Hydrogen Atom


Numerical Solution. Firstly, transform this quadratic Equation 5.5 into a system of linear (first degree) equations:

$\displaystyle u \rightarrow y_1$      
$\displaystyle \frac{du}{d\rho} \rightarrow y_2$      


with these values ( $y_1~ and~y_2$), the system of equations to be solved: (Now, we have a set of equations.)

$\displaystyle \frac{dy_1}{d\rho}$ $\displaystyle =y_2$    
$\displaystyle \frac{dy_2}{d\rho}$ $\displaystyle =\left[ \frac{l(l+1)}{\rho^2} -\left( \frac{\lambda}{\rho}-\frac{1} {4}\right) \right] y_1$    

(Example py-file: Program that solves the radial Schrödinger equation for the hydrogen atom: hydrogenatom.py)
Figure 5.14: Solution for the Eigenvalue Problem for the ODE: $\frac {dy_2}{d\rho }=\left [ \frac {l(l+1)}{\rho ^2} -\left ( \frac {\lambda }{\rho }-\frac {1} {4}\right ) \right ] y_1$.
Image 8-1i
Figure 5.15: Solution for the Eigenvalue Problem for the ODE: $\frac {dy_2}{d\rho }=\left [ \frac {l(l+1)}{\rho ^2} -\left ( \frac {\lambda }{\rho }-\frac {1} {4}\right ) \right ] y_1$.
Image hydrogenatomS