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9.3

Partial Differential Equations; heat & temperature I

• Consider a straight rod along which there is a uniform flow
of heat.

• Let u(x , t) denote the temperature of the rod at time t and
location x ..
• Let q(x , t) denote the rate of heat flow.

• The expression ∂q/∂x denotes the rate at which the rate
of heat flow changes per unit length and therefore
measures the rate at which heat is accumulating at a given
point x at time t.

• If heat is accumulating, the temperature at that point is
rising, and the rate is denoted by ∂u/∂t.

1 The principle of conservation of energy leads to
∂q/∂x = k∂u/∂t, where k is the specific heat of the rod.

• This means that the rate at which heat is accumulating at
a point is proportional to the rate at which the temperature
is increasing.
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9.4

Partial Differential Equations; heat & temperature II

2 A second relationship between q and u is obtained from
Newton’s law of cooling, which states that q = K (∂u/∂x).

• Elimination of q between these equations leads to

∂2u

∂x2
= (k/K )

∂u

∂t

the partial differential equation for one-dimensional heat
flow.

• The partial differential equation for heat flow in three
dimensions takes the form

∂2u

∂x2
+
∂2u

∂y2
+

∂2u

∂yx2
= (k/K )

∂u

∂t

• Often written as

∇2u = (k/K )
∂u

∂t

where the symbol ∇, called del or nabla, is known as the
Laplace operator.
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LOGIK

Special Functions

Legendre Polynomials

Hermite Polynomials

Quantum Harmonic
Oscillator

9.5

Partial Differential Equations III

• Another example to PDEs for dealing with wave
propagation problem:

∇2u = (1/c2)
∂2u

∂t2

where c is the speed at which the wave propagates.
• PDEs are harder to solve than ordinary differential

equations (ODEs).
• However, the PDEs associated with wave propagation and

heat flow can be reduced to a system of ODEs through a
process known as separation of variables.

• These ODEs depend on the choice of coordinate system,
which in turn is influenced by the physical configuration of
the problem.

• The solutions of these ODEs form the majority of the
special functions of mathematical physics.
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9.6

Special Functions

• In the broad sense, a set of several classes of functions
that arise in the solution of both theoretical and applied
problems in various branches.

• In the narrow sense, the special functions of mathematical
physics, which arise when solving PDEs by the method of
separation of variables.

• Special functions can be defined by means of power
series, generating functions, infinite products, repeated
differentiation, integral representations, differential,
difference, integral, and functional equations, trigonometric
series, or other series in orthogonal functions.

• For example, in solving the equations of heat flow or wave
propagation in cylindrical coordinates, the method of
separation of variables leads to Bessel’s differential
equation, a solution of which is the Bessel function,
denoted by Jn(x).
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9.7

Polynomials

• A polynomial ("many terms") is defined as an expression
that consist of variables, coefficients and exponents.

• A polynomial can have:

• variables (like x and y)
• constants/coefficients (like 6, -10, or 3/2)
• exponents (like the 2 in y2)
• that can be combined using addition, subtraction,
multiplication and division
• but not division by a variable (so something like 2/x is not
correct)
• a monomial is the product of non-negative powers of
variables and will only have one term. 13, 3x, 4y2, ...
• a binomial is the sum of two monomials. 3x + 1, 2x + y, ...
• a trinomial is the sum of three monomials. x2 + 2x + 1, 2x
+ 3y + 2, ...
• can have one or more terms, but not an infinite number of
terms.

• The standard form of a polynomial refers to writing a
polynomial in the descending power of the variable.

2x3 − 4x2 + 7x − 4
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9.8

Legendre’s Equation

• The Legendre polynomials Pℓ(x), sometimes called
Legendre functions of the first kind, Legendre coefficients,
or zonal harmonics are solutions to the Legendre
differential equation.

• The Legendre polynomials satisfy the second-order
differential equation.

(1 − x2)
d

2y

dx2
− 2x

dy

dx
+ ℓ(ℓ+ 1)y = 0

where y = Pℓ(x)

• This equation has two regular singular points x = ±1
where the leading coefficient (1 − x2) vanishes.

• Solutions of Legendre equations are Legendre
polynomials

Pℓ(x) =
1

2ℓℓ!

(

d

dx

)ℓ

(x2 − 1)ℓ
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9.9

Legendre Polynomials I

• If ℓ (0 ≤ ℓ ≤ ∞) is an integer, they are polynomials and
make up an infinite set of functions of the variable x.

• We therefore have a function P0(x), another function
Pℓ(x), and an infinite number of additional functions
belonging to the set of Legendre polynomials.

• Introduce a (generating) function Φ(x , h) of two variables,
known as a generating function for the definition of the
Legendre polynomials.

Φ(x , h) = (1 − 2xh + h2)−1/2

• The first variable, x, is the same variable that appears as
the argument of the Legendre polynomials.
• The second variable, h, is an auxiliary variable with no
particular meaning.
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9.10

Legendre Polynomials II

• Think of Φ as a function of a single variable h (Φ = Φ(h))
and expand as a Taylor expansion in powers of h

Φ(h) = Φ(0) +
dΦ

dh

∣

∣

∣

∣

h=0

h +
1
2!

d2Φ

dh2

∣

∣

∣

∣

h=0

h
2 +

1
3!

d3Φ

dh3

∣

∣

∣

∣

h=0

h
3 + . . .

=

∞
∑

ℓ=0

1
ℓ!

dℓΦ

dhℓ

∣

∣

∣

∣

h=0

h
ℓ

• Restore the x-dependence of the generating function. This
doesn’t change the general appearance of the Taylor
expansion but written as partial derivatives instead of total
derivatives.

Φ(x , h) =

∞
∑

ℓ=0

1
ℓ!

∂ℓΦ

∂hℓ

∣

∣

∣

∣

h=0

hℓ =

∞
∑

ℓ=0

Pℓ(x)h
ℓ

• Right hand side of this equation is the formal definition of
the Legendre polynomials. They are identified as the
coefficients in the Taylor expansion of the generating
function about h = 0.
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9.11

Legendre Polynomials III

• Let us use this equation to calculate the first few
polynomials.

• For ℓ = 0 we are instructed to take no derivatives, and to
evaluate the generating function at h = 0. This gives
P0(x) = 1; the zeroth polynomial is actually a constant.
• Moving on to ℓ = 1, we must differentiate Φ once with
respect to h. Evaluating this at h = 0 and dividing by 1! = 1
gives P1(x) = x .
• For ℓ = 2 we differentiate Φ twice. Evaluating this at h = 0
and dividing by 2! = 2 produces P2(x) = 1/2(3x2

− 1). We
can just keep going like this, and generate any number of
polynomials.

• When ℓ is even, Pℓ(x) contains only even powers of x,
starting with x ℓ and ending with x0.

• When ℓ is odd, Pℓ(x) contains only odd powers of x,
starting with x ℓ and ending with x .

• Pℓ(x) is an even function of x when ℓ is even, and an odd
function of x when ℓ is odd.
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9.12

Legendre Polynomials IV

• The first few Legendre polynomials are given by

P0 = 1

P1 = x

P2 =
1
2
(3x2

− 1)

P3 =
1
2
(5x

3
− 3x)

P4 =
1
8
(35x

4
− 30x

2 + 3)

P5 =
1
8
(63x

5
− 70x

3 + 15x)

P6 =
1

16
(231x

6
− 315x

4 + 105x
2
− 5)

• Recursion relation:

Pℓ(x) =
1
ℓ
[(2ℓ− 1)xPℓ−1(x)− (ℓ − 1)Pℓ−2(x)]
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9.13

Legendre Polynomials V
Example py-file: The program to find first 6 Legendre
polynomials: myLegendre.py

Figure: First 6 Legendre Polynomials Pℓ(x) with Recursion Relation:
Pℓ(x) =

1
ℓ
[(2ℓ− 1)xPℓ−1(x)− (ℓ− 1)Pℓ−2(x)].

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myLegendre.py
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9.14

Legendre Polynomials VI
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First 6 Legendre Polynomials Pℓ(ℓ) 
Pℓ(ℓ) = 1
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l=1
SciPy l=1
l=2
SciPy l=2
l=3
SciPy l=3
l=4
SciPy l=4
l=5
SciPy l=5
l=6
SciPy l=6

Figure: Plot of first 6 Pℓ(x).
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9.15

Hermite’s Equation

• The Hermite polynomials Hk (x) are solutions to the
Hermite differential equation of the form

a(x)y ′′ + b(x)y ′ + c(x)y = 0

where a(x) = 1, b(x) = −2x and c(x) = 2k (positive
integer parameter k)

d2y

dx2
− 2x

dy

dx
+ 2ky = 0

• yk is a solution of the Hermite equation. Therefore,
defining Hk (x) = yk .

• A natural one to define Hermite polynomials is through the
so-called Rodrigues’formula:

Hk (x) = (−1)k ex2 dk

dxk

[

e−x2
]
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9.16

Hermite Polynomials I

• The first few Hermite polynomials are given by

H0 = 1

H1 = 2x

H2 = 4x
2
− 2

H3 = 8x
3
− 12x

H4 = 16x
4
− 48x

2 + 12

H5 = 32x
5
− 160x

3 + 120x

H6 = 64x
6
− 480x

4 + 720x
2
− 120

• Recursion relation:

Hk+1(x) = 2xHk (x)− 2kHk−1(x)



Numerical Techniques:
Differential Equations -
Legendre Polynomials
& Hermite Polynomials

Dr. Cem Özdoğan
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9.17

Hermite Polynomials II
Example py-file: The program to find first 6 Hermite
polynomials: myHermite.py

Figure: First 6 Hermite Polynomials Hk (x) with Recursion Relation:
Hk+1(x) = 2xHk(x) − 2kHk−1(x).

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myHermite.py
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9.18

Hermite Polynomials III
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First 6 Hermite Polynomials Hk(x) 
Hk+ 1(x) = 2xHk(x) − 2kHk− 1(x)

k=1
SciPy k=1
k=2
SciPy k=2
k=3
SciPy k=3
k=4
SciPy k=4
k=5
SciPy k=5
k=6
SciPy k=6

Figure: Plot of first 6 Hk (x).
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9.19

Quantum Harmonic Oscillator I

• The quantum harmonic oscillator as analog of the
classical one is often used as an approximate model for
the behavior of some quantum systems.

• It is one of the few quantum-mechanical systems for which
an exact, analytical solution is known.

• The Hamiltonian for a particle of mass m moving in one
dimension in a potential V (x) = 1/2kx2 is

Ĥ =
p̂2

2m
+

1
2

kx̂2 =
p̂2

2m
+

1
2

mω2x̂2

where x̂ is the position operator, and p̂ is the momentum
operator (given by p̂ = −i~∂/∂x in the coordinate basis).

• The first term in the Hamiltonian represents the kinetic
energy of the particle, and the second term represents its
potential energy, as in Hooke’s law.
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9.20

Quantum Harmonic Oscillator II
• Then, Schrödinger equation becomes

− ~
2

2m

d2ψ

dx2
+

1
2

kx2ψ = Eψ

• with the change of variable, q = (mk/~2)1/4x , this
equation becomes

−1
2

d2ψ

dq2
+

1
2

q2ψ =
E

~ω
ψ

where ω =
√

k/m is the angular frequency of the
oscillator.

• This differential equation has an exact solution in terms of
a quantum number ν = 0, 1, 2, . . .:

ψ(q) = NνHν(q)e
−q2/2

where Nν = (
√
π2νν!)−1/2 is a normalization constant.

• The function Hν(q) is the physicists’ Hermite polynomials
of order ν, defined by:

Hν(q) = (−1)νeq2 dν

dqν

(

e−q2
)
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9.21

Quantum Harmonic Oscillator III

• The corresponding energy levels are

Eν = ~ω

(

ν +
1
2

)

= (2ν + 1)
~

2
ω

• Recursion formula:

Hν+1(q) = 2qHν(q) − 2νHν−1(q)

with the first two: H0 = 1 and H1 = 2q.

Example py-file: The program to find the harmonic oscillator
wavefunctions/probability densities for up to 4 vibrational
energy levels with the harmonic potential, V = q2/2. QHO.py

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/QHO.py
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9.22

Quantum Harmonic Oscillator IV
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Figure: Wavefunction representations for the first 5 bound
eigenstates, ν = 0 − 4.
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9.23

Quantum Harmonic Oscillator V
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Figure: Corresponding probability densities.
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