4.5×10^5 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 9.6×10^3 N/C.


Ignoring any gravitational effects, find

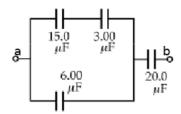
- i the time required for the proton to travel 5 cm horizontally,
- ii the vertical displacement during that $\bullet \stackrel{\mathbf{v}}{\longrightarrow}$ time,



iii the horizontal and vertical components of the velocity after the proton has traveled 5 cm horizontally.


3. Figure below shows a section of a conducting rod of radius $R_1 = 1.30 \ mm$ and length $L = 11.00 \ m$ inside a thin-walled coaxial conducting cylindrical shell of radius $R_2 = 10.0R_1$ and the (same) length L. The net charge on the rod is $Q_1 = +3.40 \times 10^{-12} \ C$; that on the shell is $Q_2 = -2.00Q_1$

- i What are the magnitude E and direction (radially inward or outward) of the electric field at radial distance $r = 2.00R_2$?
- ii What are E and the direction at $r = 5.00R_1$?
- iii What is the charge on the interior and exterior surface of the shell?


4. An electric dipole of two opposite charges of magnitude $q=1.50~\mu C$, separated by a distance d=1.20~cm is placed near an infinitely large plane of charge of uniform charge density $\sigma=1.77~\mu C/m^2$. The axis of the electric dipole makes an angle of $\varphi=37^\circ$ with the plane, as shown in the figure.

- i Find the magnitude of the electric field due to the plane. Show its direction on the figure.
- ii Calculate the magnitude of the electric dipole moment. Show its direction on the figure.
- iii Calculate the magnitude of the torque acting on the electric dipole. Show its direction on the figure.
- iv How much work must be done by an external agent to turn the electric dipole by 90° in clockwise direction?

 $|\overrightarrow{E}| \stackrel{\overrightarrow{E}}{\Rightarrow} \stackrel{$

5. Four capacitors are connected as shown in Figure.

- i Find the equivalent capacitance between points a and b.
- ii Calculate the charge on each capacitor if $\Delta V_{ab} = 15.0 \ V$.

1)
$$a = \frac{C_1 + C_2}{C_1 + C_2} = \frac{C_1 + C_2}{C_1 + C_2} = \frac{(15 \times 10^6 \text{ f})}{13 \times 10^6 \text{ f}} = 2.5 \times 10^6 \text{ f}$$
 $C_{123} = C_{12} + C_3 = 2.5 \times 10^6 \text{ f} + 6 \times 10^6 \text{ f} = 8.5 \times 10^6 \text{ f}$
 $C_{123} = C_{12} + C_3 = 2.5 \times 10^6 \text{ f} + 6 \times 10^6 \text{ f} = 8.5 \times 10^6 \text{ f}$
 $C_{123} = C_{123} + C_4 = \frac{(8.5 \times 10^6 \text{ f})}{28.5 \times 10^6 \text{ f}} = 5.97 \times 10^6 \text{ f} = 5.97 \text{ M}$
 $C = \frac{8}{V} \Rightarrow 9_{egv} = 9_{1234} = 0_{egv} =$

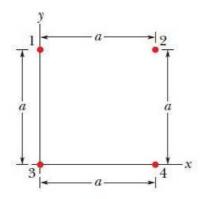
İzmir Kâtip Çelebi University Department of Engineering Sciences Phy102 Physics II Midterm Examination November 06, 2018 16:30 – 18:30 Good Luck!

NAME-SURNAME:

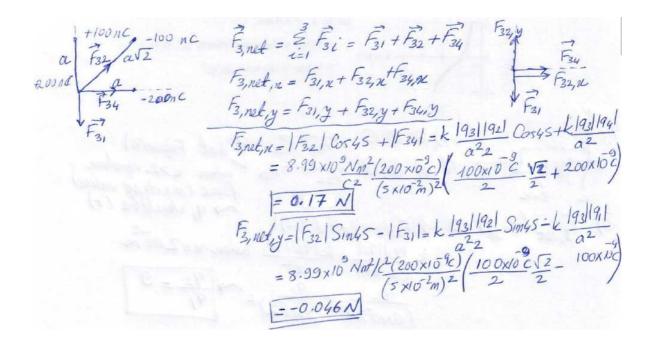
SIGNATURE:

ID:

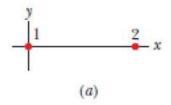
DEPARTMENT:


DURATION: 120 minutes

- ♦ Answer all the questions.
- Write the solutions explicitly and clearly.Use the physical terminology.
- ♦ You are allowed to use Formulae Sheet.
- ⋄ Calculator is allowed.
- ♦ You are not allowed to use any other electronic equipment in the exam.


Question	Grade	Out of
1A		15
1B		15
2		20
3		20
4		20
5		20
TOTAL		110

This page is intentionally left blank. Use the space if needed.


1. A) In Figure, four particles form a square.

The particles have charges $q_1 = -q_2 = 100 \ nC$ and $q_3 = -q_4 = 200 \ nC$, and distance $a = 5.0 \ cm$. What are the x and y components of the net electrostatic force on particle 3?

B) In Figure (a), particle 1 (of charge q_1) and particle 2 (of charge q_2) are fixed in place on an x-axis, 8.00 cm apart. Particle 3 (of charge $q_3 = +8.00 \times 10^{-19} \ C$) is to be placed on the line between particles 1 and 2 so that they produce a net electrostatic force $F_{3,net}$ on it.

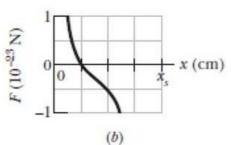
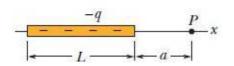


Figure (b) gives the x component of that force versus the coordinate x at which particle 3 is placed. The scale of the x axis is set by $x_s = 8.0 \ cm$.

- i What is the sign of charge q_1 ?
- ii What is the ratio q_2/q_1 ?

if
$$\Theta \oplus \Theta \oplus F_{31} F_{32}$$
 but Figure(6)

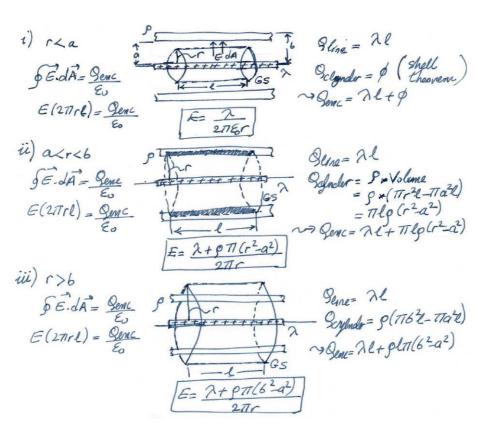

1 $\int_{3^{2}}^{3^{2}} \int_{2}^{2} \rightarrow U \oplus \Theta \oplus F_{32} = F_{31}$ when $u > 2$ repulsive force (positive value)

ii) $F_{3,net}(n=2) = 0 \rightarrow |F_{32}(n=2)| = |F_{31}(n=2)| \Rightarrow q_{1} \text{ should be } (t)$

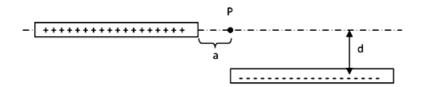
$$k \frac{|q_{31}|q_{2}|}{(8-n)^{2}} = k \frac{|q_{31}|q_{1}|}{n^{2}} \text{ when } n = 2 \times 10^{-2} \text{ m}$$

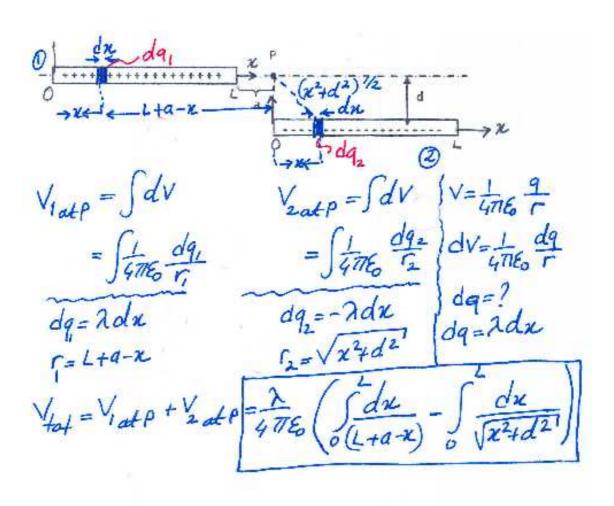
$$\frac{q_{2}}{(6 \times 10^{-2})^{2}} = \frac{q_{1}}{(2 \times 10^{-2})^{2}} \Rightarrow \frac{q_{2}}{q_{1}} = 9$$

- 2. In the figure below, a nonconducting rod of length $L=8.15\ cm$ has a charge $q=-4.23\ fC$ uniformly distributed along its length.
 - i What is the linear charge density of the rod?
 - ii What are the magnitude and direction (relative to the +x-axis) of the electric field produced at point P, at distance $a = 12.0 \ cm$ from the rod?


- iii What is the electric field magnitude produced at distance $a = 50.0 \ cm$ by the rod?
- iv What is the electric field magnitude produced at distance $a = 50.0 \ cm$ by $\frac{a \ particle \ of \ charge}{\text{replaces the rod?}} \ q = -4.23 \ fC \ \text{that}$

1)
$$\lambda = \frac{9}{L} = \frac{-4.23 \times 10^{15} \text{C}}{8.15 \times 10^{2} \text{m}} = \frac{-5.19 \times 10^{-14} \text{C/m}}{8.15 \times 10^{2} \text{m}}$$

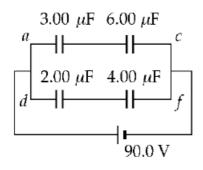

ii) $\frac{dn_{1}dq}{n} = \frac{1}{8.15 \times 10^{2} \text{m}} = \frac{1}{8.15 \times 10^{2} \text{m}} = \frac{1}{8.15 \times 10^{2} \text{m}} = \frac{1}{8.99 \times 10^{3} \frac{\text{M}^{2}}{10^{2}} \left(\frac{5.19 \times 10^{2} \text{c}}{10^{2}} \right)}{(12 \times 10^{2} \text{m})^{2} \times 10^{2} \text{m}} = \frac{1}{8.99 \times 10^{3} \frac{\text{M}^{2}}{10^{2}} \left(\frac{5.19 \times 10^{2} \text{m}}{10^{2}} \right)}{(12 \times 10^{2} \frac{\text{m}}{10^{2}} \times 10^{2} \text{m}} = \frac{1}{1.31 \times 10^{2} \text{M/c}}


3. An infinitely long cylindrical insulating shell of inner radius a and outer radius b has a uniform volume charge density ρ . A line of uniform linear charge density λ , is placed along the axis of the shell. Determine the electric field in the following regions:

$$i r < a$$

$$ii a < r < b$$

$$iii r > b$$



4. Two very thin non-conducting rods are placed together as shown. Both rods have lengths of L and they carry uniform charges of +q and -q over their lengths. Find the potential at point P at a distance a and d from the positively and negatively charged rods as shown. Don't perform integration.

5. For the system of capacitors shown in Figure,

find

- i the equivalent capacitance of the system,
- ii the potential across each capacitor,
- iii the charge on each capacitor.