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12 CHAPTER 1. PRELIMINARIES

1.1 First Meeting

• IKC-MH.55 Scientific Computing with Python 2023-2024 Fall

• FRIDAY 14:00-16:00 (T) H1-86

• Instructor: Cem Özdoğan, Engineering Sciences Dept.
Faculty of Engineering and Architecture Building, H1-33

• TA: NA

• WEB page: http://cemozdogan.net/

• Announcements: Watch this space for the latest updates.

Wednesday, October 4, 2023 In the first lecture, there

will be first meeting. The lecture notes will be

published soon, see Course Schedule section.

• All the lecture notes will be accessible via Tentative Course Schedule & Lecture Notes.

• All the example py-files (for lecturing and hands-on sessions) will be
accessible via the link.

1.1.1 Lecture Information

• Python is a well-designed, modern programming language and widely
used in computational science and engineering.

• It is a powerful tool since it includes a wide range of features tailored
for scientific computing.

• This course is not either a numerical methods or a programming python
course.

• However, this course is designed to use computer programming to
implement numerical algorithms for solving physics/engineering prob-
lems.

• Consequently, Python (fundamentals of programming in Python, NumPy,
SciPy, Matplotlib libraries) and some numerical techniques (practice at
physics/engineering problems) will be learned implicitly.

• You may be expected to do significant programming and problem solv-
ing.

http://cemozdogan.net/index.html
http://cemozdogan.net/ScientificComputingwithPython/2023-2024Fall/index.html
http://cemozdogan.net/ScientificComputingwithPython/pyfiles
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• An understanding of the concepts of elementary calculus, in particular
solutions of differential equations and Newtonian/wave mechanics are
required but not mandatory since they will be explained as needed.

• Important announcements will be posted to the Announcements section
of this web page, so please check this page frequently.

• You are responsible for all such announcements, as well as announce-
ments made in lecture.

1.1.2 Course Overview

• IKC-MH.55 is intended to provide students a practical introduction for
using the computer as a tool to solve physics and engineering problems.

• The fundamental advantage of using computers in science is the ability
to treat systems that cannot be solved analytically.

• So that computing has become a major tool in science/engineering and
it is called the third pillar along with experiments and theory.

• Numerical techniques such as: Interpolation & Model Fitting, Deriva-
tives & Integrals, Basic Linear Algebra, Eigenvalue Problems, Differen-
tial equations, ODE and PDE solvers are used to solve problems from
all areas of science and engineering.

• Python implementation of these algorithms will be covered only when-
ever necessary in the context of the course.

• Each class will be focused towards solving a particular physical/engi-
neering problem.

• Problems will be drawn from diverse areas of real-life examples as much
as possible.

• Theory or model, method of solution/algorithm, solution implementa-
tion (analytic, Python) and visualization /exploration will be outlined
for the problem description.

• Upon completion of this course the students will be able to under-
stand/explain/apply;

– Learn how to work in a scientific computing environment.
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– Get familiarized with Python as a programming language for nu-
merical computation.

– Learn how to solve physics/engineering problems using numerical
techniques.

– Can solve demanding tasks with Python.

– Learn to analyze problems, select appropriate numerical algo-
rithms to solve the problem, implement them using Python.

– Possess the basic knowledge of numerical modeling, data analysis
and visualizing large amount of data.

1.1.3 Text Book

• Lecture material will be based on them.

• It is strongly advised that student should read textbooks rather than
only content with the lecture material supplied from the lecturer.

• Required: No & Recommended:

– Computational Physics: Problem Solving with Python by by Ru-
bin H. Landau, Manuel J. Páez, Cristian C. Bordeianu, 3rd edi-
tion, 2015, Wiley.

– Learning Scientific Programming with Python by Christian Hill,
2nd edition, 2020, Cambridge University.

– Fortran ve Python ile Sayısal Fizik by Bekir Karaoğlu, 2nd edition,
2013, Seçkin Yayıncılık.

– Fizik ve Mühendislikte Python by R. Gökhan Türeci, Hamdi Dağıstanlı,
İlkay Türk Çakır, 2021, Cengage Learning.

Figure 1.1: Recommended Text Books.

https://www.wiley.com/en-us/Computational+Physics:+Problem+Solving+with+Python,+3rd+Edition-p-9783527413157
https://www.cambridge.org/tr/academic/subjects/physics/mathematical-methods/learning-scientific-programming-python-2nd-edition?format=AR&isbn=9781108745918
https://www.seckin.com.tr/kitap/966813697
https://gazikitabevi.com.tr/urun/fizik-ve-muhendislikte-python
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1.1.4 Online Resources

The following (some) resources are available online.

• https://python-course.eu/

• https://www.codecademy.com/catalog/language/python

• https://docs.python.org/

• https://scipy-lectures.org/

• https://matplotlib.org/stable/tutorials/index.html

• https://scipython.com/book2/

• https://pythonnumericalmethods.berkeley.edu/index.html

1.1.5 Grading Criteria

• Midterms & Final Exams: There will be one take-home midterm and
one take-home final exam, will count 40% each and 60% of your grade,
respectively.

• Homeworks/Assignments (or Term Project): ??

1.1.6 Policies

• Attendance is not compulsory (30%), but you are responsible for ev-
erything said in class.

• Academic Regulations:
Derslere devam zorunluluğu ve denetlenmesi
MADDE 18 - (1) Öğrencilerin derslere, uygulamalara, sınavlara ve
diğer çalışmalara devamı zorunludur. Teorik derslerin % 30’undan,
uygulamaların % 20’sinden fazlasına devam etmeyen ve uygulamalarda
başarılı olamayan öğrenci, o dersin yarıyıl/yılsonu ya da varsa bütünleme
sınavına alınmaz. Tekrarlanan derslerde önceki dönemde devam şartı
yerine getirilmiş ise derslerde devam şartı aranıp aranmayacağı ilgili
birim tarafından hazırlanarak Senato onayına sunulan usul ve esaslar
ile belirlenir.

• You can use ideas from the literature (with proper citation).

https://python-course.eu/
https://www.codecademy.com/catalog/language/python
https://docs.python.org/
https://scipy-lectures.org/
https://matplotlib.org/stable/tutorials/index.html
https://scipython.com/book2/
https://pythonnumericalmethods.berkeley.edu/index.html
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• The code you submit must be written completely by you. You can use
anything from the textbook/notes.

• I encourage you to ask questions in class. You are supposed to ask
questions. Don’t guess, ask a question!

1.2 Installation of Required Tools/Programs

1.2.1 Linux System

• Assuming you are using Windows OS.

• Download & Install VirtualBox-7.0.10-158379-Win.exe

• Download & Install kubuntu-22.04.3-desktop-amd64.iso under Virtual-
Box

• Post-Installation Steps of Kubuntu

– ping google.com

– # Setup ”Display Configuration” for resolution

– sudo apt-get install gcc make perl

– sudo apt-get install python3

– sudo snap install pycharm-community --classic

– sudo apt-get install python3-tk

– sudo apt-get install pyhton3-pip

– sudo pip install numpy -U

– sudo pip install scipy -U

– sudo pip install matplotlib -U

– # End of Post-Installation Steps of Kubuntu

– sudo apt-get update # Regular Updates

– sudo apt-get upgrade # Regular Upgrades

• See video for Installation of Kubuntu & PyCharm under VirtualBox.

https://download.virtualbox.org/virtualbox/7.0.10/VirtualBox-7.0.10-158379-Win.exe
https://cdimage.ubuntu.com/kubuntu/releases/22.04.3/release/kubuntu-22.04.3-desktop-amd64.iso
http://cemozdogan.net/ScientificComputingwithPython/week1/InstallKubuntu-PyCharm.mp4
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1.2.2 Windows System

• Assuming you are using Windows OS.

• Download & Install Anaconda3-2023.09-0-Windows-x86 64.exe

• Download & Install pycharm-community-2023.2.2.exe

• See video for Installation of Anaconda & PyCharm.

1.2.3 Others

• Google Colaboratory and others !

• But, in take-home exams:

– Prepare your report/codes.

– Copy your files into a directory named as your ID.

– Upload/send a single file by compressing this directory.

• Check the web page: IKC-MH.55 2023-2024 Fall frequently.

https://repo.anaconda.com/archive/Anaconda3-2023.09-0-Windows-x86_64.exe
https://download.jetbrains.com/python/pycharm-community-2023.2.2.exe
http://cemozdogan.net/ScientificComputingwithPython/week1/InstallAnaconda-PyCharm.mp4
https://colab.google/
http://cemozdogan.net/ScientificComputingwithPython/2023-2024Fall/index.html
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2.1 Introduction to Python

• Running a Computer Program.

Figure 2.1: Running a Computer Program.

• Python is an interpreted language.

– The code is pre-processed to produce a bytecode (similar to ma-
chine language) and then executed by the interpreter (virtual ma-
chine).

• Code portability: Runs on hardware/software platforms different
from which used to develop the code.

– Python is portable if the interpreter is available on the target
platform.

• Variables: A variable stores a piece of data and gives it a name.

– a variable name must start with a letter or the underscore char-
acter;

– a variable name cannot start with a number;

– a variable name can only contain alpha-numeric characters and
underscores (A-z, 0-9, and );

– white spaces and signs with special meanings, as ”+” and ”-” are
not allowed;

– variable names are case-sensitive (age, Age and AGE are three
different variables).
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• Built-in data types:

– Text Type: str

– Numeric Types: int, float, complex

– Sequence Types: list, tuple, range

– Mapping Type: dict

– Set Types: set, frozenset

– Boolean Type: bool

– Binary Types: bytes, bytearray, memoryview

• Lists: What if we want to store many integers? We need a list!

• Loops: Repeat code until a conditional statement ends the loop.

• Conditionals: Sometimes you want to execute code only in certain
circumstances.

• Functions: We can separate off code into functions, that can take
input and can give output. They serve as black boxes from the per-
spective of the rest of our code.

2.2 Python Libraries for Data Science

• Extensive first and third party libraries. Top Python Libraries for Data
Science.

– NumPy (aka Numerical Python) is the core numeric and sci-
entific computation library in Python. General-purpose array-
processing package.

– SciPy (aka Scientific Python) is extensively used for scientific and
technical computations (extends NumPy).

– Matplotlib is an essential library in Python for data visualization
in data science. A plotting library.

– Seaborn is another library in Python for data visualization. Ex-
tension of Matplotlib. Statistical and graphical analysis in data
science.

– Pandas (Python data analysis) is a foundational Python library
for data analysis in data science. Data cleaning, data handling,
manipulation, and modeling.



22 CHAPTER 2. INTRODUCTION

• Top Python Libraries for Data Science.

– SciKit-Learn is a robust machine learning library in Python. Data
mining, feature engineering, training and deploying machine learning
models.

– Statsmodels - provides functionalities for descriptive and inferential
statistics for statistical models.

– TensorFlow - a framework for defining and running computations
that involve tensors. Machine learning and deep learning framework.

– Keras is a neural network Python library for deep learning model
development, training, and deployment.

– PyTorch - scientific computing package that uses the power of graph-
ics processing units.

– Scrapy - for web crawling frameworks.

– BeautifulSoup - for web crawling and data scraping.

– NLTK (Natural Language Tool Kit) is a Python package essentially

for natural language processing.

2.2.1 NumPy

Numpy (Numerical Python) - The Fundamental Package for Scientific Com-
puting with Python. https://numpy.org/

• NumPy offers high-quality mathematical functions and supports logical
operations on built-in multi-dimensional array objects.

• NumPy arrays are significantly faster than traditional Python lists and
way more efficient in performance.

• Some of the features provided by NumPy

– Basic array operations such as addition and multiplication

– Mathematical, logical, shape manipulation operations

– Indexing, slicing, flattening, and reshaping the arrays

– Stacking, splitting, and broadcasting arrays

– I/O Operations

– Fourier transform capabilities

– Basic linear algebra

– Basic statistical operations

https://numpy.org/
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– Random number generation

– . . .

Figure 2.2: NumPy Module Organization.

2.2.2 SciPy

SciPy is a scientific computation library in Python. A collection of mathe-
matical functions and algorithms built on Python’s extension NumPy https://scipy.org/.

• It provides the user with high-level commands and classes for manipu-
lating and visualizing data.

• It is widely used in machine learning and scientific programming and
comes with integrated support for linear algebra and statistics.

• Some of the features provided by SciPy

– Search for minima and maxima of functions

– Calculation of function integrals

– Support for special functions

– Signal processing

– Multi-dimensional image processing

https://scipy.org/
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– Work with genetic algorithms

– Fourier transform capabilities

– Solving ordinary differential equations

– . . .

• The scipy namespace itself only contains functions imported from numpy.

Therefore, importing only the scipy base package does only provide numpy
content, which could be imported from numpy directly (NOT USED as im-
port scipy).
i.e., from scipy import linalg, io

Figure 2.3: SciPy Modules.

2.2.3 Matplotlib

Matplotlib is the core plotting and data visualization package in Python
https://matplotlib.org/.

• A 2D graphical Python library which produces publication quality fig-
ures. However, it also supports 3D graphics (mplot3d toolkit), but this
is very limited.

• Matplotlib is capable of producing high-quality figures in various for-
mats. It offers interactive cross-platform environments for plotting.

https://matplotlib.org/
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• It provides a MATLAB/Mathematica-like interface for simple plotting
pyplot submodule with secondary x-y axis support, and facilitates the
creation of subplots, labels, grids, legends, use a logarithmic scale or
polar coordinates etc.

– Matplotlib also allows full control of axes properties, font styles,
line and marker styles, and some more formatting entities.

• You can generate line plots (Charts), bar charts, histograms, power
spectra, pie charts, error charts, box plots, scatter plots, stem plots,
contour plots, etc., with just a few lines of codes in Matplotlib.

2.3 Programming Examples in Python

week2 HandsOn.py:

1 #!/ usr /bin /python3
2 ######### Var iab l e s #########
3 # Each va r i ab l e in python has a ” type ” . The va r i ab l e type i s not pre−def ined

, i t i s ”DYNAMICALLY” r e s o l v ed at run−time
4 answer = 42 # ”answer ” contained an i n t e g e r because we gave i t
5 pr i n t ( answer ) # as an i n t e g e r !
6 # 42
7 i s i t t h u r s d a y = True # These both are ’ booleans ’ or t rue / f a l s e
8 i s i t wedne sday = Fal s e # va lues
9 pi approx = 3.1415 # This w i l l be a f l o a t i n g point number

10 my str ing = ”Value o f p i number” # This i s a s t r i n g datatype
11 pr i n t ( pi approx , my str ing )
12 # 3.1415 Value o f p i number
13 pr i n t ( ”my str ing [ 0 ] : ” , my str ing [ 0 ] ) # Access s ub s t r i ng s use [ ]
14 # my str ing [ 0 ] : V
15 pr i n t ( ”my str ing [ 1 : 5 ] : ” , my str ing [ 1 : 5 ] ) # or i n d i c e s
16 # my str ing [ 1 : 5 ] : a lue
17 # pr i n t ( pi approx + my str ing )
18 ## TypeError : unsupported operand type ( s ) f o r +: ’ f l o a t ’ and ’ s t r ’
19 pr i n t ( my str ing + ” in four d i g i t s a f t e r . ” )
20 # Value o f p i number in f our d i g i t s a f t e r .
21 pr i n t ( type ( pi approx ) ) # You can get the data type o f any ob j e c t
22 # <c l a s s ’ f l o a t ’>
23 # Addition , subtract i on , mu l t i p l i c a t i on , d i v i s i o n are as you expect
24 f l o a t 1 = 5 . 7 5 ; f l o a t 2 = 2.25
25 pr i n t ( f l o a t 1 + f l o a t 2 ) ; p r i n t ( f l o a t 1 − f l o a t 2 ) ; p r i n t ( f l o a t 1 ∗ f l o a t 2 ) ;

p r i n t ( f l o a t 1 / f l o a t 2 )
26 pr i n t (5 % 2) # Modulus

1 ## More Complicated Data Types
2 # LIST . What i f we want to s to r e many i n t e g e r s ? We need a l i s t .
3 p r i c e s = [ 10 , 20 , 30 , 40 , 50 ] # A way to de f i n e a l i s t i n p l ace
4 c o l o r s = [ ] # We can a l s o make an empty l i s t and add to i t
5 c o l o r s . append ( ”Green ” )
6 c o l o r s . append ( ”Blue” )
7 c o l o r s . append ( ”Red” )
8 pr i n t ( c o l o r s )
9 p r i c e s . append ( ”Sixty ” ) # We can a l s o add un l i k e data to a l i s t

10 pr i n t ( p r i c e s ) # Items in a l i s t can be o f d i f f e r e n t type

http://cemozdogan.net/ScientificComputingwithPython/week2/week2_HandsOn.py
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11 pr i n t ( c o l o r s [ 0 ] ) # S ing l e l i s t e l ements can be acces s ed
12 pr i n t ( c o l o r s [ 2 ] ) # with the operator [ ]
13 o u r l i s t = [ 1 , 2 , 3 , 4 , 5 ] # Bas ic L i s t Operat ions
14 pr i n t ( o u r l i s t+o u r l i s t ) # Concatenation
15 pr i n t (3∗ o u r l i s t ) # Repet i t i on
16 mu l t i p l i e d o u r l i s t = [ value ∗ 3 f o r value in o u r l i s t ] # Membership
17 pr i n t ( mu l t i p l i e d o u r l i s t ) # I t e r a t i o n
18 #
19 # TUPLE. A tup l e i s a sequence ordered data enc l os ed between ( ) .
20 tup l e1 = ”a” , ”b” , ”c” , ”d”
21 tup l e2 = ( ’ phys i c s ’ , ’ chemistry ’ , 2022 , 2023) # Data heterogeneous
22 tup l e3 = (1 , 2 , 3 , 4 , 5 )
23 i kc muh 55 in f o = ( ”IKC−MH” , ”55” , 2023 , ”February ” , 28)
24 pr i n t ( ” tup l e1 [ 0 ] : ” , tup l e1 [ 0 ] ) # acce s s to s i n g l e element
25 pr i n t ( ” tup l e2 [ 1 : 5 ] : ” , tup l e2 [ 1 : 5 ] ) # acce s s to s l i c e
26 pr i n t ( i kc muh 55 in f o [ 0 ] + ” . ” + ikc muh 55 in f o [ 1 ] )
27 pr i n t ( tup l e3 )

1 # DICTIONARY. An unordered c o l l e c t i o n o f i tems
2 person = {”name” : ”Mehmet” , ”age ” : 19}
3 pr i n t ( f ”{person [ ’ name ’ ] } i s {person [ ’ age ’ ] } year s old . ” )
4 pr i n t ( person [ ”name” ] )
5 squar es = {1 : 1 , 3 : 9 , 5 : 25 , 7 : 49 , 9 : 81}
6 f o r i i n squar es :
7 pr i n t ( squar es [ i ] )
8 #
9 ######### Loops in Python #########

10 # Repeat code un t i l a cond i t i ona l statement ends the loop
11 # WHILE.
12 l i s t = [ 1 , 1 , 2 , 3 , 5 , 8 ]
13 pr i n t ( l i s t )
14 pr i n t ( ” i ” , ” l i s t [ i ] ” )
15 i = 0
16 whi le ( i < l en ( l i s t ) ) : # While l oops are the ba s i c type
17 pr i n t ( i , l i s t [ i ] )
18 i = i + 1
19 #
20 # FOR. The ’ f o r ’ loop i s the way to wr i te i t f a s t e r .
21 f o r i i n range (0 , l en ( l i s t ) ) :
22 pr i n t ( i , l i s t [ i ] )
23 # Or you can do so even neater
24 f o r e in l i s t :
25 pr i n t ( e )

1 ######### Condi t i ona l s in Python #########
2 # Sometimes you want to execute code only in c e r t a i n c i r cumstances
3 answer = 42 # Change answer and see what code i s executed
4 i f answer == 42:
5 pr i n t ( ’ This i s the answer to the u l t imate ques t i on ’ )
6 e l i f answer < 42 :
7 pr i n t ( ’ This i s l e s s than the answer to the u l t imate ques t i on ’ )
8 e l s e :
9 pr i n t ( ’ This i s more than the answer to the u l t imate ques t i on ’ )

10 pr i n t ( ’ This p r i n t statement i s run no matter what because i t i s not indented
! ’ )

11 # Using boolean ope r a t i on s . Question : How long does i t take me to get to
work?

12 snowy = True
13 day = ”Monday”
14 r a iny = True
15 i f ( snowy == Fal s e ) and ( day != ”Monday” ) : # ”and” i s boolean and . True only

i f both are t rue . Fa l s e otherw i s e
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16 time = 7
17 e l i f ( snowy == True ) and ( day == ”Monday” ) :
18 time = 11
19 e l i f ( r a iny == True ) or ( day == ”Monday” ) :
20 time = 9
21 pr i n t ( ” I t takes me %d minutes” % ( time ) )

1 # whi le & i f s tatements example
2 number = 23
3 running = True
4 whi le running :
5 guess = in t ( input ( ’ Enter an i n t e g e r : ’ ) )
6 i f guess == number :
7 pr i n t ( ’ Congratulat ions , you guessed i t . ’ )
8 running = Fal s e # th i s causes the whi le loop to stop
9 e l i f guess < number :

10 pr i n t ( ’No , i t i s a l i t t l e h i gher than that . ’ )
11 e l s e :
12 pr i n t ( ’No , i t i s a l i t t l e lower than that . ’ )
13 e l s e :
14 pr i n t ( ’The whi le loop i s over . ’ )
15 pr i n t ( ’Done ’ ) # Do anything e l s e you want to do here
16 #
17 ######### Functions in Python #########
18 # A func t i on i s a block o f code which only runs when i t i s c a l l e d and can be

run r e p e t i t i v e l y .
19 # use the de f keyword , and indent because t h i s c r e a t e s a new block
20 de f pr int me ( s t r i n g ) : # Function d e f i n i t i o n i s here
21 ”This p r i n t s a passed s t r i n g i n to t h i s f unc t i on” # The f i r s t statement

o f a f unc t i on can be an op t i ona l statement
22 pr i n t ( s t r i n g )
23 r e turn # End with the ” r eturn ” keyword
24 pr int me ( ” I ’m f i r s t c a l l to user de f i ned f unc t i on ! ” ) # Function c a l l
25 pr int me ( ”Again second c a l l to the same f unc t i on” ) # Function c a l l

1 de f c h ang e l i s t ( myl i s t ) :
2 ”””This changes a passed l i s t i n to t h i s f unc t i on ”””
3 myl i s t = [ 1 , 2 0 , 3 , 4 ] # Cal l by Value in Python . This a s s i gn s new

r e f e r e n c e in myl i s t
4 # Cal l by Reference when commenting t h i s l i n e
5 pr i n t ( ”Address i n s i d e the f unc t i on : ” , i d ( myl i s t ) )
6 myl i s t . append (9)
7 myl i s t [0 ]=7
8 myl i s t . remove (20)
9 pr i n t ( ”Values i n s i d e the f unc t i on : ” , myl i s t )

10 myl i s t = [ 10 , 20 , 30 ] # Function c a l l
11 pr i n t ( ” I n i t i a l va lues ou t s i d e the f unc t i on : ” , myl i s t )
12 pr i n t ( ”Address ou t s i d e the f unc t i on : ” , i d ( myl i s t ) )
13 c h ang e l i s t ( myl i s t )
14 pr i n t ( ”Values ou t s i d e the f unc t i on : ” , myl i s t )
15 # I n i t i a l va lues ou t s i d e the f unc t i on : [ 1 0 , 20 , 30 ]
16 # Address ou t s i d e the f unc t i on : 140390909223488 # Cal l by Value
17 # Address i n s i d e the f unc t i on : 140390919434048 # Cal l by Value
18 # Values i n s i d e the f unc t i on : [ 7 , 3 , 4 , 9 ] # Cal l by Value
19 # Values ou t s i d e the f unc t i on : [ 1 0 , 20 , 30 ] # Cal l by Value
20 #
21 # I n i t i a l va lues ou t s i d e the f unc t i on : [ 1 0 , 20 , 30 ]
22 # Address ou t s i d e the f unc t i on : 140390919434048 # Cal l by Ref .
23 # Address i n s i d e the f unc t i on : 140390919434048 # Cal l by Ref .
24 # Values i n s i d e the f unc t i on : [ 7 , 30 , 9 ] # Cal l by Reference
25 # Values ou t s i d e the f unc t i on : [ 7 , 30 , 9 ] # Cal l by Reference
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1 de f s tep (x ) : # Your f unc t i on s can r eturn data i f you so choose
2 i f ( x < 0) :
3 r e turn −1
4 e l i f ( x > 0) :
5 r e turn 1
6 pr i n t ( s tep (−1) ) # c a l l f unc t i on s by r epeat ing t h e i r name , and putt ing your

va r i ab l e in the pa r en the s i s
7 pr i n t ( s tep (1) ) # Your va r i ab l e need not be named the same thing , but i t

should be the r i gh t type
8 # what happens f o r x = 0?
9 pr i n t ( s tep (0) ) # Python automat i ca l l y adds in a ” r eturn none” statement i f

you are mi s s ing one .
10 #
11 # Fix the r eturn none i s s u e
12 de f s tep v2 (x ) :
13 i f ( x < 0) :
14 r e turn −1
15 e l i f ( x >= 0) :
16 r e turn 1
17 pr i n t ( s tep v2 (0) )

1 ######### Importing in Python #########
2 # Just about every standard math f unc t i on on a c a l c u l a t o r has a python

equ i va l en t pre−made .
3 import math
4 f l o a t 1 = 5.75
5 f l o a t 2 = 2.25
6 pr i n t (math . l og ( f l o a t 1 ) ) ; p r i n t (math . exp ( f l o a t 2 ) ) ; p r i n t (math . pow (2 , 5 ) )
7 pr i n t ( 2 . 0 ∗ ∗ 5 . 0 ) # There i s a qu i cker way to wr i te exponents
8 #
9 ######### Numpy − ”The Fundamental Package f o r S c i e n t i f i c Computing with

Python” #########
10 # numpy has arrays , which f unc t i on s im i l a r l y to Python l i s t s .
11 #
12 # General ly , i t i s used a convention on names used to import packages ( such

as numpy , sc ipy , and matp lot l i b )
13 # import [ package ] as [ a l i a s ]
14 import numpy as np
15 import matp lot l i b as mpl
16 import matp lot l i b . pyplot as p l t
17 #
18 # General ly s c ipy i s not imported as module because i n t e r e s t i n g f unc t i on s in

sc ipy are a c tua l l y l o ca t ed in the submodules , so submodules or s i n g l e
f unc t i on s are imported

19 # from [ package ] import [ module ] as [ a l i a s ]
20 from sc ipy import f f tpack
21 from sc ipy import i n t e g r a t e

1 import numpy as np # Here , we grab a l l o f the f unc t i on s and t o o l s from the
numpy package and s to r e them in a l o c a l va r i ab l e c a l l e d np .

2 l = [ 1 , 2 , 3 , 4 ] # python l i s t
3 pr i n t ( l )
4 l np = np . array ( l )
5 pr i n t ( l np )
6 pr i n t ( l ∗5) # mul t ip ly ing a python l i s t r e p l i c a t e s i t
7 pr i n t ( l np ∗5) # numpy app l i e s operat i on elementwise
8 #
9 ## 1D array

10 a1 = np . array ( [ 1 , 2 , 3 , 4 ] ) # i n i t i a l i z e d with a numpy l i s t . Be c a r e f u l with
syntax . The par entheses and brackets are both r equ i r ed

11 pr i n t ( a1 )
12 pr i n t ( a1 . shape ) # shape i nd i c a t e s the rank o f the array
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13 #
14 ## Rank 2 array
15 # row vector
16 a2 = np . array ( [ [ 1 , 2 , 3 , 4 ] ] )
17 pr i n t ( a2 )
18 pr i n t ( a2 . shape ) # shape i nd i c a t e s the rank o f the array . t h i s l ooks more

l i k e a row vector
19 # column vector
20 a3 = np . array ( [ [ 1 ] ,
21 [ 2 ] ,
22 [ 3 ] ,
23 [ 4 ] ] )
24 pr i n t ( a3 )
25 pr i n t ( a3 . shape ) # th i s l ooks more l i k e a column vector

1 import numpy as np
2 a = np . array ( [ 0 , 10 , 20 , 30 , 40 ] )
3 pr i n t ( a )
4 pr i n t ( a [ : ] )
5 pr i n t ( a [ 1 : 3 ] )
6 a [ 1 ] = 15
7 pr i n t ( a )
8 b = np . arange (−5 , 5 , 0 . 5 )
9 pr i n t (b)

10 pr i n t (b∗∗2)
11 1/b
12 # <input > : 1 : d i v i d e by zero encountered in t r u e d i v i d e
13 1/b [ 1 0 ]
14 # <input > : 1 : d i v i d e by zero encountered in d oub l e s c a l a r s
15 #
16 ## Element−wise ope r a t i on s
17 a = np . array ( [ 1 , 2 , 3 ] )
18 b = np . array ( [ 9 , 8 , 7 ] )
19 pr i n t ( a )
20 pr i n t ( a . shape ) ; p r i n t (b . shape )
21 pr i n t ( a [ 0 ] ) # Access e lements from them j u s t l i k e a l i s t
22 #
23 # Element−wise ope r a t i on s . This i s d i f f e r e n t from MATLAB where you add a dot

to get element wise operator s .
24 c = a + b
25 d = a − b
26 e = a ∗ b
27 f = a / b
28 pr i n t ( c ) ; p r i n t (d) ; p r i n t ( e ) ; p r i n t ( f )

1 import numpy as np
2 # What about multi−dimens ional ar rays ? Matr ices ! You j u s t nes t l i s t s within

l i s t s
3 A = np . array ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ] ) ; p r i n t (A)
4 # [ [ 1 2 3 ]
5 # [4 5 6 ]
6 # [7 8 9 ] ]
7 pr i n t (A. shape )
8 # (3 , 3)
9 B = np . array ( [ [ 1 , 1 , 1 ] , [ 2 , 2 , 2 ] , [ 3 , 3 , 3 ] ] ) ; p r i n t (B)

10 C = np . matmul (A, B) ; p r i n t (C) # Then matrix mu l t i p l i c a t i o n
11 pr i n t (np . l i n a l g . det (A) ) # Or determinants
12 #
13 import numpy as np
14 p = np . poly1d ( [ 3 , 4 , 5 ] )
15 pr i n t (p)
16 # 2
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17 # 3 x + 4 x + 5
18 pr i n t (p∗p)
19 # 4 3 2
20 # 9 x + 24 x + 46 x + 40 x + 25
21 pr i n t (p . i n t eg (k=6) )
22 # 3 2
23 # 1 x + 2 x + 5 x + 6
24 pr i n t (p . der i v ( ) )
25 # 6 x + 4
26 p ( [ 4 , 5 ] )
27 # array ( [ 69 , 100 ] )

1 ##### SciPy i s a s c i e n t i f i c computation l i b r a r y in Python #####
2 # A c o l l e c t i o n o f f unc t i on s to perform bas i c s c i e n t i f i c programming and data

ana l y s i s
3 # Integ r a t e a l i s t o f numbers us ing sc ipy you might use a f unc t i on c a l l e d

trapz from the i n t e g r a t e package
4 import s c ipy . i n t e g r a t e as i n t eg
5 # from sc ipy import i n t e g r a t e as i n t eg
6 r e s u l t = in t eg . trapz ( [ 0 , 1 , 2 , 3 , 4 , 5 ] )
7 pr i n t ( r e s u l t )
8 # Integ r a t e s i n ( x ) from 0 to Pi you could use the quad f unc t i on
9 import numpy as np

10 import s c ipy . i n t e g r a t e as i n t eg
11 r e s u l t = in t eg . quad (np . s in , 0 , np . p i )
12 pr i n t ( r e s u l t )
13 #
14 ######### Matp lot l i b #########
15 # Matplot l ib , l i k e many Python packages , i s o rgan i zed i n to a number o f ”

modules” ( e s s e n t i a l l y subsets o f f unc t i on s ) .
16 import matp lot l i b . pyplot as p l t # import packages with a l i a s
17 # from matp lot l i b import pyplot as p l t
18 x va l s = [−2 , −1, 0 , 1 , 2 ]
19 y va l s = [−4 , −2, 0 , 2 , 4 ]
20 pr i n t ( x va l s , y va l s )
21 p l t . x l abe l ( ’ ab s c i s s a ’ ) # add a l a b e l to the x ax i s
22 p l t . y l abe l ( ’ o rd inate ’ ) # add a l a b e l to the y ax i s
23 p l t . t i t l e ( ’A p r a c t i c e p l o t ’ ) # add a t i t l e
24 p l t . p l o t ( x va l s , y va l s , marker=”o” )
25 p l t . s a v e f i g ( ’ p l o t 0 . png ’ ) # save the f i g u r e to the cur r ent d i r e t o r y as a png

f i l e
26 p l t . show ( )

1 import matp lot l i b . pyplot as p l t
2 import numpy as np
3 t = np . arange ( 0 . 0 , 2 . 0 , 0 . 01 )
4 pr i n t ( t )
5 pr i n t ( t . shape )
6 pr i n t ( l en ( t ) )
7 s = 1 + np . s i n (2∗np . p i ∗ t ) # Degree to Radian conver s i on
8 pr i n t ( s )
9 p l t . p l o t ( t , s )

10 p l t . x l abe l ( ’Time ( s ) ’ ) ; p l t . y l abe l ( ’ Voltage (mV) ’ )
11 p l t . t i t l e ( ’ Voltage vs Time ’ )
12 p l t . g r i d (True )
13 p l t . s a v e f i g ( ” t e s t . png” )
14 p l t . show ( )
15 #
16 # Mul t i p l o t t i ng
17 import numpy as np
18 import matp lot l i b . pyplot as p l t
19 x1 = np . l i n s p a c e ( 0 . 0 , 5 . 0 ) ; x2 = np . l i n s p a c e ( 0 . 0 , 2 . 0 )
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20 y1 = np . cos (2∗np . p i ∗x1 )∗np . exp(−x1 ) ; y2 = np . cos (2∗np . p i ∗x2 )
21 p l t . subp lot (2 , 1 , 1) # use the subp lot f unc t i on to generate mul t ip l e pane l s

within the same p l o t t i n g window
22 p l t . p l o t ( x1 , y1 , ’ o− ’ )
23 p l t . t i t l e ( ’ 2 subp lots ’ )
24 p l t . y l abe l ( ’Damped o s c i l l a t i o n ’ )
25 p l t . subp lot (2 , 1 , 2)
26 p l t . p l o t ( x2 , y2 , ’ .− ’ )
27 p l t . x l abe l ( ’ time ( s ) ’ ) ; p l t . y l abe l ( ’Undamped ’ )
28 p l t . show ( )

1 # import ing a l l f unc t i on s from pylab module
2 from pylab import ∗ # Not the p r e f e r r ed methodology . Means to br ing

everyth ing in to the top l e v e l name space
3 x = arange (1 , 10 , 0 . 5 ) ; p r i n t ( x )
4 xsquare = x ∗∗2 ; p r i n t ( xsquare )
5 xcube = x ∗∗3 ; p r i n t ( xcube )
6 xsquar eroot = x ∗ ∗ 0 . 5 ; p r i n t ( xsquar eroot )
7 f i g u r e (1) # open f i g u r e 1
8 p l o t (x , xsquare ) # bas i c p l o t
9 x l abe l ( ’ ab s c i s s a ’ ) # add a l a b e l to the x ax i s

10 y l abe l ( ’ o rd inate ’ ) # add a l a b e l to the y ax i s
11 t i t l e ( ’A p r a c t i c e p l o t ’ ) # add a t i t l e
12 s a v e f i g ( ’ p l o t 1 . png ’ ) # save the f i g u r e to the cur r ent d i r e t o r y
13 f i g u r e (2) # open a second f i g u r e
14 p l o t (x , xsquare , ’ ro ’ , x , xcube , ’ g+−− ’ ) # Two p l o t s . Red c i r c l e s with no l i n e .

Green p lus s i gn s j o i n ed by a dashed curve
15 x l abe l ( ’ ab s c i s s a ’ ) # x and y l abe l s , t i t l e
16 y l abe l ( ’ o rd inate ’ ) # x and y l abe l s , t i t l e
17 t i t l e ( ’More p r a c t i c e ’ ) # x and y l abe l s , t i t l e
18 l egend ( ( ’ squared ’ , ’ cubed ’ ) ) # add a legend
19 s a v e f i g ( ’ p l o t 2 . png ’ ) # save the f i g u r e
20 f i g u r e (3) # open a th i r d f i g u r e
21 subp lot (3 , 1 , 1 ) ; p l o t (x , xsquareroot , ’ k ∗ : ’ )# Black s t a r s+dotted l i n e
22 t i t l e ( ’ square r oo t s ’ ) # add a t i t l e
23 subp lot (3 , 1 , 2 ) ; p l o t (x , xsquare , ’ r>− ’ ) # Red t r i a n g l e s+dashed l i n e
24 t i t l e ( ’ squar es ’ ) # add a t i t l e
25 subp lot (3 , 1 , 3 ) ; p l o t (x , xcube , ’mh− ’ ) # Magenta hexagons+s o l i d l i n e
26 t i t l e ( ’ cubes ’ ) # add a t i t l e
27 s a v e f i g ( ’ p l o t 3 . png ’ ) # save the f i g u r e
28 show ( )

1 ######### How to f i nd documentation #########
2 # The d i r (module ) f unc t i on can be used to look at the namespace o f a module

or package , i . e . to f i nd out names that are de f i ned i n s i d e the module
3 # The help ( f unc t i on ) f unc t i on i s a v a i l a b l e f o r each module / ob j e c t and a l l ows

to know the documentation f o r each module or f unc t i on
4 #
5 import math
6 d i r ( )
7 d i r (math . acos )
8 help (math . acos )
9 import matp lot l i b . pyplot

10 d i r ( matp lot l i b . pyplot )

Some links to study python.

• https://python-course.eu/

• https://www.codecademy.com/catalog/language/python

https://python-course.eu/
https://www.codecademy.com/catalog/language/python
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• https://scipy-lectures.org/

• https://computation.physics.utoronto.ca/tutorials/

• https://moodle2.units.it/course/view.php?id=6837

• https://jckantor.github.io/CBE30338/

• https://matplotlib.org/stable/tutorials/index.html

https://scipy-lectures.org/
https://computation.physics.utoronto.ca/tutorials/
https://moodle2.units.it/course/view.php?id=6837/
https://jckantor.github.io/CBE30338/
https://matplotlib.org/stable/tutorials/index.html
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2.4 Numerical Fundamentals

1. to solve problems that may not be solvable by hand.

2. to solve problems (that you may have solved before) in a different way.

• Many of these simplified examples can be solved analytically (by hand)

x3 − x2 − 3x+ 3 = 0, with solution
√
3

• But most of the examples can not be simplified and can not be solved
analytically.

• Mathematical relationships =⇒ simulate some real word situations.

2.4.1 Analysis vs Numerical Analysis

• In mathematics, solve a problem through equations; algebra, calcu-
lus, differential equations (DE), Partial DE, . . .

• In numerical analysis; four operations (add, subtract, multiply, divi-
sion) and Comparison.

– These operations are exactly those that computers can do

∫ π

0

√
1 + cos2xdx

∗ length of one arch of the curve y-sinx; no solution with “a
substitution’ or “integration by parts”

∗ numerical analysis can compute the length of this curve by
standardised methods that apply to essentially any integrand

• Another difference between a numerical results and analytical answer
is that the former is always an approximation

– this can usually be as accurate as needed (level of accuracy)

• Numerical Methods require repetitive arithmetic operations ⇒ a com-
puter to carry out

• Also, a human would make so many mistakes
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2.4.2 Some disasters attributable to bad numerical com-

puting

Have you been paying attention in your numerical analysis or scientific com-
putation courses? Here are some real life examples of what can happen when
numerical algorithms are not correctly applied.

• The Patriot Missile failure, in Dharan, Saudi Arabia, on February 25,
1991 which resulted in 28 deaths, is ultimately attributable to poor
handling of rounding errors.

• The explosion of the Ariane 5 rocket just after lift-off on its maiden
voyage off French Guiana, on June 4, 1996, was ultimately the conse-
quence of a simple overflow.

• The sinking of the Sleipner A offshore platform in Gandsfjorden near
Stavanger, Norway, on August 23, 1991, resulted in a loss of nearly one
billion dollars. It was found to be the result of inaccurate finite
element analysis.

2.4.3 Floating-Point Arithmetic

• Performing an arithmetic operation ⇒ no exact answers unless only
integers or exact powers of 2 are involved,

• Floating-point (real numbers)→ not integers,

• Resembles scientific notation,

• IEEE standard → storing floating-point numbers (see the Table 2.1).

Table 2.1: Floating→ Normalised.
floating normalised (shifting the decimal point)
13.524 .13524 ∗ 102 (.13524E2)
-0.0442 −.442E − 1

• the sign ±

• the fraction part (called the mantissa)

• the exponent part

https://www-users.cse.umn.edu/~arnold/disasters/patriot.html
https://www-users.cse.umn.edu/~arnold/disasters/ariane.html
https://www-users.cse.umn.edu/~arnold/disasters/sleipner.html
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• What about the sign of the exponent? Rather than use one of the bits
for the sign of the exponent, exponents are biased.

• For single precision (we have 8 bits reserved for the exponent):

– 28=256

– 0−→00000000 = 0

– 255−→11111111=255

– 0 (255)=⇒ -127 (128). An exponent of -127 (128) stored as 0 (255).

– So biased−→ 2128 = 3.40282E + 38, mantissa gets 1 as maximum

– Largest: 3.40282E+38; Smallest: 5.87747E-39 (!)

– For double and extended precision the bias values are 1023 and
16383, respectively.

– 0
0
, 0 ∗∞,

√
−1 =⇒ NaN : Undefined.

There are three levels of precision (see the Fig. 2.4)

Figure 2.4: Level of precision.

week3 HandsOn.py

1 import sys
2 pr i n t ( sys . f l o a t i n f o )
3 # sys . f l o a t i n f o (max=1.7976931348623157e+308 , max exp=1024 , max 10 exp=308 ,

min=2.2250738585072014e−308 , min exp=−1021,
4 # min 10 exp=−307, dig=15, mant dig=53, e p s i l o n=2.220446049250313 e−16, r ad ix

=2, rounds=1)

http://cemozdogan.net/ScientificComputingwithPython/week3/week3_HandsOn.py
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5 pr i n t ( sys . f l o a t i n f o .max)
6 # 1.7976931348623157e+308
7 pr i n t ( ”%10.6e ” % 2∗∗128)
8 # 3.402824 e+38
9 pr i n t ( ”%10.6e ” % 2∗∗1023)

10 # 8.988466 e+307 f

EPS: short for epsilon−→used for represent the smallest machine value that
can be added to 1.0 that gives a result distinguishable from 1.0!

• eps −→ ε =⇒ (1 + ε) + ε = 1 but 1 + (ε+ ε) > 1

• Two numbers that are very close together on the real number line can
not be distinguished on the floating-point number line if their difference
is less than the least significant bit of their mantissas.

1 import sys
2 pr i n t ( sys . f l o a t i n f o . e p s i l o n )
3 # 2.220446049250313e−16
4 eps=sys . f l o a t i n f o . e p s i l o n
5 pr i n t (1+eps ∗0 . 5 )
6 # 1.0
7 pr i n t (1+eps ∗0 . 5 )
8 # 1.0
9 pr i n t ((1+ eps ∗0 . 5 )+eps ∗0 . 5 )

10 # 1.0
11 pr i n t (1+eps ∗0 . 6 )
12 # 1.0000000000000002

2.4.4 Computer Number Representation

Say we have six bit representation (not single, double) (see the Fig.)

• 1 bit→ sign

• 3(+1) bits→ mantissa

• 2 bits→ exponent

Figure 2.5: Computer numbers with six bit representation.
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• For positive range 9
32
←→ 15

4

• For negative range −15
4
←→ −9

32
; even discontinuity at point zero since

it is not in the ranges.

Figure 2.6: Upper: number line in the hypothetical system, Lower: IEEE
standard.

• Very simple computer arithmetic system ⇒ the gaps between stored
values are very apparent.

• Many values can not be stored exactly. i.e., 0.601, it will be stored as
if it were 0.6250 because it is closer to 10

16
, an error of 4%

• In IEEE system, gaps are much smaller but they are still present. (see
the lower Fig. 2.6)

2.4.5 Kinds of Errors in Numerical Procedures

Computers use only a fixed number of digits
to represent a number.

• As a result, the numerical values stored in a computer are said to have
finite precision.

• Limiting precision has the desirable effects of increasing the speed of
numerical calculations and reducing memory required to store numbers.

• But, what are the undesirable effects?

Kinds of Errors:

i Round-off Error
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ii Truncation Error

iii Propagated Error

i Round-off Error:

1 #!/ usr /bin /python3
2 x=(4/3) ∗3 ; p r i n t ( x )
3 # 4.0
4 a=4/3; p r i n t ( a ) # s to r e double p r e c i s i o n approx o f 4/3
5 # 1.3333333333333333
6 b=a−1; p r i n t (b) # remove most s i g n i f i c a n t d i g i t
7 # 0.33333333333333326
8 c=1−3∗b ; p r i n t ( c ) # 3∗b=1 in exact math
9 # 2.220446049250313e−16 # should be 0 ! !

1 from math import ∗

2 # import numpy as np
3 # k f i r s t =1.0; k l a s t =360.0 ; kincrement =0.1
4 # f o r j i n np . arange ( k f i r s t , k l a s t + kincrement , kincrement ) :
5 f o r j i n range (1 , 360) : # In degr ees (1−360) as i n t . increment
6 j j=j ∗(2∗ pi /360) # Conversion to radian
7 a=cos ( j j ) # Return the co s i n e o f j j ( measured in rad ians )
8 b=s i n ( j j ) # Return the co s i n e o f j j ( measured in rad ians )
9 z=a−(a/b) ∗b # Expected as being 0 ! !

10 pr i n t ( j , j j , z )
11 352 6.14355896702004 0 . 0
12 353 6.161012259539984 1.1102230246251565e−16
13 354 6.178465552059927 1.1102230246251565e−16
14 355 6.19591884457987 1.1102230246251565e−16
15 356 6.213372137099813 0 . 0
16 357 6.230825429619756 0 . 0
17 358 6.2482787221397 0 . 0
18 359 6.265732014659643 0 . 0

1 summation=1.0
2 f o r i i n range (10000) : # Adding 0.00001 to 1 . 0 as 10000 times
3 summation=summation+0.00001
4 pr i n t ( ’ summation = ’ , summation )
5 # summation = 1.1000000000006551 # Expected r e s u l t i s j u s t 1 . 1 ! !
6 pr i n t ( ”summation = %f ” % summation )
7 # summation = 1.100000 # Now expected r e s u l t ??

To see the effects of roundoff in a simple calculation, one need only to force
the computer to store the intermediate results.

• All computing devices represents numbers, except for integers and some
fractions, with some imprecision.

• Floating-point numbers of fixed word length; the true values are usu-
ally not expressed exactly by such representations.

1 import numpy as np
2 x=np . tan (np . p i /6) ; p r i n t ( x )
3 # 0.5773502691896257
4 y=np . s i n (np . p i /6) /np . cos (np . p i /6) ; p r i n t ( y )
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5 # 0.5773502691896256
6 i f x==y :
7 pr i n t ( ”x and y are equal ” )
8 e l s e :
9 pr i n t ( ”x and y are not equal : x−y=%e ” % (x−y ) )

10 # x and y are not equal : x−y=1.110223 e−16

• The test is true only if x and y are exactly equal in bit pattern.

• Although x and y are equal in exact arithmetic, their values differ by
a small, but nonzero, amount.

• When working with floating-point values the question “are x and y
equal?” is replaced by “are x and y close?” or, equivalently, “is x− y
small enough?”

ii Truncation Error: i.e., approximate ex by the cubic power

P3(x) = 1 +
x

1!
+
x2

2!
+
x3

3!
; ex = P3(x) +

∞∑

n=4

xn

n!

• Approximating ex with the cubic gives an inexact answer. The error is
due to truncating the series,

• When to cut series expansion =⇒ be satisfied with an approximation
to the exact analytical answer.

• Unlike roundoff, which is controlled by the hardware and the computer
language being used, truncation error is under control of the program-
mer or user.

• Truncation error can be reduced by selecting more accurate discrete
approximations. But, it can not be eliminated entirely.

Evaluating the Series for sin(x) (Example py-file: sinser.py)

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ . . .

• An efficient implementation of the series uses recursion to avoid over-
flow in the evaluation of individual terms. If Tk is the kth term (k =
1, 3, 5, . . .) then

Tk =
x2

k(k − 1)
Tk−2

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/sinser.py
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• Study the effect of the parameters tol and nmax by changing their
values (Default values are 5e-9 and 15, respectively).

1 import numpy as np
2 de f s i n s e r (x , to l , n ) :
3 term = x
4 ssum = term # I n i t i a l i z e s e r i e s
5 pr i n t ( ” S e r i e s approximation to s i n(% f ) \n k term ssum” % (

x∗360/(2∗ np . p i ) ) )
6 pr i n t ( ” 1 %11.3e %20.16 f ” % ( term , ssum ) )
7 f o r k in range (3 , 2∗n−1, 2) :
8 term = −term ∗ x∗x/( k∗(k−1) ) # Next term in the s e r i e s
9 ssum = ssum + term

10 pr i n t ( ”%3d %11.3e %30.26 f ” % (k , term , ssum ) )
11 i f abs ( term/ssum)<t o l :
12 break # True at convergence
13 pr i n t ( ”Truncation e r r o r a f t e r %d terms i s %g ” % (( k+1) /2 , abs ( ssum−np .

s i n ( x ) ) ) )
14 s i n s e r (np . p i /6 ,5 e−9 ,10)
15 pr i n t ( ” s i n(% f )=%f with numpy l i b r a r y ” % (np . p i /6∗360/(2∗ np . p i ) , np . s i n (np . p i

/6) ) )
16 import math
17 pr i n t ( ” s i n(% f )=%f with math l i b a r a r y ” % (math . p i /6∗360/(2∗math . p i ) ,math . s i n (

math . p i /6) ) )

Figure 2.7: Output of sinser.py

Derivative of Sine function. Truncation & Round-off Errors (Example py-
file: trunroun.py)

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/trunroun.py
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Figure 2.8: Output and Plot of trunroun.py

iii Propagated Error:

• more subtle (difficult to analyse)

• by propagated we mean an error in the succeeding steps of a process
due to an occurrence of an earlier error

• of critical importance

• stable numerical methods; errors made at early points die out as the
method continues

• unstable numerical method; does not die out

2.4.6 Absolute vs Relative Error, Convergence

• Accuracy (how close to the true value) −→ great importance,

• absolute error = |true value− approximate error|
A given size of error is usually more serious when the magnitude of the
true value is small,

• relative error = absolute error
|true value|

• Convergence of Iterative Sequences:
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– Iteration is a common component of numerical algorithms. In the
most abstract form, an iteration generates a sequence of scalar
values xk, k = 1, 2, 3, . . .. The sequence converges to a limit ξ if

|xk − ξ| < δ, for all k > N

where δ is a small number called the convergence tolerance. We
say that the sequence has converged to within the tolerance δ after
N iterations.

1 de f newtsqrt (x , del ta , maxit ) :
2 r = x /2 ; r o l d = x # I n i t i a l i z e , make sur e convergence t e s t f a i l s on

f i r s t t ry
3 i t = 0
4 whi le ( r != r o l d ) and ( i t<maxit ) : # Convergence t e s t
5 # whi le ( ( r−r o l d ) > de l t a ) and ( i t<maxit ) : # Convergence t e s t
6 # whi le ( abs ( r−r o l d ) > de l t a ) and ( i t<maxit ) : # Convergence t e s t
7 # whi le ( abs ( ( r−r o l d ) / r o l d ) > de l t a ) and ( i t<maxit ) : # Convergence t e s t
8 r o l d = r # Save old value f o r next convergence t e s t
9 r = 0 . 5∗ ( r o l d + x/ r o l d ) # Update the guess

10 i t = i t + 1
11 r e turn r
12 # Test the newtsqrt f unc t i on f o r a range o f inputs
13 x t e s t = [ 4 , 0 . 04 , 4e−4, 4e−6, 4e−8, 4e−10, 4e−12] # arguments to t e s t
14 pr i n t ( ” Absolute Convergence Cr i t e r i on ” )
15 pr i n t ( ” x sq r t ( x) newtsqrt ( x ) e r r o r r e l e r r ” )
16 import math
17 f o r x in x t e s t : # repeat f o r each elementin x t e s t
18 r = math . s q r t (x )
19 rn = newtsqrt (x , 5 e−9 ,25)
20 e r r = abs ( rn − r )
21 r e l e r r = e r r / r
22 pr i n t ( ”%10.3e %10.3e %10.3e %10.3e %10.3e” % (x , r , rn , er r , r e l e r r ) )

Figure 2.9: Output of newtsqrt.py

Newton’s method to compute the square root of a number.
Example py-file: newtsqrt.py

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/newtsqrt.py
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3.1 Solving Nonlinear Equations

• Solve “f(x) = 0”

– where f(x) is a function of x.

– The values of x that make f(x) = 0 are called the roots of the equation.

• The following non-linear equation can compute the friction factor,f :

1√
f
=

(
1

k

)

ln(RE
√

f) +

(

14− 5.6

k

)

• The equation for f is not solvable except by the numerical procedures.

1. Interval Halving (Bisection). Describes a method that is very simple
and foolproof but is not very efficient. We examine how the error de-
creases as the method continues.

2. Linear Interpolation Methods. Tells how approximating the func-
tion in the vicinity of the root with a straight line can find a root more
efficiently. It has a better ”rate of convergence”.

3. Newton-Raphson Method. Explains a still more efficient method
that is very widely used but there are pitfalls that you should know
about. Complex roots can be found if complex arithmetic is employed.

3.1.1 Blackbody Radiation

• Some observations in physics experiments at the beginning of the 20th

century could not be explained by classical theories (Blackbody Radi-
ation, The Photoelectric Effect, The Hydrogen Atom, . . .).

• Among them, the phenomenon called Blackbody Radiation has a
special place.

• By definition, a blackbody is an object that absorbs any heat radiation
falling on it.

• Rayleigh and Jean proposed that infinitesimal amounts of energy were
continuously added to the system when the frequency was increased.

• Classical physics assumed that energy emitted by atomic os-
cillations could have any continuous value.
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• If we try and sum the energies at each frequency we find that there is
an infinite energy in this system!

• This paradox was called the ULTRAVIOLET CATASTROPHE.

Figure 3.1: Variation of energy density
with wavelength/frequency in black-
body radiation.

• Spectrum of the radiation inside
the blackbody can be measured
experimentally.

dU = u(λ, T )dλ

• The experimentally observed
curve u(λ, T ) at T=5000 K is
shown in the upper figure.

• It has not been possible to ex-
plain this observed spectrum of
blackbody radiation with classi-
cal theories (in the classical limit
of large λ, Rayleigh-Jeans Law).

• Later, in 1901, Planck was able to come up with the formula that fully
explained this curve, with an assumption that predicted the quantum
nature of light :

u(λ, T ) =
8πhc

λ5
1

ehc/λkBT − 1
(3.1)

Here c is the speed of light and h = 6.63×10−34 joule.s becomes a new
constant in physics by the name of Planck’s constant.

• Planck’s assumption was as follows: The energy was quantized and
could be emitted or absorbed only in integral multiples of a
small unit of energy, known as a quantum.

• The energy distribution of a radiation with a frequency ν = hc/λ is a
multiple of an amount of hν:

E = nhν (n = 1, 2, 3, . . .)
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• Blackbody radiation helped to move our understanding in physics from
a classical approach to a quantum one.

• Some notable features of the Planck distribution are:

1. Total radiant energy (ie the area under the curve in the Figure)

∫ ∞

0

u(λ, T )dλ = σT 4

is proportional to the 4th power of the temperature T. This is
called the Stefan-Boltzmann formula.

2. There is a simple relation between the wavelength λmax at which
each curve has a maximum value and the equilibrium temperature
T

λmaxT = 0.0029 m.K

This equation is called the Wien’s displacement law.

• Here we will obtain the Wien’s displacement law by numerical method.

• To find the maximum wavelength, it is sufficient to take the derivative
of Equation 3.1 with respect to the wavelength λ and set it to zero.
However, it is convenient to do this based on the dimensionless variable
x = hc/kBTλ:

u(x) = A
x5

ex − 1
(x = hc/kBTλ and A = 8π(kBT )

5/(hc)4)

du

dx
= A

5x4(ex − 1)− x5ex
(ex − 1)2

= 0

(5− x)− 5e−x = 0 (3.2)

• If this equation is solved, xmax and then λmax can be found. However,
Equation 3.2 has no analytical solution.

• We can find the answer with the numerical root finding methods.
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3.1.2 Interval Halving (Bisection)

• Interval halving (bisection), an ancient but effective method for finding
a zero of f(x).

• It begins with two values for x that bracket a root.

• The function f(x) changes signs at these two x-values and, if
f(x) is continuous, there must be at least one root between the values.

• The test to see that f(x) does change sign between points a and b is
to see if f(a) ∗ f(b) < 0 (see Fig. ).

Figure 3.2: Testing for a change in sign
of f(x) will bracket either a root or sin-
gularity.

The bisection method then

– successively divides the initial
interval in half,

– finds in which half the root(s)
must lie,

– and repeats with the endpoints
of the smaller interval.

• A plot of f(x) is useful to know where to start.

• Example: The function; f(x) = 3x+ sin(x)− ex

• Look at to the plot of the function to learn where the function crosses
the x-axis.

1 import numpy as np
2 from math import ∗

3 def f (x ) :
4 r e tu rn 3∗x+s in (x )−exp (x )
5 xval =[ ]
6 funva l =[ ]
7 k f i r s t =0.0; k l a s t =2.0; kincrement =0.01
8 f o r j in np . arange ( k f i r s t , k l a s t +

kincrement , kincrement ) :
9 xval . append( j )

10 funva l . append( f ( j ) )
11 import matp l ot l i b . pyplot as p l t
12 p l t . t i t l e ( ’ $ f ( x )=3x+s in ( x)−eˆx$ ’ )
13 p l t . x l abe l ( ’X Value ’ )
14 p l t . y l abe l ( ’ Function Value ’ )
15 p l t . p l o t ( xval , funval , ’− ’ )
16 p l t . g r i d ( )
17 p l t . s a v e f i g ( ’ f u n c t i o n p l o t . eps ’ )
18 p l t . show ()

Figure 3.3: Code and plot of the func-
tion: f(x) = 3x+ sin(x)− ex

• We see from the figure that indicates there are zeros at about x = 0.35
and 1.9.
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• Apply Bisection method to f(x) = 3x+sin(x)−ex. (Example py-file:
mybisect.py)

The root is (almost) never known exactly, since it is extremely unlikely
that a numerical procedure will find the precise value of x that makes f(x)
exactly zero in floating-point arithmetic. Bisection is generally recommended

• The main advantage of interval
halving is that it is guaranteed
to work (continuous & bracket).

• The algorithm must decide how
close to the root the guess should
be before stopping the search
(see Fig.).

• The major objection of interval
halving has been that it is slow
to converge.

Figure 3.4: The stopping criterion for
a root-finding procedure should in-
volve a tolerance on x, as well as a
tolerance on f(x).

for finding an approximate value for the root, and then this value is refined
by more efficient methods.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/mybisect.py
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3.1.3 Linear Interpolation Methods-The Secant Method

• Bisection is simple to understand but it is not the most efficient way
to find where f(x) is zero.

• Most functions can be approximated by a straight line over a small
interval.

Figure 3.5: Graphical illustration of
the Secant Method.

• The secant method begins by
finding two points on the curve
of f(x), hopefully near to the
root.

• As Figure illustrates, we draw
the line through these two points
and find where it intersects the
x-axis.

• If f(x) were truly linear, the
straight line would intersect the
x-axis at the root.

• From the obvious similar triangles we can write

(x1 − x2)
f(x1)

=
(x0 − x1)

f(x0)− f(x1)
=⇒ x2 = x1 − f(x1)

(x0 − x1)
f(x0)− f(x1)

• Because f(x) is not exactly linear, x2 is not equal to r,

• but it should be closer than either of the two points we began with. If
we repeat this, we have:

xn+1 = xn − f(xn)
(xn−1 − xn)

f(xn−1)− f(xn)
, n = 1, 2, . . .

• The net effect of this rule is to set x0 = x1 and x1 = x2, after each
iteration.

The technique we have described is known as, the secant method because
the line through two points on the curve is called the secant line.

• Apply Secant method to f(x) = 3x+ sin(x)− ex. (Example py-file:
mysecant.py)

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/mysecant.py
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Table 3.1: The Secant method for f(x) = 3x + sin(x) − ex, starting from
x0 = 1, x1 = 0, using a tolerance value of 1E-16.

• Table shows the results from the secant method for the same function
that was used to illustrate bisection method.

• If f(x) is far from linear near the root or not continuous, the method
may fail. A plot of f(x) is useful to know where/how to start.

3.1.4 Newton’s Method

Figure 3.6: Graphical illustration of
the Newton’s Method.

• One of the most widely used
methods of solving equations is
Newton’s method.

• Like the previous ones, this
method is also based on a
linear approximation of the
function, but does so using
a tangent to the curve (see
Figure).

• Starting from a single initial estimate, x0, that is not too far from a
root, we move along the tangent to its intersection with the x-axis, and
take that as the next approximation.

• This is continued until either the successive x-values are sufficiently close
or the value of the function is sufficiently near zero.
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• The calculation scheme follows immediately from the right triangle
shown in Figure.

tanθ = f
′

(x0) =
f(x0)

x0 − x1
⇒ x1 = x0 −

f(x0)

f ′(x0)

and the general term is:

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . .

• Newton’s algorithm is widely used because, it is more rapidly convergent
than any of the methods discussed so far. Quadratically convergent

• The error of each step approaches a constant K times the square of the
error of the previous step.

• The number of decimal places of accuracy nearly doubles at each iteration.

• There is the need for two functions evaluations at each step, f(xn) and
f ′(xn) and we must obtain the derivative function at the start.

• If a difficult problem requires many iterations to converge, the number
of function evaluations with Newton’s method may be many more than
with linear iteration methods. Because Newton’s method always uses
two per iteration whereas the others take only one.

• The method may converge to a root different from the expected one or
diverge if the starting value is not close enough to the root.

• Apply Newton’s method to f(x) = 3x+sin(x)−ex. (Example py-file:
mynewton.py)

• Table shows the results from Newton’s method for the same function
that was used to illustrate bisection and secant methods.

(Example py-file: blackbodyradiation.py)

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/mynewton.py
http://cemozdogan.net/ScientificComputingwithPython/pyfiles/blackbodyradiation.py
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Table 3.2: Newton’s method for f(x) = 3x+sin(x)−ex, starting from x0 = 0,
using a tolerance value of 1E-16.
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xmax = 4.965114
λmaxT= hc/kBxmax = 0.002898 m.K

f(x) = (5 − x) − 5e−x
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4.1 Numerical Differentiation and Integration

with a Computer

4.1.1 Variable force in one dimension

• Consider the motion of a particle of mass m moving along the x-axis
under the action of a force F.

Write Newton’s second law (F = ma)
in terms of velocity for a most general
force F(x,v,t)

dv

dt
= F (x,v,t)

m

dx

dt
= v (4.1)

• In principle, the functions v = v(t) and x = x(t) can be found by solving
Equation 4.1 for every F (x, v, t) function (i.e., constant acceleration for
F = constant, or harmonic oscillating motion for F= -kx).

• However, for more complex forces F (x, v, t) the analytical solution may
not always be available.

• In this case, we will consider the numerical solution.

• We want to find the solutions of the Equation 4.1 at the equally spaced
times t1, t2, . . . , tN and xi and vi.

• Write the velocity and position derivatives in the form of forward-
difference derivative approximation. Take dt = h as step length, then:

vi+1 − vi
h

=
F (x, v, t)

m
−→ vi+1 = vi +

Fi

m
h

xi+1 − xi
h

= vi −→ xi+1 = xi + vih

• By given initial velocity v1, initial position x1 at the time t1 = 0 and
the values for Fi = F (xi, vi, ti); the values for vi, xi can be calculated
for i = 2.3, . . . in a loop.

• When the function is explicitly known, we can emulate the methods of
calculus.

• If we are working with experimental data that are displayed in a table
of [x, f(x)] pairs emulation of calculus is impossible.
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– Wemust approximate the function behind the data in some way.

• Differentiation with a Computer:

– Employs the interpolating polynomials to derive formulas for get-
ting derivatives.

– These can be applied to functions known explicitly as well as those
whose values are found in a table.

• Numerical Integration-The Trapezoidal Rule:

– Approximates, the integrand function with a linear interpolating
polynomial to derive a very simple but important formula for nu-
merically integrating functions between given limits.

• We cannot often find the true answer numerically because the analytical
value is the limit of the sum of an infinite number of terms.

• We must be satisfied with approximations for both derivatives and inte-
grals but, for most applications, the numerical answer is adequate.

• The derivative of a function, f(x) at x = a, is defined as

df

dx
|x=a = lim∆x→0

f(a+∆x)− f(a)
∆x

• This is called a forward-difference approximation.

• The limit could be approached from the opposite direction, giving a
backward-difference approximation.

4.1.2 Differentiation with a Computer

• Forward-difference approximation. A computer can calculate an ap-
proximation to the derivative, if a very small value is used for ∆x.

df

dx

∣
∣
∣
∣
x=a

=
f(a+∆x)− f(a)

∆x

– Recalculating with smaller and smaller values of x starting from
an initial value.

– What happens if the value is not small enough?

– We should expect to find an optimal value for x.



56 CHAPTER 4. DIFFERENTIATION AND INTEGRATION

– Because round-off errors in the numerator will become great as x
approaches zero.

• When we try this for
f(x) = exsin(x)

at x = 1.9. The analytical answer is 4.1653826.

Apply Forward-difference approximation to f(x) = exsin(x). (Example
py-file: myforwardderivative.py)

Table 4.1: Forward-difference approximation for f(x) = exsin(x).

• Starting with ∆x = 0.05 and halving ∆x each time. Table gives the
results.

• We find that the errors of the approximation decrease as ∆x is reduced
until about ∆x = 0.05/2097152.

• Notice that each successive error is about 1/2 of the previous error as
∆x is halved until ∆x gets quite small, at which time round off
affects the ratio.

• At values for ∆x smaller than 0.05/2097152, the error of the approxi-
mation increases due to round off.

• In effect, the best value for ∆x is when the effects of round-off and
truncation errors are balanced.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myforwardderivative.py
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Figure 4.1: Forward-difference approximation for f(x) = exsin(x).

• If a backward-difference approximation is used; similar results are ob-
tained.

• Backward-difference approximation.

df

dx

∣
∣
∣
∣
x=a

=
f(a)− f(a−∆x)

∆x

Apply Backward-difference approximation to f(x) = exsin(x). (Example
py-file: mybackwardderivative.py)

• It is not by chance that the errors are about halved each time for
both forward- and backward-difference approximations.

• Look at this Taylor series where we have used h for ∆x:

f(x+ h) = f(x) + f ′(x) ∗ h + f ′′(ξ) ∗ h2/2

• Where the last term is the error term. The value of ξ is at some point
between x and x+ h.

• If we solve this equation for f ′(x), we get

f ′(x) =
f(x+ h)− f(x)

h
− f ′′(ξ) ∗ h

2
(4.2)

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/mybackwardderivative.py
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Table 4.2: Backward-difference approximation for f(x) = exsin(x).
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Figure 4.2: Backward-difference approximation for f(x) = exsin(x).
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• If we repeat this but begin with the Taylor series for f(x− h), it turns
out that

f ′(x) =
f(x)− f(x− h)

h
+ f ′′(ζ) ∗ h

2
(4.3)

• Where ζ is between x and x− h.

• The two error terms of Eqs. 4.2 and 4.3 are not identical though both
are O(h).

• If we add Eqs. 4.2 and 4.3, then divide by 2, we get the central-
difference approximation to the derivative:

f ′(x) =
f(x+ h)− f(x− h)

2h
− f ′′′(ξ) ∗ h

2

6

• We had to extend the two Taylor series by an additional term to get
the error because the f ′′(x) terms cancel.

• This shows that using a central-difference approximation is a much
preferred way to estimate the derivative.

• Even though we use the same number of computations of the function
at each step,

• We approach the answer much more rapidly.

df

dx

∣
∣
∣
∣
x=a

=
f(x+ h)− f(x− h)

2h

Apply Central-difference approximation to f(x) = exsin(x). (Example py-
file: mycentralderivative.py)

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/mycentralderivative.py
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Table 4.3: Central-difference approximation for f(x) = exsin(x).
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Figure 4.3: Central-difference approximation for f(x) = exsin(x).
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Apply Forward-difference approximation to Simple Harmonic Motion.
(Example py-file: shm.py)
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Figure 4.4: Time change of position and velocity in motion under the force
F=-kx.

4.1.3 Simple Pendulum

Figure 4.5: Simple pendulum.

• The motion of a simple pendulum, which
consists of a point mass m suspended on
the end of a rope of length L.

• Newton’s second law for motion in the
tangential direction:

F = ma −→ −mgSinθ = m
d2s

dt2

• Here s is the arc length and θ is the an-
gle the rope makes with the vertical (see
Figure).

• Since s = Lθ,
d2θ

dt2
= − g

L
sinθ

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/shm.py
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• This differential equation has no analytical solution.

• However, for small angle oscillations sinθ ≈ θ is approximated:

d2θ

dt2
= − g

L
θ (4.4)

• This equation has a solution in terms of sinusoidal functions:

θ(t) = θ0cos
2πt

T

T = 2π

√

L

g

• Here T is the period of the oscillation and θ0 is the angular amplitude.

• This formula is small angle (θ0 ≤ 15◦) amplitudes gives approximately
good results.

• We want to find the exact solution of the pendulum problem for each
amplitude θ0 numerically.

• For this purpose, we will transform the problem into a numerical inte-
gral.

• Let’s multiply both sides of the equation 4.4 by dθ/dt and rearrange:

dθ

dt

d2θ

dt2
= − g

L
sinθ dθ

dt

1

2

d

dt

[
dθ

dt

]2

= − g
L

d
dt
cosθ

• If the indefinite integral is taken side by side,

1

2

(
dθ

dt

)2

=
g

L
cosθ + C

• The initial velocity and angle values are used to determine the integra-
tion constant C.

– If the pendulum is initially released from the maximum angle, its
velocity will be zero.
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– So, if dθ/dt = 0 and θ = θ0 are substituted into the equation at
time t = 0, C = −(g/L)cosθ0 is found.

• If the constant C is put in place and the arrangement is made,

dθ

dt
=

√
2g
L
(cosθ − cosθ0)

dt =
√

L
2g

dθ√
cosθ−cosθ0

• Integrating the right side of this expression from θ = 0 to the angle
θ = θ0, the left side will be one quarter of a period.

T

4
=

√

L

2g

∫ θ0

0

dθ√
cosθ − cosθ0

Thus, we have written the period formula as an integral.

• For each given amplitude θ0 we can calculate this integral numerically.

• However, since the value of the integrand diverges at the upper bound
(for θ = θ0), it is necessary to do a variable replacement first.

• For this purpose, first, the identities cosθ = 1−2sin2(θ/2) and cosθ0 =
1− 2sin2(θ0/2) are inserted in the denominator,

• and then with the variable change k = sin(θ0/2) =
sin(θ/2)
sinφ

, the integral
becomes:

T = 4

√

L

g

∫ π/2

0

dφ
√

1− sin2(θ0/2)sin2φ

• This integral whose denominator is never zero is known as an elliptical
integral of the first kind.

• There is no analytical solution.

4.1.4 Numerical Integration - The Trapezoidal Rule

• Given the function, f(x), the antiderivative is a function F (x) such
that F ′(x) = f(x).
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• The definite integral

∫ b

a

f(x)dx = F (b)− F (a)

can be evaluated from the antiderivative.

• Still, there are functions that do not have an antiderivative expressible
in terms of ordinary functions. Such as the function: f(x) = ex/log(x)

1 from sympy import ∗

2 x = symbols ( ’ x ’ )
3 f = exp ( x ) / l og (x )
4 df = i n t e g r a t e ( f , x ) # Function d e r i v a t i v e in symbol i c form
5 pr i n t ( df )
6 # In t e g r a l ( exp ( x) / l og ( x) , x )

• Is there any way that the definite integral can be found when the an-
tiderivative is unknown?

• We can do it numerically by using the composite trapezoidal rule

• The definite integral is the area between the curve of f(x) and the
x-axis.

• That is the principle behind all numerical integration;

Figure 4.6: The trapezoidal rule.

– We divide the distance
from x = a to x = b
into vertical strips and
add the areas of these strips.

– The strips are often made equal
in widths but that is not always
required.

– Approximate the curve with a
sequence of straight lines.

– In effect, we slope the top of the
strips to match with the curve as
best we can.

• The gives us the trapezoidal rule. Figure illustrates this.
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• It is clear that the area of the strip from xi to xi+1 gives an approxi-
mation to the area under the curve:

∫ xi+1

xi

f(x)dx ≈ fi + fi+1

2
(xi+1 − xi)

• We will usually write h = (xi+1 − xi) for the width of the interval.

• Error term for the trapezoidal integration is

Error = −(1/12)h3f ′′(ξ) = O(h3)

• What happens, if we are getting the integral of a known function over
a larger span of x-values, say, from x = a to x = b?

• We subdivide [a,b] into n smaller intervals with ∆x = h, apply the rule
to each subinterval, and add.

The Composite Trapezoidal Rule

• This gives the composite trapezoidal rule;

∫ b

a

≈
n−1∑

i=0

h

2
(fi + fi+1) =

h

2
(f0 + 2f1 + 2f2 + . . .+ 2fn−1 + fn)

• The error is not the local error O(h3) but the global error, the sum of
n local errors;

Global error =
−(b− a)

12
h2f ′′(ξ) = O(h2)

where nh = (b− a)

• Use the trapezoidal rule to estimate the integral from x = 1.8 to x = 3.4
for f(x) = ex.

• Applying the trapezoidal rule:

∫ 3.4
1.8 f(x)dx ≈ 0.2

2 [f(1.8) + 2f(2.0) + 2f(2.2) + 2f(2.4)
+2f(2.6) + 2f(2.8) + 2f(3.0) + 2f(3.2)
+f(3.4)] = 23.9944
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Apply The trapezoidal rule to f(x) = ex in interval of 1.8 and 3.4.
(Example py-file: mytrapezoid.py)
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Figure 4.7: Integration for f(x) = ex by the trapezoidal rule.

Apply The trapezoidal rule to Simple Pendulum to find the period. (Example
py-file: simplependulum.py)

Table 4.4: Integration for 1.0√
1.0−(sin(θ0/2)sin(φ))2

by the trapezoidal rule.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/mytrapezoid.py
http://cemozdogan.net/ScientificComputingwithPython/pyfiles/simplependulum.py
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5.1 Initial Value Problems

• Most problems in the real world are modeled with differential
equations because it is easier to see the relationship in terms of a
derivative.

• e.g. Newton’s Law: F=Ma, d2s/dt2 = a = F/M (constant accelera-
tion). 2nd order ordinary differential equation.

– It is ordinary since it does not involve partial differentials.

– Second order since the order of the derivative is two.

– The solution to this equation is a function, s(t) = (1/2)at2+v0t+
s0.

– Two arbitrary constants, v0 and s0, the initial values for the ve-
locity and position.

– The equation for s(t) allows the computation of a numerical value
for s, the position of the object, at any value for time, the inde-
pendent variable, t.

• e.g. Harmonic oscillator problem in mechanics,

• e.g. One-dimensional Schrödinger equation in quantum mechanics,

• e.g. One-dimensional Laplace equation in electromagnetic theory, etc.

• Analytical solutions of these equations are often non-existent or very
complicated.

• Numerical solutions are the remedy. In terms of solution technique, we
can divide differential equations into three groups:

1. Initial Value Problems: In time-dependent problems, the initial
state at time t=0 is given and a solution is searched for later t values.
For example, in the following quadratic equation

d2y

dt2
= f(y, y′, t)

two initial conditions must be given at t=0, namely y(0) and y′(0)
values. (Nth order differential equation → N initial conditions).

2. Boundary Value Problems.

3. Eigenvalue (characteristic-value) Problems.
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5.1.1 Projectile Motion with Air Resistance

• In addition to a vertical gravitational force on a 2D projectile motion,
there is also a friction force to a certain extent due to air resistance.

• This frictional force is usually in the opposite direction to velocity and
is proportional to the square of the velocity: ~Fr = −kv~v (Drag force,
FD = −(1/2)cρAv2~v/|~v| here, c is the drag coefficient, ρ the air density,
and A the projectile’s cross-sectional area).

If we write Newton’s 2nd law as a vec-
tor in two dimensions,

m~a = ~Fnet

m
d2~r

dt2
= m~g − kv~v

• and component wise (where k/m = γ):

d2x

dt2
= −γ

(√

v2x + v2y

)

vx &
dx

dt
= vx

d2y

dt2
= −g − γ

(√

v2x + v2y

)

vy &
dy

dt
= vy

• Now, we have a set of equations.

5.1.2 Planetary Motion

• In the previous projectile motion example, we used the gravitational
force with the expression F = mg and gravitational acceleration as
being constant near the Earth’s surface.

• However, the gravitational force between masses is most generally given
by Newton’s law of universal gravitation:

F = G
m1m2

r2

Here, G = 6.6743×10−11 m3kg−1s−2 is called the universal gravitational
constant. The force is attractive and along the direction connecting the
two masses.

• This expression should be used when studying the motion of planets
and moons.
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• Let’s study the motion of a planet (mass m )moving under the gravi-
tational force of the Sun (mass M). If we take the sun at the origin,
the vector expression of the force acting on the planet would be:

~F = −GMm

r3
~r

• Since the orbit of the planet will be at a plane (2D), the position vector
~r and accordingly the acceleration vector ~a would have two components
as:

~r = x̂i+ yĵ

~a =
d2x

dt2
î+

d2y

dt2
ĵ

• Newton’s 2nd law as ~a = ~F/m and also velocity expressions for the x-
and y-components:

d2x

dt2
= −GM

r3
x &

dx

dt
= vx

d2y

dt2
= −GM

r3
y &

dy

dt
= vy

• Now, we have a set of equations.

5.1.3 Euler Method

• In an initial-value problem, the numerical solution begins at the
initial point and marches from there to increasing values for the
independent variable.

• The Euler method. Describes a method that is easy to use but is
not very precise unless the step size, the intervals for the projection of
the solution, is very small.

• Consider the following first-order differential equation:

dy

dx
= y′(x) = f(x, y) & y(x0) = y0 (5.1)

• Here x is the variable, y(x) and f(x,y) are real functions, and the initial
condition y0 is a real number.
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• From the solution of this equation, we get y1, y2, . . . , yn values for the
function at the points x1, x2, . . . , xn with equal step lengths h.

• Equations of higher order are solved by converting them to a
system of linear equations.

• The expression given by Equation 5.1 is written as the forward-difference
approximation at a point xi by Euler’s method.

yi+1 − yi
h

+O(h) = f(xi, yi)

• If we solve this expression for yi+1, we get the Euler method formula:

yi+1 = yi + hf(xi, yi) +O(h2)

• This expression shows that the error in one step of Euler method is
O(h2). But, this error is just the local error. Over many steps, the
global error becomes O(h) (as NO(h2) ≈ O(h) for N steps).

• The method is easy to program when we know the formula for y′(x)(≡
f(xi, yi)) and a starting value, y0 = y(x0).

• Let’s see the application of this method on an example. Given differ-
ential equation,

dy

dx
= x+ y

• The analytical solution of this equation is given as y(x) = 2ex − x− 1.
Initial condition: y(x = 0) = 1

(Example py-file: myeuler.py) As can be seen from the table, the margin
of error is large in the Euler method.

5.1.4 Runge-Kutta Method

• Simple Euler method comes from using just one term from the Taylor
series for y(x) expanded about x = x0.

• What if we use more terms of the Taylor series? Runge and Kutta,
developed algorithms from using more than two terms of the series.

• In the Euler method, the increment is directly from xi to xi+1.

• Second-order Runge-Kutta methods are obtained by using a weighted
average of two increments to y(x0), k1 and k2.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myeuler.py
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Table 5.1: Solution of the differential equation dy/dx = x+y in the interval
[0, 1] by Euler method.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y

Approximate and Exact Solution for Simple ODE: dydx = x+ y

Approximate
Exact
SciPy

Figure 5.1: Solution of the differential equation dy/dx = x+y in the interval
[0, 1] by Euler method.

• Let’s take a ”trial step” in the middle and then increment to xi+1 by
using these middle x- and y-values. Two quantities are defined here as
k1 and k2,

k1 = hf(xi, yi)

k2 = hf(xi +
1

2
h, yi +

1

2
k1)

• The parameter;

– k1 is for the calculation at xi, yi,
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– k2 is for a half-step away (xi +
1
2
h, yi +

1
2
k1) calculation.

• Accordingly, the 2nd order Runge-Kutta formula becomes:

yi+1 = yi + k2 +O(h3)

• In the Runge-Kutta method, the margin of error in one step is O(h3)
and is O(h2) in the entire interval.

• It works better than the Euler method, but it comes at a cost: f(x, y)
will be calculated twice at each step.

• This ”trial step” technique can be taken even further. Fourth-order
Runge-Kutta (RK4) methods are most widely used and are derived in
similar fashion.

k1 = f(xi, yi)

k2 = f(xi +
1

2
h, yi +

1

2
hk1)

k3 = f(xi +
1

2
h, yi +

1

2
hk2)

k4 = f(xi + h, yi + hk3)

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4) +O(h5)

• The local error term for the fourth-order Runge-Kutta method is O(h5);
the global error would be O(h4).

• It is computationally more efficient than the (modified) Euler method
because the steps can be manyfold larger for the same accuracy.

• However, four evaluations of the function are required per
step rather than two.

• Let’s apply the RK4 method on the previous example. Given differen-
tial equation,

dy

dx
= x+ y

• The analytical solution of this equation is given as y(x) = 2ex − x− 1.
Initial condition: y(x = 0) = 1

(Example py-file: myrungekutta.py) As can be seen from the Table, much
more sensitive results are obtained compared to the Euler method.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myrungekutta.py
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Table 5.2: Solution of the differential equation dy/dx = x+ y in the interval
[0, 1] by 4th order Runge-Kutta method.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0
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Approximate and Exact Solution for Simple ODE: dydx = x+ y

Approximate
Exact
SciPy

Figure 5.2: Solution of the differential equation dy/dx = x+y in the interval
[0, 1] by Euler method.

5.1.5 Second Degree Equations

• Any second-order or higher-order differential equation can be
converted into a system of first-order (linear) equations. For
example,

d2y

dx2
+ A(x)

dy

dx
+B(x)y(x) = 0

• Let’s define two new functions for the equation, y1(x) and y2(x):

y1(x) = y(x) & y2(x) =
dy

dx



5.1. INITIAL VALUE PROBLEMS 75

• With this transformation, instead of one 2nd order equation, two 1st

order equations are formed:

(1)
dy1
dx

= y2(x)

(2)
dy2
dx

= −A(x)y2 − B(x)y1

• All we need to do to solve higher-order equations, even a system of
higher-order initial-value problems, is to reduce them to a system of
first-order equations.

• Such as: One M-order equation → a system with M first-order
equations.

• Let’s take the most general system of differential equations with M
unknowns:

dy1
dx

= f1(x, y1, . . . , yM) & y1(0) = y10

...
... (5.2)

dyM
dx

= fM(x, y1, . . . , yM) & yM(0) = yM0

• The next step for solving is to apply the methods (such as; Euler,
Runge-Kutta) for the 1stt order differential equation to these linear
system.

We had a set of equations. Two second degree and two first degree
differential equations with two unknowns.

(3)
d2x

dt2
= −γ

(√

v2x + v2y

)

vx & (1)
dx

dt
= vx

(4)
d2y

dt2
= −g − γ

(√

v2x + v2y

)

vy & (2)
dy

dt
= vy
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• To solve these two 2nd degree equations
(plus two 1st degree equations) given
above, we first convert them to a system
of 4 1st degree (linear) equations.

• To this end, let’s define the four un-
knowns as follows:

• x→ y1

• y → y2

• vx → y3

• vy → y4

• Accordingly, the above 2nd degree system is written as:

(1)
dy1
dt

= y3

(2)
dy2
dt

= y4

(3)
dy3
dt

= −γ
(√

y23 + y24

)

y3

(4)
dy4
dt

= −g − γ
(√

y23 + y24

)

y4

• When γ = 0 in this system of equations, we obtain our usual parabolic
curve y = (v0y/v0x)x− (g/2v20x)x

2.

To calculate the effect of air friction, let’s take the initial conditions (t = 0)
and constants (g & γ):

x0 = y1(t = 0) = 0 & y0 = y2(t = 0) = 0

v0x = y3(t = 0) = 6.0 & v0y = y4(t = 0) = 8.0

g = 10.0 & γ = 0.01

We had a set of equations. Two second degree and two first degree
differential equations with two unknowns.

(3)
d2x

dt2
= −GM

r3
x & (1)

dx

dt
= vx

(4)
d2y

dt2
= −GM

r3
y & (2)

dy

dt
= vy
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Figure 5.3: Numerical solution of projectile motion with and without air
friction. (Example py-file: airfriction.py)

• To solve these two 2nd degree equations
(plus two 1st degree equations) given
above, we first convert them to a system
of 4 1st degree (linear) equations.

• To this end, let’s define the four un-
knowns as follows:

• x→ y1

• y → y2

• vx → y3

• vy → y4

• Accordingly, the above 2nd degree system is written as:

(1)
dy1
dt

= y3

(2)
dy2
dt

= y4

(3)
dy3
dt

= − GM

[y21 + y22]
3/2
y1 (5.3)

(4)
dy4
dt

= − GM

[y21 + y22]
3/2
y2

• For the motion of the planets, we use the astronomical unit system. The
Earth-Sun average distance would be in units of astronomical length:
1 au ≈ 1.5 × 1011 m. The time taken for the Earth to go around the
Sun once is 1 year (y) as the unit of time.

• Calculated in these units, the product of GM ,

GM ≈ 40(au)3/y2

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/airfriction.py
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• To calculate the planetary motion, let’s take the initial conditions at
time t=0 in terms of four unknowns:

x0 = y1(t = 0) = 1.0 au & y0 = y2(t = 0) = 0

v0x = y3(t = 0) = 0.0 & v0y = y4(t = 0) = 6.0 au/y

• Then, also take v0y = y4(t = 0) = 8.0 au/y.

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

Planetary Motion 
Closed
Unbounded

Figure 5.4: Numerical solution of planetary motion. There can be closed
orbits (ellipse), or solutions going to infinity (unbounded, hyperbola) for
different velocities. (Example py-file: planetarymotion.py)

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/planetarymotion.py
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5.2 Boundary Value Problems

1. Initial Value Problems.

2. Boundary Value Problems The solution of the differential equation
is searched within certain constraints, called the boundary condi-
tions. For example,

d2y

dx2
= f(x, y, y′)

• If the solution of the equation in the interval of x : [0, L] is re-
quired,

• the values at the y(0) and y(L) boundaries should be given.

3. Eigenvalue (characteristic-value) Problems

• Consider a 2nd-order differential equation in the interval [a,b]:

y′′ = f(x, y, y′)

Two necessary conditions for the solu-
tion of this equation are given at two
extremes:

y(a) = A

y(b) = B

• This problem is more difficult to solve than the initial value problem
that we previously discussed.

– In initial value problem, y(0) and y′(0) are both given at x = 0.

– It was possible to start with these two initial values and progress
the solution through the interval.

– In the boundary value problem, the number of initial conditions
is insufficient.

• We cannot directly obtain the solution with methods such as
Euler or Runge-Kutta.

• Eigenvalue problems are even more difficult.
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• See the following 2nd degree differential equation:

y′′ = f(x, y, y′ : λ)

• Again, let the boundary conditions of this equation to be given at both
ends.

• If these conditions can only be satisfied for certain λ values, we call it
the eigenvalue problem.

– e.g.: Vibrations of a wire with both ends fixed give stable solution
only for certain wavelengths.

– e.g.: Solutions of the Schrödinger equation that are zero at infinity
exist only for certain energy eigenvalues.

• In terms of numerical solution, boundary value and eigenvalue
problems are solved by the same method.

5.2.1 Trial-and-Error (Linear Shooting) Method

Figure 5.5: First guess.
Figure 5.6: Second
guess.

. . .

Figure 5.7: Expected
result.

• The basic approach in solving boundary value and eigenvalue prob-
lems is known as the trial-and-error method.

– At one boundary, the solution is started by giving an estimated
value to the missing initial condition,

– A trial solution is then found with either Euler or Runge-Kutta
method at the other boundary (First guess),

– How much deviation from the given boundary condition is deter-
mined,

– Taking this deviation into account, a new solution is restarted
with a new estimation (Second guess),
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– This process is repeated (. . .) until the other boundary condition
is satisfied (Expected result).

• Let’s see this method on an example:

y′′(x)− (4x2 − 2)y = 0 y(0) = 1.0

with BCs y(1) = 1/e = 0.36787944

• This differential equation has the solution of y = e(−x2) (Gaussian func-
tion).

First, let’s transform this boundary
value problem into a first-order system
of equations:

• y1 = y

• y2 = y′

•
dy1
dx

= y2

•
dy2
dx

= (4x2 − 2)y1

• Notice that the boundary conditions are given only for
y1: y1(0) = 1.0 and y1(1) = 0.368.

• Notice that there is no initial condition for y2.

• Now, we have a set of equations.

• Here, let’s take an estimated initial value of a:

first guess : y2(0) = a

• Now, find the solutions y1(x) and y2(x) (by let’s say RK4) with these
y1(0) and y2(0) values.

• Denote the value obtained for y1 in the other boundary with y1a(1)

• and find the difference (∆a) with the real one y1(1) (here, 0.368):

y2(0) = a→ solution : y1a(x)→ ∆a = y1a(1)− y1(1)

• Now, let’s make a second (another) guess of b and calculate the
error again at the other boundary:

y2(0) = b→ solution : y1b(x)→ ∆b = y1b(1)− y1(1)
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• Remind the secant methods for root finding.

• After these two estimated shoots, the most accurate starting value to
choose will be the extension of the line passing through two points:

y2(0) = b− ∆b

∆b −∆a
(b− a)

• Then, the calculation (RK4) is repeated with this selected value by
secant method.

• Finally, the solution is found when the margin of error in the other
boundary is smaller than a certain tolerance.

• (Example py-file: mylinearshooting.py)

Figure 5.8: Solution for the Boundary Value Problem for the ODE: y′′(x)−
(4x2 − 2)y = 0.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/mylinearshooting.py


5.2. BOUNDARY VALUE PROBLEMS 83

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

Approximate a d Exact Solutio  for BVP ODE: dy2dx = (4x2−2)y1
Approximate
Exact
SciPy

Figure 5.9: Solution for the Boundary Value Problem for the ODE: y′′(x)−
(4x2 − 2)y = 0.

5.2.2 Laplace Equation in Electrostatics

• The electrostatic potential created by a static charge distribution at a
charge-free region is given by the following Laplace equation:

∇2V =
∂2V

∂x2
+
∂2V

∂y2
++

∂2V

∂z2
= 0

Here, V (x, y, z) is the potential within the region.

• The solution of this problem for particular charge distributions concerns
the subject of partial differential equations.

• However, the dimensions of the problem can be reduced if the charge
distribution exhibit a spatial symmetry.

• For example, in a system with spherical symmetry, the solution
of the problem becomes easier if the partial derivatives in Laplace’s
equation are expressed in terms of spherical coordinates (r, θ, φ):

∇2V =
1

r2
∂

∂r

(

r2
∂V

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂V

∂θ

)

+
1

r2 sin2 θ

∂2V

∂φ2
= 0 (5.4)
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• Let the two concentric conductive spher-
ical shells of radii Ra and Rb be held
at constant potentials Va and Vb (Figure
5.10).

• Because of spherical symmetry, the po-
tential distribution in the region be-
tween the two spheres (Ra < r < Rb)
will be a function of distance r only.

• Accordingly, the derivatives with respect
to the variables (θ, φ) in Equation 5.4
become zero, and the partial derivative
in the remaining term becomes the full
derivative:

1

r2
∂

∂r

(

r2
∂V

∂r

)

→ d2V

dr2
+

2

r

dV

dr
= 0

Figure 5.10: The region be-
tween two spherical shells of
different potential.

The boundary conditions of this differential
equation become:

V (Ra) = Va

V (Rb) = Vb

First, we transform this equation into a linear
system of equations:

V → V1
dV

dr
→ V2

with these values (V1andV2), the system of
equations to be solved

dV1
dr

= V2

dV2
dr

= −2
r
V2

and the boundary conditions are:
V (Ra) = 100

V (Rb) = 0

• Now, we have a set of equations.

• The analytical solution to this spherically symmetric problem would
be:

V (R) =
Ra(Rb − r)
(Rb − Ra)r

Va
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We had a set of equations.
We transformed this boundary value problem into a first-order system of
equations.

V1 = V

V2 = V ′

dV1
dr

= V2

dV2
dr

= −2
r
V2

(Example py-file: laplaceequation.py)

Figure 5.11: Solution for the Boundary Value Problem for the ODE: V ′′ =
−2

r
V ′.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/laplaceequation.py
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Figure 5.12: Solution for the Boundary Value Problem for the ODE: V ′′ =
−2

r
V ′.
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5.3 Eigenvalue Problems

1. Initial Value Problems.

2. Boundary Value Problems

3. Eigenvalue (characteristic-value) Problems Even if the boundary
conditions of the differential equation are available, the solutions can
only exist for some specific values of a parameter in the system. For
example,

− ~
2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x)

• In Schrödinger equation, there are solutions that ψ(x) goes to zero
at infinity for certain values of the energy E.

• These En values satisfying this condition are the eigenvalues of
the differential equation.

• See the following 2nd degree differential equation:

y′′ = f(x, y, y′ : λ)

• Again, let the boundary conditions of this equation to be given at both
ends.

• If these conditions can only be satisfied for certain λ values, we call it
the eigenvalue problem.

– e.g.: Vibrations of a wire with both ends fixed give stable solution
only for certain wavelengths.

– e.g.: Solutions of the Schrödinger equation that are zero at infinity
exist only for certain energy eigenvalues.

• Some boundary value problems in physics/engineering have a solution
based on an eigenvalue.

• In terms of numerical solution, boundary value and eigenvalue
problems are solved by the same method.

1 For example, standing waves are the solutions of the following differ-
ential equation for a string fixed at both ends:

d2y(x)

dx2
+ k2y(x) = 0

Here k = 2π/λ represents the wavenumber.
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• If the two ends of the L-length string are fixed, then corresponding
boundary values are:

y(0) = y(L) = 0

• Although there are sufficient boundary conditions, there are only solu-
tions for certain k values.

• It is impossible to satisfy these boundary conditions for other k values.

• The standing wave solution in the string:

y(x) = Asinkx+Bcoskx

• Boundary conditions to find the coefficients A, B;

y(0) = 0→ A ∗ 0 +B ∗ 1 = 0 →B = 0

y(L) = 0→ AsinkL = 0 →kL = nπ (n = 1, 2, . . .)

• According to these results, there is only one set of solution as k =
π/L, 2π/L, . . . values. (kn = nπ/L→ eigenvalue(s).)

2 Another example is the Schrödinger equation in quantum mechanics.
If we write it in one-dimensional space,

− ~
2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

Here V (x) is the potential energy function of the particle, and E is its
total energy.

• Boundary conditions for the wave function are given for x = ±∞:

ψ(±∞)→ 0

• Again, this differential equation has solutions satisfying the boundary
conditions only for certain E eigenvalues.

For eigenvalue problems, the trial-and-error (shooting) method is also used.

• However, an estimated value is given to the eigenvalue instead of giving
to the derivatives at the boundary.

• Then, a trial solution is obtained.

• By comparing this trial solution with the value at the boundary con-
dition, the eigenvalue is readjusted and another trial is performed.

• Finally, the solution is to be found when the true eigenvalue is ap-
proached within a certain margin of error.
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5.3.1 Standing Waves on a String

• The wave equation and boundary conditions in a string of length L =
1 m with both fixed ends are as follows:

d2y(x)

dx2
+ k2y(x) = 0 & y(0) = y(1) = 0

Firstly, transform this quadratic equation into
a system of linear (first degree) equations:

y → y1
dy

dx
→ y2

with these values (y1 and y2), the system of
equations to be solved: (Now, we have a
set of equations.)

dy1
dr

= y2

dy2
dr

= −k2y1

and the boundary conditions are: y(0) = 0

y(1) = 0

• Here, the trial-and-error approach differs from the previously discussed
boundary value problem.

• Different estimates for y2(0) values do not make it zero at the other
boundary.

• Instead, an estimated value for the k eigenvalue is taken and a
solution search is initiated.

• Searching continues by increasing the value of k until the boundary
condition (here y(1) = 0) at the other end is satisfied.

• For example, the solution at the other boundary is y1k(1) for a given
value of k.

• Accordingly, the next step is find the root of the following equation:

F (k) = y1k(1)− y(1) = 0

When we encountered an eigenvalue k, then F (k) will change sign as
indicating the root.
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• (Example py-file: The program to find the 5 smallest of the k eigen-
values in a string: standingwawes.py)

• The program can find the eigenvalues k = nπ/L = π, 2π, 3π, . . . on a
string of length L=1 m.

• However, the error margin is to be increased by increasing eigenvalues
(see kn/π values).

0.0 0.2 0.4 0.6 0.8 1.0
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+ k2y(x) = 0
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n=4
n=5
SciPy n=5

Figure 5.13: Solution for the Eigenvalue Problem for the ODE: dy2
dx

= −k2y1.

5.3.2 Numerical Solutions of Schrödinger Equation

• In quantum mechanics, the Schrödinger equation is used to find the
eigenvalues and eigenfunctions of the particle moving in one dimension
at the potential V (x):

− ~
2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

• An analytical solution to this equation is available for only very few
potential functions such as harmonic oscillator, infinite well, hydrogen
atom, ....

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/standingwawes.py
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• Therefore, numerical solutions of the Schrödinger equation is an
indispensable tool in physics research.

• The numerical solution of the Schrödinger equation is complicated for
general solutions of the problem.

• However, if we assume the potential function to be as symmetric, the
problem can be solved in a much easier way.

• For a symmetric potential,

V (−x) = V (x)

• Therefore, the solutions of the Schrödinger equation also fall into two
groups:

Symmetrical wave functions: ψ(−x) = ψ(x)
Antisymmetric wave functions: ψ(−x) = −ψ(x)

• This property allows us to determine exactly the initial conditions nec-
essary to start the eigenvalue problem.

Symmetric (even) wave functions: ψ(0) = 1 & ψ′(0) = 0
Antisymmetric (odd) wave functions: ψ(0) = 0 & ψ′(0) = 1

5.3.3 Hydrogen Atom

• In quantum mechanics, the hydrogen atom is considered as a system
of electrons with a charge of −e around a proton with a charge of +e.

• If the electrostatic potential energy between the electron-proton is sub-
stituted in the Schrödinger equation as V (r) = −e2/r,

− ~
2

2mr

∇2ψ(~r)− e2

r
ψ(~r) = Eψ(~r)

Here mr = memp/(me+mp) is the reduced mass of the electron-proton
system.

• Since the potential energy depends only on the distance r, the solution
is defined with the spherical coordinates (r, θ, φ) in three-dimensional
space:

ψ(r, θ, φ) = R(r)Y (θ, φ)
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• The solutions of the equation provided by the angular variables (θ, φ)
are independent of the V (r) potential and consist of functions called
spherical harmonics Y (θ, φ).

• The equation provided by the R(r) function is called radial Schrödinger
equation.

− ~
2

2mr

[
d2R

dr2
+

2

r

dR

dr

]

+

[
l(l + 1)~2

2mrr2
− e2

r

]

R(r) = −|E|R(r)

• Attempt to find the bound energy (eigen)values and wave (eigen)functions
of the radial Schrödinger equation numerically :

• First, it is necessary to make the radial equation dimensionless bu defin-
ing a new wavefunction:

u(r) = rR(r)

• The radial equation in terms of this new function u(r) becomes simpler:

d2u

dr2
−
[
l(l + 1)

r2
− 2mre

2

~2r

]

u(r) = −2mr|E|
~2

u(r)

• Now, a variable change is made as the following:

k =

√
2mr|E|
~

, ρ = 2kr, λ2 = 1
ka0

= ℜ
|E|

Here, the Rydberg constant ℜ and the Bohr radius a0 are defined as:

a0 =
~
2

mre2
, ℜ = ~

2

2mra20

• As a result of these changes, the dimensionless radial equation becomes:

d2u

dρ2
− l(l + 1)

ρ2
u+

(
λ

ρ
− 1

4

)

u = 0 (5.5)

where l is orbital quantum number and λ is principal quantum number.

Numerical Solution. Firstly, transform this
quadratic Equation 5.5 into a system of linear
(first degree) equations:

u→ y1
du

dρ
→ y2
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with these values (y1 and y2), the sys-
tem of equations to be solved: (Now,
we have a set of equations.)

dy1
dρ

= y2

dy2
dρ

=

[
l(l + 1)

ρ2
−
(
λ

ρ
− 1

4

)]

y1

• For the initial conditions:

– u(0) ∼ 0

– Since the absolute magnitude of the wave function has no physical
meaning, the arbitrary value u′(0) = 1 can be taken.

• Then;

y1(0) = 0 and y2(0) = 1

(Example py-file: Program that solves the radial Schrödinger equation for
the hydrogen atom: hydrogenatom.py)

• Program does not graph the u(r) functions, but the |u|2 probability
densities, which is physically meaningful.

• It calculates according to the l quantum number which is supplied by
the user.

• The error margin is to be increased by increasing n quantum number.

Figure 5.14: Solution for the Eigenvalue Problem for the ODE: dy2
dρ

=
[
l(l+1)
ρ2
−

(
λ
ρ
− 1

4

)]

y1.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/hydrogenatom.py
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Figure 5.15: Solution for the Eigenvalue Problem for the ODE: dy2
dρ

=
[
l(l+1)
ρ2
−
(

λ
ρ
− 1

4

)]

y1.
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5.4 Special Functions

• Consider a straight rod along which there is a uniform flow of heat.

– Let u(x, t) denote the temperature of the rod at time t and location
x.

– Let q(x, t) denote the rate of heat flow.

• The expression ∂q/∂x denotes the rate at which the rate of heat flow
changes per unit length and therefore measures the rate at which heat
is accumulating at a given point x at time t.

• If heat is accumulating, the temperature at that point is rising, and
the rate is denoted by ∂u/∂t.

1 The principle of conservation of energy leads to ∂q/∂x = k∂u/∂t, where
k is the specific heat of the rod.

• This means that the rate at which heat is accumulating at a point is
proportional to the rate at which the temperature is increasing.

2 A second relationship between q and u is obtained from Newton’s law
of cooling, which states that q = K(∂u/∂x).

• Elimination of q between these equations leads to

∂2u

∂x2
= (k/K)

∂u

∂t

the partial differential equation for one-dimensional heat flow.

• The partial differential equation for heat flow in three dimensions takes
the form

∂2u

∂x2
+
∂2u

∂y2
+

∂2u

∂yx2
= (k/K)

∂u

∂t

• Often written as

∇2u = (k/K)
∂u

∂t

where the symbol ∇, called del or nabla, is known as the Laplace
operator.
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• Another example to PDEs for dealing with wave propagation problem:

∇2u = (1/c2)
∂2u

∂t2

where c is the speed at which the wave propagates.

• PDEs are harder to solve than ordinary differential equations (ODEs).

• However, the PDEs associated with wave propagation and heat flow
can be reduced to a system of ODEs through a process known as sep-
aration of variables.

• These ODEs depend on the choice of coordinate system, which in turn
is influenced by the physical configuration of the problem.

• The solutions of these ODEs form the majority of the special func-
tions of mathematical physics.

• In the broad sense, a set of several classes of functions that arise in the
solution of both theoretical and applied problems in various branches.

• In the narrow sense, the special functions of mathematical physics, which
arise when solving PDEs by the method of separation of variables.

• Special functions can be defined by means of power series, generat-
ing functions, infinite products, repeated differentiation, integral rep-
resentations, differential, difference, integral, and functional equations,
trigonometric series, or other series in orthogonal functions.

• For example, in solving the equations of heat flow or wave propagation
in cylindrical coordinates, the method of separation of variables leads to
Bessel’s differential equation, a solution of which is the Bessel function,
denoted by Jn(x).

• A polynomial (”many terms”) is defined as an expression that consist
of variables, coefficients and exponents.

• A polynomial can have:

– variables (like x and y)

– constants/coefficients (like 6, -10, or 3/2)

– exponents (like the 2 in y2)
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– that can be combined using addition, subtraction, multiplication
and division

– but not division by a variable (so something like 2/x is not correct)

– a monomial is the product of non-negative powers of variables and
will only have one term. 13, 3x, 4y2, ...

– a binomial is the sum of two monomials. 3x + 1, 2x + y, ...

– a trinomial is the sum of three monomials. x2 + 2x + 1, 2x + 3y
+ 2, ...

– can have one or more terms, but not an infinite number of terms.

• The standard form of a polynomial refers to writing a polynomial in
the descending power of the variable.

2x3 − 4x2 + 7x− 4

5.4.1 Legendre Polynomials

• The Legendre polynomials Pℓ(x), sometimes called Legendre functions
of the first kind, Legendre coefficients, or zonal harmonics are solutions
to the Legendre differential equation.

• The Legendre polynomials satisfy the second-order differential equa-
tion.

(1− x2)d
2y

dx2
− 2x

dy

dx
+ ℓ(ℓ+ 1)y = 0

where y = Pℓ(x)

• This equation has two regular singular points x = ±1 where the leading
coefficient (1− x2) vanishes.

• Solutions of Legendre equations are Legendre polynomials

Pℓ(x) =
1

2ℓℓ!

(
d

dx

)ℓ

(x2 − 1)ℓ

• If ℓ (0 ≤ ℓ ≤ ∞) is an integer, they are polynomials and make up an
infinite set of functions of the variable x.

• We therefore have a function P0(x), another function Pℓ(x), and an
infinite number of additional functions belonging to the set of Legendre
polynomials.
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• Introduce a (generating) function Φ(x, h) of two variables, known as
a generating function for the definition of the Legendre polynomials.

Φ(x, h) = (1− 2xh+ h2)−1/2

– The first variable, x, is the same variable that appears as the
argument of the Legendre polynomials.

– The second variable, h, is an auxiliary variable with no particular
meaning.

• Think of Φ as a function of a single variable h (Φ = Φ(h)) and expand
as a Taylor expansion in powers of h

Φ(h) = Φ(0) +
dΦ

dh

∣
∣
∣
∣
h=0

h+
1

2!

d2Φ

dh2

∣
∣
∣
∣
h=0

h2 +
1

3!

d3Φ

dh3

∣
∣
∣
∣
h=0

h3 + . . .

=

∞∑

ℓ=0

1

ℓ!

dℓΦ

dhℓ

∣
∣
∣
∣
h=0

hℓ

• Restore the x-dependence of the generating function. This doesn’t
change the general appearance of the Taylor expansion but written as
partial derivatives instead of total derivatives.

Φ(x, h) =

∞∑

ℓ=0

1

ℓ!

∂ℓΦ

∂hℓ

∣
∣
∣
∣
h=0

hℓ =

∞∑

ℓ=0

Pℓ(x)h
ℓ

• Right hand side of this equation is the formal definition of the Legen-
dre polynomials. They are identified as the coefficients in the Taylor
expansion of the generating function about h = 0.

• Let us use this equation to calculate the first few polynomials.

– For ℓ = 0 we are instructed to take no derivatives, and to evaluate
the generating function at h = 0. This gives P0(x) = 1; the zeroth
polynomial is actually a constant.

– Moving on to ℓ = 1, we must differentiate Φ once with respect to h.
Evaluating this at h = 0 and dividing by 1! = 1 gives P1(x) = x.

– For ℓ = 2 we differentiate Φ twice. Evaluating this at h = 0 and
dividing by 2! = 2 produces P2(x) = 1/2(3x2 − 1). We can just
keep going like this, and generate any number of polynomials.

• When ℓ is even, Pℓ(x) contains only even powers of x, starting with xℓ

and ending with x0.
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• When ℓ is odd, Pℓ(x) contains only odd powers of x, starting with xℓ

and ending with x.

• Pℓ(x) is an even function of x when ℓ is even, and an odd function of
x when ℓ is odd.

• The first few Legendre polynomials are given by

P0 = 1

P1 = x

P2 =
1

2
(3x2 − 1)

P3 =
1

2
(5x3 − 3x)

P4 =
1

8
(35x4 − 30x2 + 3)

P5 =
1

8
(63x5 − 70x3 + 15x)

P6 =
1

16
(231x6 − 315x4 + 105x2 − 5)

• Recursion relation:

Pℓ(x) =
1

ℓ
[(2ℓ− 1)xPℓ−1(x)− (ℓ− 1)Pℓ−2(x)]

Example py-file: The program to find first 6 Legendre polynomials: myLegendre.py

Figure 5.16: First 6 Legendre Polynomials Pℓ(x) with Recursion Relation:
Pℓ(x) =

1
ℓ
[(2ℓ− 1)xPℓ−1(x)− (ℓ− 1)Pℓ−2(x)].

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myLegendre.py
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Figure 5.17: Plot of first 6 Pℓ(x).

5.4.2 Hermite Polynomials

• The Hermite polynomials Hk(x) are solutions to the Hermite differen-
tial equation of the form

a(x)y′′ + b(x)y′ + c(x)y = 0

where a(x) = 1, b(x) = −2x and c(x) = 2k (positive integer parameter
k)

d2y

dx2
− 2x

dy

dx
+ 2ky = 0

• yk is a solution of the Hermite equation. Therefore, defining Hk(x) =
yk.

• A natural one to define Hermite polynomials is through the so-called
Rodrigues’formula:

Hk(x) = (−1)kex2 dk

dxk

[

e−x2
]
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• The first few Hermite polynomials are given by

H0 = 1

H1 = 2x

H2 = 4x2 − 2

H3 = 8x3 − 12x

H4 = 16x4 − 48x2 + 12

H5 = 32x5 − 160x3 + 120x

H6 = 64x6 − 480x4 + 720x2 − 120

• Recursion relation:

Hk+1(x) = 2xHk(x)− 2kHk−1(x)

Example py-file: The program to find first 6 Hermite polynomials: myHermite.py

Figure 5.18: First 6 Hermite Polynomials Hk(x) with Recursion Relation:
Hk+1(x) = 2xHk(x)− 2kHk−1(x).

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myHermite.py
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Figure 5.19: Plot of first 6 Hk(x).

Quantum Harmonic Oscillator

• The quantum harmonic oscillator as analog of the classical one is of-
ten used as an approximate model for the behavior of some quantum
systems.

• It is one of the few quantum-mechanical systems for which an exact,
analytical solution is known.

• The Hamiltonian for a particle of mass m moving in one dimension in
a potential V (x) = 1/2kx2 is

Ĥ =
p̂2

2m
+

1

2
kx̂2 =

p̂2

2m
+

1

2
mω2x̂2

where x̂ is the position operator, and p̂ is the momentum operator
(given by p̂ = −i~∂/∂x in the coordinate basis).

• The first term in the Hamiltonian represents the kinetic energy of the
particle, and the second term represents its potential energy, as in
Hooke’s law.

• Then, Schrödinger equation becomes

− ~
2

2m

d2ψ

dx2
+

1

2
kx2ψ = Eψ

• with the change of variable, q = (mk/~2)1/4x, this equation becomes

−1
2

d2ψ

dq2
+

1

2
q2ψ =

E

~ω
ψ
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where ω =
√

k/m is the angular frequency of the oscillator.

• This differential equation has an exact solution in terms of a quantum
number ν = 0, 1, 2, . . .:

ψ(q) = NνHν(q)e
−q2/2

where Nν = (
√
π2νν!)−1/2 is a normalization constant.

• The function Hν(q) is the physicists’ Hermite polynomials of order ν,
defined by:

Hν(q) = (−1)νeq2 d
ν

dqν

(

e−q2
)

• The corresponding energy levels are

Eν = ~ω

(

ν +
1

2

)

= (2ν + 1)
~

2
ω

• Recursion formula:

Hν+1(q) = 2qHν(q)− 2νHν−1(q)

with the first two: H0 = 1 and H1 = 2q.

Example py-file: The program to find the harmonic oscillator wavefunc-
tions/probability densities for up to 4 vibrational energy levels with the har-
monic potential, V = q2/2. QHO.py

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/QHO.py
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Figure 5.20: Wavefunction representations for the first 5 bound eigenstates,
ν = 0− 4.
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Figure 5.21: Corresponding probability densities.
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6.1 Solving Sets of Equations

• Solving sets of linear equations and eigenvalue problems are the most
frequently used numerical procedures when real-world situations are mod-
elled.

• Analytical solution may be feasible when the number of unknowns is
small.

• However, computers outperforms to solve large systems of linear equa-
tions such as with 100 unknowns in a reasonable time.

1. Matrices and Vectors. Reviews concepts of matrices and vectors in
preparation for their use.

2. Elimination Methods. Describes classical methods that change a
system of equations to forms that allow getting the solution by back-
substitution and shows how the errors of the solution can be minimized.

3. The Inverse of a Matrix. Shows how an important derivative of a
matrix, its inverse, can be computed. It shows when a matrix cannot
be inverted and tells of situations where no unique solution exists
to a system of equations.

4. Iterative Methods. It is described how a linear system can be solved
in an entirely different way, by beginning with an initial estimate of
the solution.

6.2 Matrices and Vectors

• When a system of equations has more than two or three equations, it
is difficult to discuss them without using matrices and vectors.

• A matrix is a rectangular array of numbers in which not only the value
of the number is important but also its position in the array.

A =











a11 a12 . . . a1m
a21 a22 . . . a2m
...

an1 an2 . . . anm











= [aij ] ,
i = 1, 2, . . . , n,
j = 1, 2, . . . , m

• Anm×nmatrix times as n×1 vector gives anm×1 product (m×nn×1)
.
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• The general relation for Ax = b is

bi =

No.of.cols.
∑

k=1

aikxk, i = 1, 2, . . . ,# of rows

where A is a matrix, x and b are vectors (column vectors).

• This definition of matrix multiplication permits us to write the set of linear equations

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
an1x1 + an2x2 + . . .+ annxn = bn

– If the equations in any two rows is interchanged, the solution does
not change.

– Multiplying the equation in any row by a constant does not change
the solution.

– Adding or subtracting the equation in a row to another row does
not change the solution.

• Much more simply in matrix notation, as Ax = b where

A =








a11 a12 . . . a1n
a21 a22 . . . a2n
...
an1 an2 . . . ann







, x =








x1
x2
...
xn







, b =








b1
b2
...
bn








• Example,

Matrix notation:




3 2 4
1 −2 0
−1 3 2



∗





x1
x2
x3



 =





14
−7
2





⇔

Set of equations:

3x1 + 2x2 + 4x3 = 14

x1 − 2x2 = −7
−x1 + 3x2 + 2x3 = 2

• Square matrices are particularly important when a system of equa-
tions is to be solved.
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6.2.1 Some Special Matrices and Their Properties

• Symmetric matrix.

A square matrix is called a sym-
metric matrix when the pairs
of elements in similar positions
across the diagonal are equal.





1 x y
x 2 z
y z 3





• The transpose of a matrix is the matrix obtained by writing the
rows as columns or by writing the columns as rows.

– The symbol for the transpose of matrix A is AT .

A =





3 −1 4
0 2 3
1 1 2



 , AT =





3 0 1
−1 2 1
4 −3 2





• If all the elements above/below the diagonal are zero, a matrix is called
lower/upper-triangular (L/U);

L =





x 0 0
x x 0
x x x



 , U =





x x x
0 x x
0 0 x





• We will deal with square matrices.

• Sparse matrix. In some important applied problems, only a few of
the elements are nonzero.

• Such a matrix is termed a sparse matrix and procedures that take
advantage of this sparseness are of value.

• Division of matrices is not defined, but we will discuss the inverse of
a matrix.

• The determinant of a square matrix is a number.

– The method of calculating determinants is a lot of work if the
matrix is of large size.

– Methods that triangularize a matrix, as described in next section,
are much better ways to get the determinant.
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• If a matrix, B, is triangular (either upper or lower), its determinant is
just the product of the diagonal elements:

det(B) = ΠBii, i = 1, . . . , n

det

∣
∣
∣
∣
∣
∣

4 0 0
6 −2 0
1 −3 5

∣
∣
∣
∣
∣
∣

= −40
If we have a square matrix and the
coefficients of the determinant are
nonzero, there is a unique solution.

• Determinants can be used to obtain the characteristic polynomial
and the eigenvalues of a matrix, which are the roots of that polynomial.

• If a matrix is triangular, its eigenvalues are equal to the diagonal elements.

• This follows from the fact that

– its determinant is just the product of the diagonal elements and

– its characteristic polynomial is the product of the terms (aii − λ)
with i going from 1 to n, the number of rows of the matrix.

A =





1 2 3
0 4 5
0 0 6



 ,

det(A− λI) = det

∣
∣
∣
∣
∣
∣

1− λ 2 3
0 4− λ 5
0 0 6− λ

∣
∣
∣
∣
∣
∣

= (1− λ)(4 − λ)(6 − λ)

whose roots are clearly 1, 4, and 6.

• It does not matter if the matrix is upper- or lower-triangular.

6.3 Elimination Methods

• Solve a set of linear (variables with first power) equations.

• If we have a system of equations that is of an upper- triangular form

5x1 + 3x2 − 2x3 = −3
6x2 + x3 = −1

2x3 = 10

Then, we have the solution as: x1 = 2, x2 = −1, x3 = 5
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• If NOT: Change the matrix of coefficients =⇒ upper- triangular. Con-
sider this example of three equations:

4x1 − 2x2 + x3 = 15
−3x1 − x2 + 4x3 = 8
x1 − x2 + 3x3 = 13

4x1 − 2x2 + x3 = 15
−10x2 + 19x3 = 77
−2x2 + 11x3 = 37

4x1 − 2x2 + x3 = 15
−10x2 + 19x3 = 77
−72x3 = −216

Now we have a triangular system and the solution is readily obtained;

1. obviously x3 = 3 from the third equation,

2. and back-substitution into the second equation gives x2 = −2.
3. We continue with back-substitution by substituting both x2, and
x3 into the first equation to get x1 = 2.

• Notice to the values in this example. They are getting bigger!

• The essence of any elimination method is to reduce the coefficient matrix
to a triangular matrix and then use back-substitution to get the solution.

• We now present the same problem, solved in exactly the same way, in
matrix notation;





4 −2 1
−3 −1 4
1 −1 3









x1
x2
x3



 =





15
8
13





• So we work with the matrix of coefficients augmented with the right-
hand-side vector.

• We perform elementary row transformations to convert A to upper-
triangular form:





4 −2 1 15
−3 −1 4 8
1 −1 3 13



 , 3R1 + 4R2 →
(−1)R1 + 4R3 →





4 −2 1 15
0 −10 19 77
0 −2 11 37



 ,

2R2 − 10R3 →





4 −2 1 15
0 −10 19 77
0 0 72 −216



⇒
4x1 − 2x2 + x3 = 15
−10x2 + 19x3 = 77
−72x3 = −216
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• The back-substitution step can be performed quite mechanically by
solving the equations in reverse order. That is, x3 = 3, x2 = −2, x1 = 2.
Same solution with the non-matrix notation.

• During the triangularization step, if a zero is encountered on the diagonal,
we cannot use that row to eliminate coefficients below that zero ele-
ment.

– However, in that case, we can continue by interchanging rows
and eventually achieve an upper-triangular matrix of coefficients.

• The real trouble is finding a zero on the diagonal after we have trian-
gularized.

– If that occurs, the back-substitution fails, for we cannot divide by
zero.

– It also means that the determinant is zero. There is no solution.

Possible approaches for the solution of the following system of equations with
coefficient matrix A.

1 Cramer’s rule.

6x1 − 3x2 + x3 = 11

2x1 + x2 − 8x3 = −15
x1 − 7x2 + x3 = 10

A =





6 −3 1
2 1 −8
1 −7 1



 ,

• Let’s denote the matrix by Aj in which the right-hand-side vector are
substituted to the jth column of A matrix.

• e.g., the solution for x1 is expressed as:

x1 =
det(A1)

det(A)
=

det

∣
∣
∣
∣
∣
∣

11 −3 1
−15 1 −8
10 −7 1

∣
∣
∣
∣
∣
∣

det

∣
∣
∣
∣
∣
∣

6 −3 1
2 1 −8
1 −7 1

∣
∣
∣
∣
∣
∣

=
−285
−285 = 1

Similarly, the solutions x2 and x3 can be written.
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• This method is very convenient when the number of unknowns is as
few as 3-5.

• However, it is not feasible for systems with a large number of unknowns
since determinant calculation requires many multiplication operations.

• For example, calculating a 20 × 20 determinant with Cramer’s rule
requires ≈ 1020 multiplications!

2 Inverse matrix. Another solution is to use the A−1 matrix, which is
the inverse of the A matrix.

• Multiplying both sides of the equation A~x = ~b by A−1 and considering
that A−1A = 1,

A−1A~x = A−1~b

A−1A
︸ ︷︷ ︸

1

~x = A−1~b

~x = A−1~b

• However, this approach is also not reasonable since calculating matrix
inverses requires a large number of operations.

6.3.1 Gaussian Elimination

• Therefore, adequate methods should be used in linear equa-
tion system solutions such as without calculating determinant
or inverse matrix.

• Two of the most useful methods are Gaussian elimination and L-U
decomposition.

• Elimination Methods. While it may be satisfactory for hand computa-
tions with small systems, it is inadequate for a large system (numbers
may getting bigger!).

• The method that is called Gaussian elimination avoids this by sub-
tracting ai1/a11 times the first equation from the ith equation to make
the transformed numbers in the first column equal to zero.

• We do similarly for the rest of the columns.
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• Observe that zeros may be created in the diagonal positions even if
they are not present in the original matrix of coefficients.

• A useful strategy to avoid (if possible) such zero divisors in the diagonal
positions is to rearrange the equations so as to put the coefficient of largest
magnitude on the diagonal at each step.

• This is called pivoting.

• Generalization. Let the system of equations with N unknowns be given
as:

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
an1x1 + an2x2 + . . .+ annxn = bn

– First Stage. Let a11 6= 0 (If not, pivoting), then multiply the 1st

equation by (a2/a11)) and subtract it from the 2nd equation.

– Next, again multiply the 1st equation by (a31/a11) and subtract
from the 3rd equation.

– Repeat this procedure up to the nth equation.

• As a result, the variable x1 is eliminated in the other equations and the
new system of equations becomes:

a11x1 + a12x2 + . . .+ a1nxn = b1
(

a22 −
a21
a11

a12

)

x2 + . . .+

(

a2n −
a21
a11

a1n

)

xn = b2 −
a21
a11

b1
(

a32 −
a31
a11

a13

)

x2 + . . .+

(

a3n −
a31
a11

a1n

)

xn = b3 −
a31
a11

b1

...
(

an2 −
an1
a11

a1n

)

x2 + . . . +

(

ann −
ann
a11

a1n

)

xn = bn −
an1
a11

b1

• Notice that in this new system of equations at first stage, the coeffi-
cient of the jth term in the ith row and the constant bi are as follows:

a
(1)
ij = aij −

ai1
a11

a1j (i, j = 2, . . . , n)

b
(1)
i = bi −

ai1
a11

bi (i = 2, . . . , n)
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• Next, let a
(1)
22 6= 0 (If not, pivoting) in this new system of equations,

then multiply the 2nd equation by (a
(1)
32 /a

(1)
22 )) and subtract it from the

3rd equation.

• Repeat this procedure up to equation n as n − 1 times to obtain the
upper-triangular form:

a11x1 + a12x2 + a13x3 + . . . + a1nxn = b1

a
(1)
22 x2 + a

(1)
23 x3 + . . . + a

(1)
2n xn = b

(1)
2

a
(2)
33 x3 + . . . + a

(2)
3n xn = b

(2)
3

...

a(n−1)
nn xn = b(n−1)

n

• As seen, the number of unknowns decreases by one in the 2nd and
other equations as 1st stage, decreases once again in the 3rd and other
equations as 2nd stage and so on. In (N − 1)th stage, a single unknown
is obtained.

• Then, the jth coefficient of the ith equation as kth stage is as follows:

a
(k)
ij = a

(k−1)
ij −

a
(k−1)
ik a

(k−1)
kj

a
(k−1)
kk

(i, j = 1, . . . , n) (6.1)

b
(k)
i = b

(k−1)
i − a

(k−1)
ik b

(k−1)
k

a
(k−1)
kk

(i = 1, . . . , n) (6.2)

• After reaching to the upper-triangular form, the solution is almost read-
ily obtained.

• From the last equation in the upper-triangular form:

xn = b(n−1)
n /a(n−1)

nn

• All other unknowns are obtained consequently by backward-substitution.
The general expression would be:

xk =
1

a
(k−1)
kk



b
(k−1)
k −

n∑

j=k+1

a
(k−1)
kj xj



 (k = n− 1, . . . , 1) (6.3)
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• Repeat the example of the previous section,





4 −2 1 15
−3 −1 4 8
1 −1 3 13



 , R2 − (−3/4)R1 →
R3 − (1/4)R1 →





4 −2 1 15
0 −2.5 4.75 19.25
0 −0.5 2.75 9.25



 ,

R3 − (−0.5/− 2.5)R2 →





4 −2 1 15
0 −2.5 4.75 19.25
0 0 1.8 5.40





• The method we have just illustrated is called Gaussian elimination.

• In this example, no pivoting was required to make the largest co-
efficients be on the diagonal.

• Back-substitution, gives us x3 = 3, x2 = −2, x1 = 2

Example py-file: Show steps in Gaussian elimination and back substitution
without pivoting. myGEshow.py

Figure 6.1: Steps in Gaussian elimination and back substitution without
pivoting.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myGEshow.py


116 CHAPTER 6. LINEAR ALGEBRA AND MATRIX COMPUTING

• if we had stored the ratio of coefficients in place of zero (we show these
in parentheses), our final form would have been





4 −2 1 15
(−0.75) −2.5 4.75 19.25
(0.25) (0.20) 1.8 5.40





• The original matrix can be written as the product:

A =





1 0 0
−0.75 1 0
0.25 0.20 1





︸ ︷︷ ︸

L

∗





4 −2 1
0 −2.5 4.75
0 0 1.8





︸ ︷︷ ︸

U

• This procedure is called a LU-decomposition of A. (A = L ∗ U)

• We have det(A) = det(U) = (4) ∗ (−2.5) ∗ (1.8) = −18

• When there are m row interchanges

det(A) = (−1)m ∗ u11 ∗ . . . ∗ unn

Kirchhoff’s Rules

Find currents at each loop by using Kirchhoff’s Junction & Loop Rules:

3 unkowns, 3 equations

(R1 +R2 +R4)i1 −R2i2 −R4i3 = 0
−R2i1 + (R2 +R3 +R6)i2 −R3i3 = V1
−R4i1 −R3i2 + (R3 +R4 +R5)i3 = V2

With the values of R1 = R2 = 1 Ω, R3 = R4 = R5 = R6 = 2 Ω and
V1 = 1 V , V2 = 5 V . System of linear equations becomes as follows:

4i1 − i2 − 2i3 = 0
−i1 + 5i2 − 2i3 = 1
−2i1 − 2i2 + 6i3 = 5
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Example py-file: Kirchhoff’s Rules in Gaussian elimination & back substi-
tution. No pivoting. myGEshow Kirchhoff.py

Figure 6.2: Kirchhoff’s Rules in Gaussian elimination & back substitution.
No pivoting.

Example. Solve the following system of equations using Gaussian elim-
ination.

2x2 +x4 = 0
2x1 +2x2 +3x3 +2x4 = −2
4x1 −3x2 x4 = −7
6x1 +x2 −6x3 −5x4 = 6

In addition, obtain the determinant of the coefficient matrix and the LU
decomposition of this matrix.

1 The augmented coefficient matrix is









0 2 0 1 0
2 2 3 2 −2
4 −3 0 1 −7
6 1 −6 −5 6









2 We cannot permit a zero in the a11 position because that element is
the pivot in reducing the first column.

3 We could interchange the first row with any of the other rows to avoid
a zero divisor, but interchanging the first and fourth rows is our best
choice. This gives

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myGEshow_Kirchhoff.py
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







6 1 −6 −5 6
2 2 3 2 −2
4 −3 0 1 −7
0 2 0 1 0

















6 1 −6 −5 6
0 1.6667 5 3.6667 −4
0 −3.6667 4 4.3333 −11
0 2 0 1 0









4 We again interchange before reducing the second column, not because
we have a zero divisor, but because we want to preserve accuracy.
Interchanging the second and third rows puts the element of largest
magnitude on the diagonal.









6 1 −6 −5 6
0 −3.6667 4 4.3333 −11
0 1.6667 5 3.6667 −4
0 2 0 1 0









5 Now we reduce in the second column









6 1 −6 −5 6
0 −3.6667 4 4.3333 −11
0 0 6.8182 5.6364 −9.0001
0 0 2.1818 3.3636 −5.9999









6 No interchange is indicated in the third column. Reducing, we get









6 1 −6 −5 6
0 −3.6667 4 4.3333 −11
0 0 6.8182 5.6364 −9.0001
0 0 0 1.5600 −3.1199









7 Back-substitution gives

x1 = −0.50000, x2 = 1.0000, x3 = 0.33325, x4 = −1.9999.

• The correct (exact) answers are x1 = −1/2, x2 = 1, x3 = 1/3, x4 =
−2.

• In this calculation we have carried five significant figures and rounded each calculation.

• Even so, we do not have five-digit accuracy in the answers. The dis-
crepancy is due to round off.

• Example py-file: Show steps in Gauss elimination and back substi-
tution with pivoting. myGEPivShow.py

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myGEPivShow.py
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Figure 6.3: Steps in Gaussian elimination and back substitution with pivot-
ing.
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Continue with the previous example.

• If we had replaced the zeros below the main diagonal with the ratio of
coefficients at each step, the resulting augmented matrix would be







6 1 −6 −5 6
(0.66667) −3.6667 4 4.3333 −11
(0.33333) (−0.45454) 6.8182 5.6364 −9.0001

(0.0) (−0.54545) (0.32) 1.5600 −3.1199







• This gives a LU decomposition as









1 0 0 0
0.66667 1 0 0
0.33333 −0.45454 1 0

0.0 −0.54545 0.32 1

















6 1 −6 −5
0 −3.6667 4 4.3333
0 0 6.8182 5.6364
0 0 0 1.5600









• It should be noted that the product of these matrices produces a
permutation of the original matrix, call it A′, where

A′ =









6 1 −6 −5
4 −3 0 1
2 2 3 2
0 2 0 1









• The determinant of the original matrix of coefficients can be easily com-
puted according to the formula

det(A) = (−1)2 ∗ (6) ∗ (−3.6667) ∗ (6.8182) ∗ (1.5600) = −234.0028

which is close to the exact solution: -234.

• The exponent 2 is required, because there were two row interchanges
in solving this system.

• To summarize

1. The solution to the four equations

2. The determinant of the coefficient matrix

3. A LU decomposition of the matrix, A′, which is just the original
matrix, A, after we have interchanged its rows.

• ”These” are readily obtained after solving the system by Gaus-
sian elimination method.

Example py-files: LU factorization without pivoting. myLUshow.py LU
factorization with pivoting. myLUPivShow.py

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myLUshow.py
http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myLUPivShow.py
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Figure 6.4: (a) Without Pivoting (b) With Pivoting.

6.3.2 Using the LU Matrix for Multiple Right-Hand

Sides

• Many physical situations are modelled with a large set of linear equa-
tions.

• The equations will depend on the geometry and certain external factors
that will determine the right-hand sides.

• For example, in electrical circuit problems, the resistors at the circuit
(A matrix) are unchanged with the varying applied voltages (b vector).
(e.g., Kirchhoff’s Rule)

• If we want the solution for many different values of these right-
hand sides,

– it is inefficient to solve the system from the start with each one of
the right-hand-side values.

– Using the LU equivalent of the coefficient matrix is preferred.

• Suppose we have solved the system Ax = b by Gaussian elimination.

• We now know the LU equivalent of A: A = L ∗ U

• We can write
Ax = b
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LUx = b

Ly = b

• e.g., Solve Ax = b, where we already have its L and U matrices:









1 0 0 0
0.66667 1 0 0
0.33333 −0.45454 1 0

0.0 −0.54545 0.32 1









∗









6 1 −6 −5
0 −3.6667 4 4.3333
0 0 6.8182 5.6364
0 0 0 1.5600









• Suppose that the b-vector is [6 − 7 − 2 0]T .

• We first get y(= Ux) from Ly = b by forward substitution:

y = [6 − 11 − 9 − 3.12]T

• and use it to compute x from Ux = y:

x = [−0.5 1 0.3333 − 2]T .

• Exercise: b = [1 4 −3 1]T =⇒ x = [0.0128 −0.5897 −2.0684 2.1795]T

Phyton Code:

1 import numpy as np
2 from sc ipy . l i n a l g import lu
3 A = np . array ( [ [ 0 . 0 , 2 . 0 , 0 . 0 , 1 . 0 ] , [ 2 . 0 , 2 . 0 , 3 . 0 , 2 . 0 ] , [ 4 . 0 , −3.0 , 0 . 0 , 1 . 0 ] , [ 6 . 0 ,

1 . 0 , −6.0 , −5 . 0 ] ] )
4 P, L , U = lu (A)
5 pr i n t ( ”SciPy LU−decomposi t ion : P − Permutation Matrix \n” , P)
6 p r i n t ( ”SciPy LU−decomposi t ion : L − Lower Triangular with uni t d i agona l e l ements \n” , L)
7 p r i n t ( ”SciPy LU−decomposi t ion : U − Upper Triangular \n” , U)
8 def forward (L , b) :
9 y=np . ze ros ( np . shape (b) , dtype=f l o a t )

10 f o r i in range ( l en (b ) ) :
11 y [ i ]=np . copy (b [ i ] )
12 f o r j in range ( i ) :
13 y [ i ]=y [ i ]−(L [ i , j ]∗ y [ j ] )
14 y [ i ] = y [ i ] /L [ i , i ]
15 r e tu rn y
16 b = np . array ( [ [ 6 . 0 ] , [ −7 . 0 ] , [ −2 . 0 ] , [ 0 . 0 ] ] )
17 # b = np . array ( [ [ 1 . 0 ] , [ 4 . 0 ] , [ −3 . 0 ] , [ 1 . 0 ] ] )
18 y=forward (L , b )
19 p r i n t ( ”y vector from Ly=b by forward s ub s t i t u t i o n : ” , np . t ran spose (y ) )
20 def backward (U, y ) :
21 x=np . ze ros ( np . shape ( y) , dtype=f l o a t )
22 ylen=l en ( y)−1
23 x [ y l en ] =y [ y len ] /U[ ylen , y l en ] # Print the l a s t s tage x value
24 f o r i in range ( ylen −1,−1,−1) :
25 x [ i ]=np . copy (y [ i ] )
26 f o r j in range ( ylen , i ,−1) :
27 x [ i ]=x [ i ]−(U[ i , j ]∗ x [ j ] )
28 x [ i ] = x [ i ] /U[ i , i ]
29 r e tu rn x
30 x=backward (U, y)
31 p r i n t ( ”x vector from Ux=y by backward sub s t i t u t i on : ” , np . t ran spose ( x ) )

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/LUmultipleRH.py
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6.4 The Inverse of a Matrix

• Division by a matrix is not defined but the equivalent is obtained from
the inverse of the matrix.

• If the product of two square matrices, A ∗ B, equals to the identity
matrix, I, B is said to be the inverse of A (and also A is the inverse of
B).

• By multiplying each element with its cofactor to find the inverse of the
matrix is not useful since N3 multiplication and division are required
for an N-dimensional matrix.

• To find the inverse of matrix A, use an elimination method.

• We augment the A matrix with the identity matrix of the same size
and solve. The solution is A−1. Example;

A =





1 −1 2
3 0 1
1 0 2



→





1 −1 2 1 0 0
3 0 1 0 1 0
1 0 2 0 0 1





∥
∥
∥
∥
∥
∥

R2 − (3/1)R1 →
R3 − (1/1)R1 →

∥
∥
∥
∥
∥
∥





1 −1 2 1 0 0
0 3 −5 −3 1 0
0 1 0 −1 0 1









1 −1 2 1 0 0
0 1 0 −1 0 1
0 3 −5 −3 1 0





︸ ︷︷ ︸

Row Interchange

∥

∥

∥

∥

∥

∥ R3 − (3/1)R2 →

∥

∥

∥

∥

∥

∥

• Contd.





1 −1 2 1 0 0
0 1 0 −1 0 1
0 0 −5 0 1 −3





∥
∥
∥
∥
∥
∥ R3/(−5)→

∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥
∥

R1 − (2/1)R3 →
∥
∥
∥
∥
∥
∥





1 −1 0 1 2/5 −6/5
0 1 0 −1 0 1
0 0 1 0 −1/5 3/5





∥
∥
∥
∥
∥
∥

R2 − (1/− 1)R1 →

∥
∥
∥
∥
∥
∥
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



1 0 0 0 2/5 −1/5
0 1 0 −1 0 1
0 0 1 0 −1/5 3/5





• We confirm the fact that we have found the inverse by multiplication:





1 −1 2
3 0 1
1 0 2





︸ ︷︷ ︸

A

∗





0 2/5 −1/5
−1 0 1
0 −1/5 3/5





︸ ︷︷ ︸

A−1

=





1 0 0
0 1 0
0 0 1





︸ ︷︷ ︸

I

• It is more efficient to use Gaussian elimination. We show only the final
triangular matrix; we used pivoting:





1 −1 2 1 0 0
3 0 1 0 1 0
1 0 2 0 0 1



 →





3 0 1 0 1 0
(0.333) −1 1.667 1 −0.333 0
(0.333) (0) 1.667 0 −0.333 1





• After doing the back-substitutions, we get





3 0 1 0 0.4 −0.2
(0.333) −1 1.667 −1 0 1
(0.333) (0) 1.667 0 −0.2 0.6





• If we have the inverse of a matrix, we can use it to solve a set of equa-
tions, Ax = b,

• because multiplying by A−1 gives the answer (x):

A−1Ax = A−1b
x = A−1b

• Phyton Code:

1 import numpy as np
2 A = np . array ( [ [ 1 . 0 , − 1 . 0 , 2 . 0 ] , [ 3 . 0 , 0 . 0 , 1 . 0 ] , [ 1 . 0 , 0 . 0 , 2 . 0 ] ] )
3 b = np . array ( [ [ 1 . 0 , 0 . 0 , 0 . 0 ] , [ 0 . 0 , 1 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 , 1 . 0 ] ] )
4 x = np . l i n a l g . s o l v e (A, b)
5 pr i n t ( ”NumPy − Inve r s e Matrix : \n” , x )
6 from sc ipy import l i n a l g
7 x=l i n a l g . s o l v e (A, b)
8 pr i n t ( ”SciPy − Inve r s e Matrix : \n” , x )

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/InverseMatrix.py
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6.5 Eigenvalues and Eigenvectors of a Matrix

• For a square matrix A,

A~u = λ~u

~u vectors satisfying this condition are called the eigenvectors of the
matrix A, and the lambda scalar coefficients are called the eigenvalues.

• An N × N matrix has N different eigenvectors. However, the corre-
sponding lambda eigenvalues for these eigenvectors may not be differ-
ent.

• State of a system can be expressed in terms of the eigenvec-
tors of the system of linear equations and in terms of their
eigenvalues for the measured quantities.

• Create an U matrix by arranging eigenvectors side by side:

U =

~u1 ~u2 ... ~un
︷ ︸︸ ︷






u11 u12 . . . u1n
u21 u22 . . . u2n

...
...

...
...

un1 un2 . . . unn








• When we multiply the matrix A with the matrix U and its inverse
matrix U−1 from both sides, we get

A′ = U−1AU =








λ1 0 . . . 0
0 λ2 0
...

...
...

...
0 0 . . . λn








• That is, the similarity transformation with the eigenvectors matrix
makes A as being diagonalized and the elements on the diagonal be-
come the eigenvalues of A.

• In principle, the eigenvalue problem is easy to solve. So-called charac-
teristic equation is to be solved:

det|A− λI| = 0
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• After finding the roots of this n-degree polynomial equation, the corre-
sponding eigenvectors can be obtained by solving the following system
of equations:

(A− λI)~v = 0

• Since this method requires determinant calculation, it is not
useful for large dimensional matrices.

6.5.1 Normal Modes of Coupled Oscillation

• Consider the coupled oscillations problem of two equal masses m con-
nected by springs of constant k (see Figure).

Figure 6.5: Mass-Spring system.

• The differential equation provided by each mass is written using New-
ton’s law of motion as follows

k(x2 − x1)− kx1 = m
d2x1
dt2

−kx2 − k(x2 − x1) = m
d2x2
dt2

• In this system, the frequencies (ω) that both masses oscillate as in
common are called normal oscillation modes.

• To find the normal mode frequencies, try a solution for both unknowns
as:

x1 = x10cosωt & x2 = x20cosωt

• Substitute these solutions into the system of linear equations above and
simplify by removing cosωt,

2k

m
x10 −

k

m
x20 = ω2x10

− k
m
x10 +

2k

m
x20 = ω2x20
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• This system of equations can be written as the product of a matrix and
a column vector as follows (replace ω2 by λ ):

[
2k/m −k/m
−k/m 2k/m

] [
x10
x20

]

= λ

[
x10
x20

]

• This structure can also be written as:
[
2k/m− λ −k/m
−k/m 2k/m− λ

] [
x10
x20

]

= 0

• The determinant must be zero for this linear system of equations to
have a unique solution:

det

∣
∣
∣
∣

2k/m− λ −k/m
−k/m 2k/m− λ

∣
∣
∣
∣
= 0

−→ (2k/m− λ)2 − k2/m2 = 0

• There are two oscillation frequencies (ω) and their corresponding am-
plitudes ~x0 = (x10, x20):

λ1 = k/m −→ ~x0,1 =

(
0.71
0.71

)

λ2 = 3k/m −→ ~x0,2 =

(
−0.71
0.71

)

• The first of these solutions represents the mode in which the two masses
oscillate in the same phase (−− > −− >)

• and the second represents the mode in which they oscillate in the op-
posite phase (−− >< −−).

Phyton Code:

1 pr i n t ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗SymPy So lut i on f o r Cha r a c t e r i s t i c Equation : ” )
2 from sympy import Matrix , symbols , ppr int , f a c t o r
3 M = Matrix ( [ [ 2 , −1] , [−1 , 2 ] ] )
4 lamda = symbols ( ’ lamda ’ )
5 poly = M. charpoly ( lamda ) # Get the c h a r a c t e r i s t i c polynomial
6 pr i n t ( poly ) # Pr int ing polynomial
7 ppr int ( f a c t o r ( poly . as expr ( ) ) ) # Pr ints expr in pr et ty form .
8 pr i n t ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗NumPy So lut i on f o r Cha r a c t e r i s t i c Equation : ” )
9 import numpy as np

10 A = np . array ( [ [ 2 , −1] , [−1 , 2 ] ] )
11 pr i n t (np . poly (A) )
12 pr i n t ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗NumPy So lut i on f o r Eigenvalues and Eigenvector s : ” )

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/CharacteristicEquation.py
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13 w, v=np . l i n a l g . e i g (A)
14 pr i n t ( ’ Eigenvalue : ’ , w)
15 pr i n t ( ’ Eigenvector1 : ’ , v [ 0 ] )
16 pr i n t ( ’ Eigenvector2 : ’ , v [ 1 ] )
17 pr i n t ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ SciPy So lut i on f o r Eigenvalues and Eigenvector s : ” )
18 import s c ipy . l i n a l g as l a
19 w, v = l a . e i g (A)
20 pr i n t ( ’ Eigenvalue : ’ , w)
21 pr i n t ( ’ Eigenvector1 : ’ , v [ 0 ] )
22 pr i n t ( ’ Eigenvector2 : ’ , v [ 1 ] )

6.6 Iterative Methods

• Gaussian elimination and its variants are called direct methods.

• An entirely different way to solve many systems is through iteration.

• In this way, we start with an initial estimate of the solution vector and
proceed to refine this estimate.

• An n× n matrix A is diagonally dominant if and only if;

|aii| >
n∑

j=1,j 6=i

|aij|, i = 1, 2, . . . , n

• Example. Given matrix & After reordering;

6x1 − 2x2 + x3 = 11

x1 + 2x2 − 5x3 = −1
−2x1 + 7x2 + 2x3 = 5

&
6x1 − 2x2 + x3 = 11

−2x1 + 7x2 + 2x3 = 5

x1 + 2x2 − 5x3 = −1

• The solution is x1 = 2, x2 = 1, x3 = 1 (for both cases?).

• Before we begin our iterative scheme we must first reorder the equations
so that the coefficient matrix is diagonally dominant.

6.6.1 Jacobi Method

• The iterative methods depend on the rearrangement of the equations
in this manner:

xi =
bi
aii
−

n∑

j=1,j 6=i

aij
aii
xj , i = 1, 2, . . . , n, 7→ x1 =

11

6
−

(−2
6
x2 +

1

6
x3

)

(6.4)
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First Second Third Fourth Fifth Sixth . . . Ninth
x1 0 1.833 2.038 2.085 2.004 1.994 . . . 2.000
x2 0 0.714 1.181 1.053 1.001 0.990 . . . 1.000
x3 0 0.200 0.852 1.080 1.038 1.001 . . . 1.000

Table 6.1: Successive estimates of solution (Jacobi method)

• Each equation now solved for the variables in succession:

x1 = 1.8333 + 0.3333x2 − 0.1667x3
x2 = 0.7143 + 0.2857x1 − 0.2857x3
x3 = 0.2000 + 0.2000x1 + 0.4000x2

• We begin with some initial approximation to the value of the variables.

• Say initial values are; x1 = 0, x2 = 0, x3 = 0. Each component might
be taken equal to zero if no better initial estimates are at hand.

• The new values are substituted in the right-hand sides to generate a
second approximation,

• and the process is repeated until successive values of each of the vari-
ables are sufficiently alike.

• Now, general form

x
(n+1)
1 = 1.8333 + 0.3333x

(n)
2 − 0.1667x

(n)
3

x
(n+1)
2 = 0.7143 + 0.2857x

(n)
1 − 0.2857x

(n)
3

x
(n+1)
3 = 0.2000 + 0.2000x

(n)
1 + 0.4000x

(n)
2

(6.5)

• Starting with an initial vector of x(0) = (0, 0, 0, ), we obtain Table 6.1

• Rewrite in matrix notation; let A = L+D + U ,

Ax = b =⇒





6 −2 1
−2 7 2
1 2 −5









x1
x2
x3



 =





11
5
−1





L =





0 0 0
−2 0 0
1 2 0



 , D =





6 0 0
0 7 0
0 0 −5



 , U =





0 −2 1
0 0 2
0 0 0





Ax = (L+D + U)x = b
Dx = −(L+ U)x+ b
x = −D−1(L+ U)x +D−1b
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• From this we have, identifying x on the left as the new iterate,

x(n+1) = −D−1(L+ U)x(n) +D−1b

• In Eqn. 6.5,

b′ = D−1b =





1.8333
0.7143
0.2000





D−1(L+ U) =





0 −0.3333 0.1667
−0.2857 0 0.2857
−0.2000 −0.4000 0





• This procedure is known as the Jacobi method, also called ”the method
of simultaneous displacements”,

• because each of the equations is simultaneously changed by using the
most recent set of x-values (see Table 6.1).

• Example py-file: The Jacobi approximation to the solution of AX =
B. myJacobi.py

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myJacobi.py
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7.1 Interpolation and Curve Fitting

• Sines, logarithms, and other nonalgebraic functions from tables.

• Those tables had values of the function at uniformly spaced values of
the argument.

• Most often interpolated linearly:
The value for x = 0.125 was computed as at the halfway point between
x = 0.12 and x = 0.13.

• If the function does not vary too rapidly and the tabulated points are
close enough together, this linearly estimated value would be accurate
enough.

• As a conclusion: Data can be interpolated to estimate values.

• Interpolating Polynomials: Describes a straightforward but compu-
tationally inconvenient way to fit a polynomial to a set of data points
so that an interpolated value can be computed.

• Divided Differences: These provide a more efficient way to construct
an interpolating polynomial, one that allows one to readily change the
degree of the polynomial. If the data are at evenly spaced x-values,
there is some simplification.

• Spline Curves: Using special polynomials, splines, one can fit polyno-
mials to data more accurately than with an interpolating polynomial.
At the expense of added computational effort, some important prob-
lems that one has with interpolating polynomials is overcome.

• Least-Squares Approximations: are methods by which polynomials
and other functions can be fitted to data that are subject to errors likely
in experiments. These approximations are widely used to analyze ex-
perimental observations

7.1.1 Interpolating Polynomials

• We have a table of x and y-values.

• Two entries in this table might be
y = 2.36 at x = 0.41 and
y = 3.11 at x = 0.52.
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• If we desire an estimate for y at x = 0.43, we would use the two table
values for that estimate.

• Why not interpolate as if y(x) was linear between the two x-values
(similar triangles)?

y(0.43) ≈ 2.36+
2

11
(3.11−2.36) = 2.50

∣
∣
∣
∣

where

2

11
=⇒ 0.43− 0.41

0.52− 0.41

• We will be most interested in techniques adapted to situations where
the data are far from linear.

• The basic principle is to fit a polynomial curve to the data.

Interpolation versus Curve Fitting

• Given a set of data
yi = f(xi) i = 1, . . . , n
obtained from an experiment or from some calculation.

• In curve fitting, the approximating function passes near the data
points, but (usually) not exactly through them. There is some uncertainty
in the data.

• In interpolation, process inherently assumes that the data have
no uncertainty. The interpolation function passes exactly through
each of the known data points.

Figure shows a plot of some
hypothetical experimental
data, a curve fit function and
interpolating with piecewise-
linear function.
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Fitting a Polynomial to Data

• Interpolation involves constructing and then evaluating an interpolating
function.

• interpolant, y = F (x), determined by requiring that it pass through
the known data (xi, yi).

• In its most general form, interpolation involves determining the co-
efficients a1, a2, . . . , an

• in the linear combination of n basis functions, Φ(x), that constitute
the interpolant

F (x) = a1Φ1(x) + a2Φ2(x) + . . .+ anΦn(x)

– such that F (x) = yi for i = 1, . . . , n. The basis function may be
polynomial

F (x) = a1 + a2x+ a3x
2 + . . .+ anx

n−1

– or trigonometric

F (x) = a1 + a2e
ix + a3e

i2x + . . .+ ane
i(n−1)x

– or some other suitable set of functions.

Polynomials are often used for interpolation because they are easy to evaluate
and easy to manipulate analytically.

Table 7.1: Fitting a
polynomial to data.

x f(x)

3.2 22.0
2.7 17.8
1.0 14.2
4.8 38.3
5.6 51.7

• Suppose that we have a data set.

• First, we need to select the points that deter-
mine our polynomial.

• The maximum degree of the polynomial is al-
ways one less than the number of points.

• Suppose we choose the first four points. If the

cubic is ax3 + bx2 + cx+ d ,
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• We can write four equations involving the unknown coefficients a, b, c,
and d;

when x = 3.2⇒ a(3.2)3 + b(3.2)2 + c(3.2) + d = 22.0
when x = 2.7⇒ a(2.7)3 + b(2.7)2 + c(2.7) + d = 17.8
when x = 1.0⇒ a(1.0)3 + b(1.0)2 + c(1.0) + d = 14.2
when x = 4.8⇒ a(4.8)3 + b(4.8)2 + c(4.8) + d = 38.3

• Solving these equations gives

a = −0.5275
b = 6.4952
c = −16.1177
d = 24.3499

• and our polynomial is

−0.5275x3 + 6.4952x2 − 16.1177x+ 24.3499

• At x = 3.0, the estimated value is 20.212.

• if we want a new polynomial that is also made to fit at the point
(5.6, 51.7) ?

• or if we want to see what difference it would make to use a quadratic
instead of a cubic?

• Example py-file: Polynomial Interpolation. Gaussian elimination &
back substitution. No pivoting. myGEshow interpolation.py

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myGEshow_interpolation.py
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
x-data

15

20

25

30

35
y-

da
ta

Fitting a Polynomial to Data
Known Data
Interpolation

Figure 7.1: Polynomial Interpolation.

Table 7.2: Interpola-
tion of gasoline prices.

year price
1986 133.5
1988 132.2
1990 138.7
1992 141.5
1994 137.6
1996 144.2

• Another example;

• Use the polynomial order 5, why?

P = a1 + a2y + a3y
2 + a4y

3 + a5y
4 + a6y

5

• Make a guess about the prices of gasoline at year
of 1991 (2011).

• Example py-file: Interpolation of gasoline prices. Gaussian elimina-
tion & back substitution. No pivoting. myGEshow gasoline.py

– Now, try with the shifted dates (Xdata=Xdata-np.mean(Xdata)).

– Make the necessary corrections for the array A.

– What differs in the plot and why?

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myGEshow_gasoline.py
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1986 1987 1988 1989 1990 1991 1992
year

132

134

136

138

140

142

ga
so

lin
e 

pr
ice

, (
ce

nt
s)

Fitting a Polynomial to Data - Gasoline
Known Data
Interpolation

Figure 7.2: Polynomial Interpolation - Gasoline Case.

Lagrangian Polynomials

• Straightforward approach-the Lagrangian polynomial.

• The simplest way to exhibit the existence of a polynomial for interpo-
lation with unevenly spaced data.

– Linear interpolation

– Quadratic interpolation

– Cubic interpolation

• Lagrange polynomials have two important advantages over interpolat-
ing polynomials.

1. the construction of the interpolating polynomials does not require
the solution of a system of equations (such as Gaussian elimina-
tion).

2. the evaluation of the Lagrange polynomials is much less suscepti-
ble to roundoff.

• Linear interpolation

P1(x) = c1x+ c2
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• put the values
y1 = c1x1 + c2
y2 = c1x2 + c2

• then

c1 =
y2 − y1
x2 − x1

c2 =
y1x2 − y2x1
x2 − x1

• substituting back and rearranging

P1(x) = y1
x− x2
x1 − x2

+ y2
x− x1
x2 − x1

• redefining as

P1(x) = y1L1(x) + y2L2(x)

• where Ls are the first-degree Lagrange interpolating polynomials.

• Quadratic interpolation

P2(x) = y1L1(x) + y2L2(x) + y3L3(x)

where Ls are not the same with the previous Ls!

L1(x) =
(x− x2)(x− x3)
(x1 − x2)(x1 − x3)

, L2(x) =
(x− x1)(x− x3)
(x2 − x1)(x2 − x3)

,

L3(x) =
(x− x1)(x− x2)
(x3 − x1)(x3 − x2)

.

• Cubic interpolation

• Suppose we have a table of data with four pairs of x- and f(x)-values,
with xi indexed by variable i:

i x f(x)
0 x0 f0
1 x1 f1
2 x2 f2
3 x3 f3

Through these four data pairs
we can pass a cubic.
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• The Lagrangian form is

P3(x) =
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
f0 +

(x− x0)(x− x2)(x− x3)
(x1 − x0)(x1 − x2)(x1 − x3)

f1

+
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
f2 +

(x− x0)(x− x1)(x− x2)
(x3 − x0)(x3 − x1)(x3 − x2)

f3

• This equation is made up of four terms, each of which is a cubic in x;
hence the sum is a cubic.

• The pattern of each term is to form the numerator as a product of
linear factors of the form (x− xi), omitting one xi in each term.

– The omitted value being used to form the denominator by replac-
ing x in each of the numerator factors.

– In each term, we multiply by the fi.

– It will have n + 1 terms when the degree is n.

• Fit a cubic through the first four points of the preceding Table 7.1 (first
four points) and use it to find the interpolated value for x = 3.0.

Table 7.3: Fitting a polyno-
mial to data.

x f(x)

3.2 22.0
2.7 17.8
1.0 14.2
4.8 38.3
5.6 51.7

P3(x) =
(x− 2.7)(x − 1.0)(x − 4.8)

(3.2− 2.7)(3.2 − 1.0)(3.2 − 4.8)
22.0+

(x− 3.2)(x − 1.0)(x − 4.8)

(2.7 − 3.2)(2.7 − 1.0)(2.7 − 4.8)
17.8+

(x− 3.2)(x − 2.7)(x − 4.8)

(1.0 − 3.2)(1.0 − 2.7)(1.0 − 4.8)
14.2+

(x− 3.2)(x − 2.7)(x − 1.0)

(4.8 − 3.2)(4.8 − 2.7)(4.8 − 1.0)
38.3

• Carrying out the arithmetic, P3(3.0) = 20.21.

• In general

Pn−1(x) = y1L1(x) + y2L2(x) + . . .+ ynLn(x) =

n∑

j=1

yjLj(x)

where Lj(x) =

n∏

k=1,k 6=j

x− xk
xj − xk
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Example py-file: Interpolation of gasoline prices. Lagrange Interpolation.
myLagInt gasoline.py

1986 1987 1988 1989 1990 1991 1992
year

132

134

136

138

140

142

ga
so

lin
e 
pr

ice
, (
ce

nt
s)

Lagrange Interpolation - Gasoline
Known Data
MyLagInt
SciPy

Figure 7.3: Lagrange Polynomial Interpolation - Gasoline Case.

• Error of Interpolation; When we fit a polynomial Pn(x) to some
data points, it will pass exactly through those points,

– but between those points Pn(x) will not be precisely the same as
the function f(x) that generated the points (unless the function
is that polynomial).

– How much is Pn(x) different from f(x)?

– How large is the error of Pn(x)?

• It is most important that you never fit a polynomial of a degree higher
than 4 or 5 to a set of points.

• If you need to fit to a set of more than six points, be sure to break up the
set into subsets and fit separate polynomials to these.

• You cannot fit a function that is discontinuous or one whose derivative
is discontinuous with a polynomial.

Neville’s Method

• The trouble with the standard Lagrangian polynomial technique is that
we do not know which degree of polynomial to use.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myLagInt_gasoline.py
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– If the degree is too low, the interpolating polynomial does not
give good estimates of f(x).

– If the degree is too high, undesirable oscillations in polyno-
mial values can occur.

• Neville’s method can overcome this difficulty.

– It computes the interpolated value with polynomials of successively
higher degree,

– stopping when the successive values are close together.

• The successive approximations are actually computed by linear inter-
polation from the previous values.

• The Lagrange formula for linear interpolation to get f(x) from two
data pairs, (x1, f1) and (x2, f2), is

f(x) =
(x− x2)
(x1 − x2)

f1 +
(x− x1)
(x2 − x1)

f2

• Neville’s method begins by arranging the given data pairs, (xi, fi).

• Such that the successive values are in order of the closeness of the xi
to x.

• Suppose we are given
these data

x f(x)
10.1 0.17537
22.2 0.37784
32.0 0.52992
41.6 0.66393
50.5 0.63608

and we want to interpolate for
x = 27.5.

We first rearrange the data pairs in order of
closeness to x = 27.5:

i —x-xi— xi fi=Pi0

0 4.5 32.0 0.52992
1 5.3 22.2 0.37784
2 14.1 41.6 0.66393
3 17.4 10.1 0.17537
4 23.0 50.5 0.63608

• Neville’s method begins by renaming the fi as Pi0.

• We build a table
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i x Pi0 Pi1 Pi2 Pi3 Pi4

0 32.0 0.52992 0.46009 0.46200 0.46174 0.45754
1 22.2 0.37784 0.45600 0.46071 0.47901
2 41.6 0.66393 0.44524 0.55843
3 10.1 0.17537 0.37379
4 50.5 0.63608

• Thus, the value of P01 is computed by

f(x) =
(27.5 − x1)
(x0 − x1)

∗ 0.52992 + (27.5 − x0)
(x1 − x0)

∗ 0.37784

substituting all;

P01 =
(27.5 − 22.2)

(32.0 − 22.2)
∗ 0.52992 + (27.5 − 32.0)

(22.2 − 32.0)
∗ 0.37784 = 0.46009

• Once we have the column of Pi1’s, we compute the next column.

P22 =
(27.5 − 41.6) ∗ 0.37379 + (50.5 − 27.5) ∗ 0.44524

50.5 − 41.6
= 0.55843

• The remaining columns are computed similarly.

• The general formula for computing entries into the table is

pi,j =
(x− xi) ∗ Pi+1,j−1 + (xi+j − x) ∗ Pi,j−1

xi+j − xi

• The top line of the table represents Lagrangian interpolates at x =
27.5 using polynomials of degree equal to the second subscript of the
P ′s.

i x Pi0 Pi1 Pi2 Pi3 Pi4

0.52992 0.46009 0.46200 0.46174 0.45754

• The preceding data are for sines of angles in degrees and the correct
value for x = 27.5 is 0.46175.
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7.2 Divided Differences

• There are two disadvantages to using the Lagrangian polynomial or
Neville’s method for interpolation.

1. It involves more arithmetic operations than does the divided-difference
method.

2. More importantly, if we desire to add or subtract a point from
the set used to construct the polynomial, we essentially have to
start over in the computations.

• Both the Lagrangian polynomials and Neville’s method also must re-
peat all of the arithmetic if we must interpolate at a new x-value.

• The divided-difference method avoids all of this computation.

• Actually, we will not get a polynomial different from that obtained by
Lagrange’s technique.

• Every nth-degree polynomial that passes through the same n + 1
points is identical.

• Only the way that the polynomial is expressed is different.

The function, f(x), is known at several values
for x:

x0 f0
x1 f1
x2 f2
x3 f3

• We do not assume that the x’s are evenly spaced or even that the values
are arranged in any particular order.

• Consider the nth-degree polynomial written as:

Pn(x) = a0 + (x − x0)a1 + (x− x0)(x − x1)a2 + (x− x0)(x− x1) . . . (x− xn−1)an

• If we chose the ai’s so that Pn(x) = f(x) at the n + 1 known points,
then Pn(x) is an interpolating polynomial.

• The ai’s are readily determined by using what are called the divided differences of the tabulated
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• A special standard notation for divided differences is

f [x0, x1] =
f1 − f0
x1 − x0

called the first divided difference between x0 and x1.

• And, f [x0] = f0 = f(x0) (zero-order difference).

f [xs] = fs

• Second- and higher-order differences are defined in terms of lower-order differences.

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

• For n-terms,

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , fn]− f [x0, x1, . . . , fn−1]

xn − x0

Using the standard notation, a divided-difference table is shown in symbolic
form in Table 7.4.

xi fi f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, xi+1, xi+2, xi+3]
x0 f0 f [x0, x1] f [x0, x1, x2] f [x0, x1, x2, x3]
x1 f1 f [x1, x2] f [x1, x2, x3] f [x1, x2, x3, x4]
x2 f2 f [x2, x3] f [x2, x3, x4]
x3 f3 f [x3, x4]

Table 7.4: Divided-difference table in symbolic form.

• Table 7.10 shows specific numerical values.

f [x0, x1] =
f1 − f0
x1 − x0

=
17.8− 22.0

2.7− 3.2
= 8.4

f [x1, x2] =
f2 − f1
x2 − x1

=
14.2− 17.8

1.0− 2.7
= 2.1176

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

2.1176− 8.4

1.0− 3.2
= 2.8556

and the others..
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xi fi f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, . . . , xi+3] f [xi, . . . , xi+4]
3.2 22.0 8.400 2.856 -0.528 0.256
2.7 17.8 2.118 2.012 0.0865
1.0 14.2 6.342 2.263
4.8 38.3 16.750
5.6 51.7

Table 7.5: Divided-difference table in numerical values.

x = x0 : P0(x0) = a0
x = x1 : P1(x1) = a0 + (x1 − x0)a1
x = x2 : P2(x2) = a0 + (x2 − x0)a1 + (x2 − x0)(x2 − x1)a2
...

...
x = xn : Pn(xn) = a0 + (xn − x0)a1 + (xn − x0)(xn − x1)a2 + . . .

+(xn − x0) . . . (xn − xn−1)an

• If Pn(x) is to be an interpolating polynomial, it must match the table
for all n + 1 entries:

Pn(xi) = fi for i = 0, 1, 2, . . . , n.

• Each Pn(xi) will equal fi, if ai = f [x0, x1, . . . , xi]. We then can write:

Pn(x) = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

+(x− x0)(x− x1)(x− x2)f [x0, . . . , x3]
+(x− x0)(x− x1) . . . (x− xn−1)f [x0, . . . , xn]

• Write interpolating polynomial of degree-3 that fits the data of Table
7.10 at all points x0 = 3.2 to x3 = 4.8.

P3(x) = 22.0 + 8.400(x− 3.2) + 2.856(x− 3.2)(x− 2.7)

−0.528(x− 3.2)(x− 2.7)(x− 1.0)

• What is the fourth-degree polynomial that fits at all five points?

• We only have to add one more term to P3(x)

P4(x) = P3(x) + 0.2568(x− 3.2)(x− 2.7)(x− 1.0)(x− 4.8)

• If we compute the interpolated value at x = 3.0, we get the same result:
P3(3.0) = 20.2120.
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• This is not surprising, because all third-degree polynomials
that pass through the same four points are identical.

• They may look different but they can all be reduced to the
same form.

Example py-file: Constructs a table of divided-difference coefficients. Diag-
onal entries are coefficients of the polynomial. mydivDiffTable interpolation.py

• Divided differences for a polynomial

• It is of interest to look at the divided differences for f(x) = Pn(x).

• Suppose that f(x) is the cubic

f(x) = 2x3 − x2 + x− 1.

• Here is its divided-difference table:

• Observe that the third divided differences are all the same.

• It then follows that all higher divided differences will be zero.

P3(x) = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]
+(x− x0)(x− x1)(x− x2)f [x0, x1, x2, x3]

1 import numpy as np
2 D=np . array ( [ [ −0.736] , [ 2 . 4 8 0 ] , [ 3 . 0 0 0 ] , [ 2 . 0 0 0 ] ] )
3 pr i n t ( np . t r anspose (D) )
4 # [[ −0.736 2 . 48 3 . 2 . ] ]
5 import sympy as sym
6 x = sym . Symbol ( ’ x ’ )
7 P3=D[0 ]+(x−0.3)∗D[1 ]+(x−0.3) ∗(x−1)∗D[2 ]+(x−0.3) ∗(x−1)∗(x−0.7)∗D[ 3 ]
8 pr i n t (P3)
9 # [ 2 . 4 8 ∗x + 2 . 0∗ ( x − 1) ∗( x − 0 . 7 ) ∗( x − 0 . 3 ) + 3 . 0∗ ( x − 1) ∗( x − 0 . 3 ) − 1 . 4 8 ]

10 pr i n t ( sym . expand (2 . 48∗ x + 2 . 0∗ ( x − 1) ∗( x − 0 . 7 ) ∗( x − 0 . 3 ) + 3 . 0∗ ( x − 1) ∗( x −
0 . 3 ) − 1 . 48 ) )

11 # 2.0∗ x∗∗3 − 1 . 0∗ x∗∗2 + 1.0∗x − 1 . 0

which is same with the starting polynomial.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/mydivDiffTable_interpolation.py
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xi f [xi] f [xi, xi+1]f [xi, xi+1f [xi, . . .f [xi, . . .f [xi, . . .
, xi+2] , xi+3] , xi+4] , xi+5]

0.30 -
0.736

2.480 3.000 2.000 0.000 0.000

1.00 1.000 3.680 3.600 2.000 0.000
0.70 -

0.104
2.240 5.400 2.000

0.60 -
0.328

8.720 8.200

1.90 11.008 21.020
2.10 15.212

Table 7.6: Divided-difference table in numerical values for a polynomial.

7.3 Spline Curves

• There are times when fitting an interpolating polynomial to data points
is very difficult.

• Figure 7.4a is plot of f(x) = cos10(x) on the interval [−2, 2].

• It is a nice, smooth curve but has a pronounced maximum at x = 0
and is near to the x-axis for |x| > 1.

• The curves of Figure 7.4b,c, d, and e are for polynomials of degrees
−2,−4,−6, and −8 that match the function at evenly spaced points.

• None of the polynomials is a good representation of the func-
tion.

• One might think that a solution to the problem would be to break up the interval
[−2, 2] into subintervals

• and fit separate polynomials to the function in these smaller inter-
vals.

• Figure 7.5 shows a much better fit if we use a quadratic between x =
−0.65 and x = 0.65 and with P (x) = 0 outside that interval.

• That is better but there are discontinuities in the slope where the
separate polynomials join.
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Figure 7.4: Fitting with different degrees of the polynomial.

Figure 7.5: Fitting with quadratic in subinterval.



7.3. SPLINE CURVES 149

• This solution is known as spline curves.

• Suppose that we have a set of n + 1 points (which do not have to be
evenly spaced):

(xi, yi), with i = 0, 1, 2, . . . , n.

• A spline fits a set of nth-degree polynomials, gi(x), between each pair
of points, from xi to xi+1.

• The points at which the splines join are called knots.

Figure 7.6: Linear spline.

• If the polynomials are all of degree 1, we have a linear spline and the
curve would appear as in the Fig. 7.6.

• The slopes are discontinuous where the segments join.

7.3.1 The Equation for a Cubic Spline

• We will create a succession of cubic splines over successive intervals of
the data (See Fig. 7.7).

• Each spline must join with its neighbouring cubic polynomials at the knots
where they join with the same slope and curvature.

• We write the equation for a cubic polynomial, gi(x), in the ith

interval, between points (xi, yi), (xi+1, yi+1) (solid line).

Figure 7.7: Cubic spline.
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• It has this equation:

gi(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di

• The dashed curves are other cubic spline polynomials.

• Thus, the cubic spline function is of the form

g(x) = gi(x) on the interval[xi, xi+1], for i = 0, 1, . . . , n− 1

• and meets these conditions:

gi(xi) = yi, i = 0, 1, . . . , n− 1 and gn−1(xn) = yn (7.1)

gi(xi+1) = gi+1(xi+1), i = 0, 1, . . . , n− 2 (7.2)

g
′

i(xi+1) = g
′

i+1(xi+1), i = 0, 1, . . . , n− 2 (7.3)

g
′′

i (xi+1) = g
′′

i+1(xi+1), i = 0, 1, . . . , n− 2 (7.4)

• Equations say that the cubic spline fits to each of the points Eq. 7.1,
is continuous Eq. 7.2, and is continuous in slope and curvature Eq. 7.3
and Eq. 7.4, throughout the region spanned by the points.

7.4 Least-Squares Approximations

• Until now, we have assumed that the data are accurate,

• but when these values are derived from an experiment, there is some
error in the measurements.

Figure 7.8: Resistance vs Temperature graph
for the Least-Squares Approximation.

• Some students are as-
signed to find the effect
of temperature on the re-
sistance of a metal wire.

• They have recorded the
temperature and resis-
tance values in a table
and have plotted their
findings, as seen in Fig.
7.8.

• The graph suggest a
linear relationship.

R = aT + b
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• Values for the parameters, a & b, can be obtained from the plot.

• If someone else were given same data and asked to draw the line,

• it is not likely that they would draw exactly the same line and they
would get different values for a & b.

• A way of fitting a line to experimental data that is to minimize the
deviations of the points from the line.

• The usual method for doing this is called the least-squares method.

• The deviations are determined by the distances between the points
and the line.

Figure 7.9: Minimizing the deviations
by making the sum a minimum.

– Consider the case of only two
points (See Fig. 7.9).

– Obviously, the best line passes
through each point,

– but any line that passes through
the midpoint of the segment con-
necting them has a sum of errors
equal to zero.

• We might first suppose we could minimize the deviations by making
their sum a minimum, but this is not an adequate criterion.

• We might accept the criterion that we make the magnitude of the
maximum error a minimum (the so-called minimax criterion).

• The usual criterion is to minimize the sum of the squares of the errors,
the least-squares principle.

• Let Yi represent an experimental value, and let yi be a value from the
equation

yi = axi + b

where xi is a particular value of the variable assumed to be free of error.

• We wish to determine the best values for a & b so that the y’s predict
the function values that correspond to x-values.

• Let errors defined by ei = Yi − yi = Yi − (axi + b)
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• The least-squares criterion requires that S be a minimum.

S = e21 + e22 + . . .+ e2n =
∑N

i=1 e
2
i

=
∑N

i=1(Yi − axi − b)2

N is the number of (x, Y )-pairs.

• We reach the minimum by proper choice of the parameters a & b, so
they are the variables of the problem.

• At a minimum for S, the two partial derivatives will be zero.

∂S/∂a & ∂S/∂b

• Remembering that the xi and Yi are data points unaffected by our
choice our values for a and b, we have

∂S
∂a

= 0 =
∑N

i=1 2(Yi − axi − b)(−xi)
∂S
∂b

= 0 =
∑N

i=1 2(Yi − axi − b)(−1)

• Dividing each of these equations by −2 and expanding the summation,
we get the so-called normal equations

a
∑
x2i + b

∑
xi =

∑
xiYi

a
∑
xi + bN =

∑
Yi

From i = 1 to i = N .

• Solving these equations simultaneously gives the values for slope and intercept
a & b.

• For the data in Fig. 7.8 we find that

N = 5,
∑

Ti = 273.1,
∑

T 2
i = 18607.27,

∑

Ri = 4438,
∑

TiRi = 254932.5

• Our normal equations are then

18607.27a + 273.1b = 254932.5
273.1a + 5b = 4438

• From these we find a = 3.395, b = 702.2, and

R = 702.2 + 3.395T



7.4. LEAST-SQUARES APPROXIMATIONS 153

7.4.1 Nonlinear Data (Curve Fitting)

• In many cases, data from experimental tests are not linear, so we need
to fit to them some function other than a first-degree polynomial.

• Popular forms are the exponential form

y = axb or y = aebx

• The exponential forms are usually linearized by taking logarithms be-
fore determining the parameters, for the case y = axb:

lny = lna+ blnx or lny = lna + bx

• We now fit the new variable z = lny as a linear function of lnx or x as
described earlier.

• Here we do not minimize the sum of squares of the deviations of Y
from the curve, but rather the deviations of lnY .

– In effect, this amounts to minimizing the squares of the percentage
errors, which itself may be a desirable feature.

7.4.2 Least-Squares Polynomials

• Because polynomials can be readily manipulated, fitting such functions
to data that do not plot linearly is common.

• We assume the functional relationship

y = a0 + a1x+ a2x
2 + . . .+ anx

n (7.5)

with errors defined by

ei = Yi − yi = Yi − (a0 + a1x+ a2x
2 + . . .+ anx

n)

• We again use Yi to represent the observed or experimental value corre-
sponding to xi, with xi free of error.

• We minimize the sum of squares;

S =
N∑

i=1

e2i =
N∑

i=1

(Yi − a0 − a1x− a2x2 − . . .− anxn)2

At the minimum, all the partial derivatives ∂S/∂a0, ∂S/∂an vanish.
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• Writing the equations for these gives n+ 1 equations:

∂S
∂a0

= 0 =
∑N

i=1 2(Yi − a0 − a1xi − a2x2i − . . .− aixni )(−1)
∂S
∂a1

= 0 =
∑N

i=1 2(Yi − a0 − a1xi − a2x2i − . . .− aixni )(−xi)
...
∂S
∂an

= 0 =
∑N

i=1 2(Yi − a0 − a1xi − a2x2i − . . .− aixni )(−xni )

• Dividing each by−2 and rearranging gives the n+1 normal equations
to be solved simultaneously:

a0N + a1
∑
xi + a2

∑
x2i + . . .+ an

∑
xni =

∑
Yi

a0
∑
xi + a1

∑
x2i + a2

∑
x3i + . . .+ an

∑
xn+1
i =

∑
xiYi

a0
∑
x2i + a1

∑
x3i + a2

∑
x4i + . . .+ an

∑
xn+2
i =

∑
x2i Yi

...

a0
∑
xni + a1

∑
xn+1
i + a2

∑
xn+2
i + . . .+ an

∑
x2ni =

∑
xni Yi

(7.6)

• Putting these equations in matrix form shows the coefficient matrix;

















N
∑

xi

∑

x2
i

∑

x3
i . . .

∑

xn
i

∑

xi

∑

x2
i

∑

x3
i

∑

x4
i . . .

∑

xn+1
i

∑

x2
i

∑

x3
i

∑

x4
i

∑

x5
i . . .

∑

xn+2
i

.

..
.
..

.

..
.
..

.

..
.
..

∑

xn
i

∑

xn+1
i

∑

xn+2
i

∑

xn+3
i . . .

∑

x2n
i

















[a] =















∑

Yi
∑

xiYi
∑

x2
iYi

...
∑

xn
i Yi















(7.7)

All the summatins in Eqs. 7.6 and 7.7 run from 1 to N . We will let B
stand for the coefficient matrix.

• Equation 7.7 represents a linear system.

• Degrees higher than 4 are used very infrequently. It is often better to
fit a series of lower-degree polynomials to subsets of the data.

• Matrix B of Eq. 7.7 is called the normal matrix for the least-squares
problem.

• There is another matrix that corresponds to this, called the design
matrix. It is of the form;

A =










1 1 1 1 1
x1 x2 x3 . . . xN
x21 x22 x23 . . . x2N
...

...
...

...
...

xn1 xn2 xn3 . . . xnN









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• AAT is just the coefficient matrix of Eq. 7.7. It is easy to see that Ay,
where y is the column vector of Y -values, gives the right-hand side of
Eq. 7.7. We can rewrite Eq. 7.7 in matrix form, as

AATa = Ba = Ay

so it is to find the solution.

• It is illustrated the use of Eq. 7.6 to fit a quadratic to the data of Table
7.7. Figure 7.8 shows a plot of the data.

• The data are actually a perturbation of the relation y = 1− x+0.2x2.

To set up the normal equations, we need
the sums tabulated in Table 7.7.

Table 7.7: Data to illustrate curve fitting. Table 7.8: Figure for
the data to illustrate
curve fitting.

• The equations to be solved are:

11a0 + 6.01a1 + 4.6545a2 = 5.905
6.01a0 + 4.6545a1 + 4.1150a2 = 2.1839

4.6545a0 + 4.1150a1 + 3.9161a2 = 1.3357

The result is a0 = 0.998, a2 = −1.018, a3 = 0.225.

• So the least- squares method gives

y = 0.998− 1.018x+ 0.225x2

which we compare to y = 1 − x + 0.2x2. Errors in the data cause the
equations to differ.
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Example py-file: Fitting an 4th order polynomial to y = cosx function in
[0,π] by Least-Square Approximation. Gaussian elimination & back substi-
tution. Pivoting. mylsa.py

0.5 1.0 1.5 2.0 2.5 3.0
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

co
s (

x)

Least-Square Approximation and Exact Solution for y(x) = cosx

Exact
Approximate

Figure 7.10: Polynomial Least-Square Approximation.

7.4.3 Millikan oil-drop experiment

• In 1910, Millikan succeeded in measuring the electron charge for the
first time with a very sensitive experiment.

• In this experiment, electrically charged oil droplets remained suspended
in the air under the influence of a force that balanced the electric field
applied between the plates of a capacitor and the gravitational force.

• From the equation qV/d = mg, the electric charge of each droplet could
be calculated by measuring the potential difference and masses.

• When Millikan listed these electric charges from smallest to largest, he
showed that they were multiples of a basic unit of charge, and from
there he determined the electric charge as e = 1.65× 10−9 C (Today’s
value is e = 1.602× 10−9 C).

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/mylsa.py
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Example py-file: Millikan oil-drop experiment by Least-Square Approxi-
mation. Gaussian elimination & back substitution. Pivoting. mylsa millikan.py

4 6 8 10 12 14 16 18
n

10

15

20

25

30

q 
(1

0−1
9  C

)

a=1.638279 ×10−19 C
b=0.028536 

Millikan oil-drop experiment y(x) = ax+ b

Exact
Approximate

Figure 7.11: Millikan oil-drop experiment.

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/mylsa_millikan.py
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