1 print("****************SymPy Solution for Characteristic Equation: ")
2 from sympy import Matrix, symbols, pprint, factor
3 M = Matrix([[2, -1], [-1, 2]])
4 lamda = symbols('lamda')
5 poly = M.charpoly(lamda) # Get the characteristic polynomial
6 print(poly) # Printing polynomial
7 pprint(factor(poly.as_expr())) # Prints expr in pretty form.
8 print("****************NumPy Solution for Characteristic Equation: ")
9 import numpy as np
10 A = np.array([[2, -1], [-1, 2]])
11 print(np.poly(A))
12 print("****************NumPy Solution for Eigenvalues and Eigenvectors: ")
13 w,v=np.linalg.eig(A)
14 print('Eigenvalue:', w)
15 print('Eigenvector1:', v[0])
16 print('Eigenvector2:', v[1])
17 print("****************SciPy Solution for Eigenvalues and Eigenvectors: ")
18 import scipy.linalg as la
19 w,v = la.eig(A)
20 print('Eigenvalue:', w)
21 print('Eigenvector1:', v[0])
22 print('Eigenvector2:', v[1])
|