

İzmir Kâtip Çelebi University Department of Engineering Sciences IKC-MH.55 Scientific Computing with Python Take-home Final Examination January 19, 2024 14:00 – January 24, 2024 23:59 Good Luck!

NAME-SURNAME:

SIGNATURE:

ID:

DEPARTMENT:

DURATION: Due to January 24, 2024

 \diamond Answer at least 1 question from each parts and at most 4 questions.

 \diamond Prepare your report/codes.

 \diamond Copy your files into a directory named as your ID.

 \diamond Upload a single file by compressing this directory to UBYS.

Question	Grade	Out of
1		25
2		25
3		25
4		25
TOTAL		

This page is intentionally left blank. Use the space if needed.

Part I Numerical Techniques: Differential Equations - Boundary Value & Eigenvalue Problems

Choose only two questions.

A) Compute the following boundary value problems with the boundary conditions given next to them, and Write a program that compares it to analytical solutions:

$$y'' - xy' + y = -x^2 \quad with \quad y(0) = -2, \& \quad y(1) = 1,$$

$$y'' = -(y')^2 - y + \ln x \quad with \quad y(1) = 0, \& \quad y(2) = \ln 2$$

The analytical solutions of these equations are:

$$y(x) = 1 + 2\frac{e^{2x} - e^x}{e^2 - e}$$
$$y(x) = lnx$$

B) Write a program that solve the following eigenvalue problems with the given boundary conditions and find the smallest two eigenvalues:

$$y'' - 3y' + 2k^2y = 0 \quad with \quad y(0) = 0, \quad y(1) = 0,$$

$$y'' + k^2x^2y = 0 \quad with \quad y(0) = 0, \quad y(1) = 0$$

C) **Pöschl-Teller potential** It is a widely used potential function used for matter diffusion in modern optoelectronic devices:

$$V(x) = -\frac{\hbar^2}{2m} \frac{\alpha^2}{\cosh^2 \alpha x}$$

Where, α is a parameter that defines both the intensity and range of the potential together. It would be $\alpha = 0.05$ for typical devices. Take the constants in the Schrödinger equation $\hbar/2m = 7.62 \ eV \text{Å}^2$. Write a program to find the ground state energy by solving the Schrödinger equation with the boundary conditions $\psi(0) = \psi(100) = 0$ in the interval x : [0, 100 Å].

Part II Numerical Techniques: Linear Algebra and Matrix Computing

Choose only one question.

A) Write a program that solves the following systems of linear equations using Gaussian elimination:

$x_1 + x_2 + x_4$	=	2	$4x_1 + 8x_2 + 4x_3$	=	8
$2x_1 + x_2 - x_3 + x_4$	=	1	$x_1 + 5x_2 + 4x_3 - 3x_4$	=	-4
$4x_1 - x_2 - 2x_3 + 2x_4$	=	0	$x_1 + 4x_2 + 7x_3 + 2x_4$	=	10
$3x_1 - x_2 - x_3 + 2x_4$	=	-3	$x_1 + 3x_2 - 2x_4$	=	-4

B) Write a program that first checks that the determinants of the matrices given below are as being nonzero and then calculates their inverses. (There is a simple way to check your results: Multiply each matrix by its inverse and it should result as a unit matrix.)

12	9 1	\mathbf{i}		(1	0	-2	3	١
	2 -1				3	1	1	4	۱
$\begin{bmatrix} 0 & - \\ c & - \end{bmatrix}$	$\cdot 1 4$				-1	0	2	-1	İ
(0	3 2	/			4	3	6	0 /	ļ

C) Set up a system of equations that give the currents with Kirchhoff's rules for the direct current circuit given in the figure and write a program that calculates these currents.

Part III Data Analysis: Interpolation and Curve Fitting

Choose only one question.

A) Bessel functions cannot be expressed in terms of known functions, but are defined as a series of infinite terms as follows:

$$J_n(x) = \sum_{k=0}^{\infty} = \frac{(-1)^k}{k!(n+k)!} \left(\frac{x}{2}\right)^{n+2k}$$

The values of $J_0(x)$ in the range of [0,3] are given in the table below:

x	$J_0(x)$
0.0	1.00000000
0.5	0.93846981
1.0	0.76519769
1.5	0.51182767
2.0	0.22389078
2.5	-0.04838378
3.0	-0.26005195

Write a python program that establishes the Lagrange interpolation for Bessel functions at these 7 points and interpolate at x = 1.75 and x = 2.99, then compare them with their exact values $(J_0(1.75) = 0.36903253$ ve $J_0(2.99) = -0.25664274)$. Which value would be more inaccurate? Explain.

B) The volume variation of a liquid with the temperature is given in the table below:

$V (cm^3)$	$T(^{\circ}C)$
1.032	10.0
1.094	29.5
1.156	50.0
1.215	69.5
1.273	90.0

Write a python program to find the coefficients a and b by assuming that this liquid volume varies with the relation $V = 1 + aT + bT^2$.

C) For the given data points;

x	Y
0.000	1.500
0.142	1.495
0.285	1.040
0.428	0.821
0.571	1.003
0.714	0.821
0.857	0.442
1.000	0.552

to which we will fit $y(x) = \alpha e^{\beta x}$.

- First, we should compute a new table with z(x) = lny(x)
- Construct the normal equations for z = A + Cx where $A = ln\alpha$ and $C = \beta$
- Solve these normal equations to find A and C
- Convert back to the original variables
- Plot Y vs x and y vs x then compare them.