

İzmir Kâtip Çelebi University Department of Engineering Sciences IKC-MH.55 Scientific Computing with Python Take-home Final Examination June 09, 2023 16:00 –June 16, 2023 23:59 Good Luck!

NAME-SURNAME:

SIGNATURE:

ID:

DEPARTMENT:

DURATION: Due to June 16, 2023

Answer at least 1 question from each parts and at most 5 questions.
Prepare your report/codes.
Copy your files into a directory named as your ID.

 \diamond Upload a single file by compressing this directory to UBYS.

Question	Grade	Out of
TOTAL	<u> </u>	

This page is intentionally left blank. Use the space if needed.

Part I Numerical Techniques: Differential Equations - Boundary Value & Eigenvalue Problems

A) (20pts) Compute the following boundary value problems with the boundary conditions given next to them, and Write a program that compares it to analytical solutions:

$$y'' + 2y' + y = (x+2)^2 - 2 \quad with \ y(0) = 0, \ y(1) = 2,$$

$$y'' = y^3 - yy' \quad with \ y(1) = 1/2, \ y(2) = 1/3$$

The analytical solutions of these equations are:

$$y(x) = x^2 + xe^{x-1}$$
$$y(x) = \frac{1}{x+1}$$

B) (30pts) Write a program that solve the following eigenvalue problems with the given boundary conditions and find the smallest two eigenvalues:

$$y'' - 3y' + 2k^2y = 0 \quad with \ y(0) = 0, \ y(1) = 0,$$

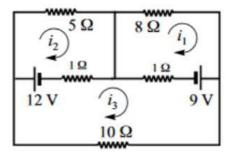
$$y'' + k^2x^2y = 0 \quad with \ y(0) = 0, \ y(1) = 0$$

C) (30pts) Lennard-Jones potential It is a widely used potential for the interaction potential between inert gas atoms or neutral molecules. In one-dimensional space, this potential is given by the following expression:

$$V(x) = 4\epsilon \left[\left(\frac{\sigma}{x}\right)^{12} - \left(\frac{\sigma}{x}\right)^6 \right]$$

Where, ϵ is the intensity of the potential, and σ is the equilibrium distance parameters. Take the constants in the Schrödinger equation $\hbar = m = 1$ and the potential parameters $\epsilon = 10$ and $\sigma = 1$. Write a program to find the ground state energy by solving the Schrödinger equation with the boundary conditions $\psi(0) = \psi(5) = 0$ in the range x : [0, 5].

Part II Numerical Techniques: Linear Algebra and Matrix Computing


A) (20pts) Write a program that solves the following systems of linear equations using Gaussian elimination:

a)	b)	
$2x_1 + x_2 - 3x_3 = -1$	$x_1 + 2x_2 + 4x_3 = 11$	
$-x_1 + 3x_2 + 2x_3 = 12$	$4x_1 - x_2 + x_3 = 8$	
$3x_1 + x_2 - 3x_3 = 0$	$2x_1 + 5x_2 + 2x_3 = 3$	

B) (30pts) Write a program that first checks that the determinants of the matrices given below are as being nonzero and then calculates their inverses. (There is a simple way to check your results: Multiply each matrix by its inverse and it should result as a unit matrix.)

a)	b)
$ \left(\begin{array}{rrrrr} 1 & 2 & 0 \\ 2 & 1 & -1 \\ 3 & 1 & 1 \end{array}\right) $	$\left(\begin{array}{rrrrr} 1 & 1 & -1 & 1 \\ 1 & 2 & -4 & -2 \\ 2 & 1 & 1 & 5 \\ -1 & 0 & -2 & -4 \end{array}\right)$

C) (30pts) Set up a system of equations that give the currents with Kirchhoff's rules for the direct current circuit given in the figure and write a program that calculates these currents.

