Lecture 11 Numerical Techniques: Solving Sets of Equations - Linear Algebra and Matrix Computing II

Normal Modes of Coupled Oscillation

IKC-MH.55 *Scientific Computing with Python* at January 05, 2024

Dr. Cem Özdoğan Engineering Sciences Department İzmir Kâtip Çelebi University Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation

Iterative Methods

Contents

Using the LU Matrix for Multiple Right-Hand Sides The Inverse of a Matrix Eigenvalues and Eigenvectors of a Matrix Normal Modes of Coupled Oscillation Iterative Methods Jacobi Method Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation

Iterative Methods

Solving Sets of Equations

 Solving sets of linear equations and eigenvalue problems are the most frequently used numerical procedures when real-world situations are modelled.

1 Matrices and Vectors

2 Elimination Methods

Continued.

3 The Inverse of a Matrix

Shows how an important derivative of a matrix, <u>its inverse</u>, can be computed. It shows when a matrix **cannot be inverted** and tells of situations where **no unique solution** exists to a system of equations.

4 Iterative Methods

It is described how a linear system can be solved in an entirely different way, by beginning with an initial estimate of the solution. Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides The Inverse of a Matrix Eigenvalues and Eigenvectors of a Matrix Normal Modes of Coupled Oscillation Iterative Methods Jacobi Method

Gaussian Elimination XIII

Continue with the previous example.

 If we had replaced the zeros below the main diagonal with the ratio of coefficients at each step, the resulting augmented matrix would be

	6 (0.66667) (0.33333) (0.0)	(-(1 —3.6667).45454)).54545)	-6 4 6.8182 (0.32)	-5 4.3333 5.6364 1.5600	_ -9.00 -3.11	-
• This	gives a <i>LL</i>	/ dec	omposit	ion as			
1 0.66667 0.33333 0.0	0 1 0.45454 0.54545	0 0 1 0.32	0 0 0 1	6 0 0	1 -3.6667 0 0	-6 4 6.8182 0	-5 4.3333 5.6364 1.5600

• It should be noted that the <u>product</u> of these matrices produces a <u>permutation of the original matrix</u>, call it *A*', where

$$A' = \left[\begin{array}{rrrr} 6 & 1 & -6 & -5 \\ 4 & -3 & 0 & 1 \\ 2 & 2 & 3 & 2 \\ 0 & 2 & 0 & 1 \end{array} \right]$$

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides The Inverse of a Matrix Eigenvatues and Eigenvectors of a Matrix Normal Modes of Coupled Oscillation Iterative Methods Jacobi Method

Gaussian Elimination XIV

• The determinant of the original matrix of coefficients can be easily computed according to the formula

 $det(A) = (-1)^2 * (6) * (-3.6667) * (6.8182) * (1.5600) = -234.0028$

which is close to the exact solution: -234.

- The exponent 2 is required, because there were *two row interchanges* in solving this system.
- To summarize
 - 1 The solution to the four equations
 - 2 The determinant of the coefficient matrix
 - 3 A LU decomposition of the matrix, A', which is just the original matrix, A, after we have interchanged its rows.
- "These" are readily obtained after solving the system by Gaussian elimination method.

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation

Gaussian Elimination XV

Example py-files: LU factorization without pivoting. myLUshow.py LU factorization with pivoting. myLUPivShow.py

Tolerance value in pivoting is 1.110223e-15. LU decomposition of the system: [[0. 2. 0. 1.] [2. 2. 3. 2.] [4. -3. 0. 1.] [6. 1. -6. -5.]] Zero Pivot Encountered. Exiting.

Tolerance value in pivoting is 1.110223e-15. LU decomposition of the system: [[0, 2, 0, 1,] [2, 2, 3, 2,] [4.-3.0.1.] 6. 1. -6. -5.]] Swap rows 0 and 3; new pivot = 6.000000 Swap rows 1 and 2; new pivot = -3.666667 MyLUshow - Lower Triangular : [[1. A A A B 6666667 1 A. A. 0.33333333 -0.45454545 1. Π. [θ. -0.54545455 0.32 1. MyLUshow - Upper Triangular : [[6. 1. -6 -5 ٢٥. -3.66666667 4. 4.333333333] Γ A. 0 6.81818182 5.63636364] [θ. θ. θ. 1.56 SciPy LU-decomposition: PL - Permutation Matrix, Lower [[0. 1. -0.54545455 0.32 [0.33333333 -0.45454545 1. A B 6666667 1 A. A. [1. Π. Π. 0 SciPv LU-decomposition: U - Upper Triangular [[6. 1. -6. -5. [0. -3.66666667 4.333333333 4. [0. A 6.81818182 5.63636364] Γ A. 0 A. 1.56

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides The Inverse of a Matrix Eigenvalues and Eigenvectors of a Matrix Normal Modes of Coupled Oscillation Iterative Methods Jacobi Method

Figure: (a) Without Pivoting (b) With Pivoting.

Using the LU Matrix for Multiple Right-Hand Sides I

- Many physical situations are modelled with a large set of linear equations.
- The equations will depend on the geometry and certain external factors that will determine the right-hand sides.
- For example, in electrical circuit problems, the resistors at the circuit (*A* matrix) are unchanged with the varying applied voltages (*b* vector). (e.g., Kirchhoff's Rule)
- If we want the solution for many different values of these right-hand sides,
 - it is inefficient to solve the system from the start with each one of the right-hand-side values.
 - Using the *LU* equivalent of the coefficient matrix is preferred.
- Suppose we have solved the system Ax = b by Gaussian elimination.
- We now know the LU equivalent of A: A = L * U

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation

Iterative Methods

Using the LU Matrix for Multiple Right-Hand Sides II

• We can write

$$Ax = b$$
$$LUx = b$$
$$Ly = b$$

• e.g., Solve Ax = b, where we already have its L and U matrices:

1 0.66667 0.33333 0.0	0 1 0.45454 0.54545	0 0 1 0.32	0 0 0 1]*	6 0 0 0	1 -3.6667 0 0	-6 4 6.8182 0	-5 4.3333 5.6364 1.5600	
--------------------------------	------------------------------	---------------------	------------------	----	------------------	------------------------	------------------------	----------------------------------	--

- Suppose that the *b*-vector is $\begin{bmatrix} 6 & -7 & -2 & 0 \end{bmatrix}^T$.
- We first get y(=Ux) from Ly = b by forward substitution:

$$y = [6 - 11 - 9 - 3.12]^{7}$$

• and use it to compute x from Ux = y:

$$x = [-0.5 \ 1 \ 0.3333 \ -2]^T.$$

• Exercise: $b = [1 \ 4 \ -3 \ 1]^T \Longrightarrow$ $x = [0.0128 \ -0.5897 \ -2.0684 \ 2.1795]^T$ Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix Eigenvalues and Eigenvectors of a Matrix Normal Modes of Coupled

Oscillation Iterative Methods

Using the LU Matrix for Multiple Right-Hand Sides III

Phyton Code:

```
import numpy as no
         from scipy, linalg import lu
  3 = np.array([10.0, 2.0, 0.0, 1.0], [2.0, 2.0, 3.0, 2.0], [4.0, -3.0, 0.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1.0], [6.0, 1
                             -6.0, -5.0]
         P, L, U = Iu(A)
  4
         print ("SciPy LU-decomposition: P - Permutation Matrix \n", P)
         print ("SciPy LU-decomposition: L - Lower Triangular with unit diagonal elements \n", L)
  6
          print ("SciPy LU-decomposition: U - Upper Triangular \n", U)
  8
         def forward(L, b):
  9
                     y=np.zeros(np.shape(b),dtype=float)
                     for i in range(len(b)):
                                y[i]=np.copy(b[i])
                                for j in range(i):
                                           y[i] = y[i] - (L[i, i] * y[i])
14
                                y[i] = y[i]/L[i, i]
                     return v
16
         b = np.array([[6.0], [-7.0], [-2.0], [0.0]])
          \# b = np.array([[1.0], [4.0], [-3.0], [1.0]])
18
         y=forward (L,b)
          print("y vector from Ly=b by forward substitution :", np.transpose(y))
19
20
         def backward(U, y):
                     x=np.zeros(np.shape(y),dtype=float)
21
                     y = en(y) - 1
                     x[ylen] =y[ylen]/U[ylen, ylen] # Print the last stage x value
24
                     for i in range (vlen -1, -1, -1):
                                x[i]=np.copy(y[i])
26
                                for i in range(ylen, i, -1):
27
                                           x[i] = x[i] - (U[i, j] * x[j])
28
                                x[i] = x[i]/U[i, i]
                     return x
         x=backward (U, v)
30
          print("x vector from Ux=y by backward substitution :", np.transpose(x))
31
```

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation

Iterative Methods

The Inverse of a Matrix I

- <u>Division</u> by a matrix is not defined but the equivalent is obtained from the *inverse* of the matrix.
- If the product of two square matrices, *A* * *B*, equals to the *identity matrix*, *I*, *B* is said to be the inverse of *A* (and also *A* is the inverse of *B*).
- By multiplying each element with its cofactor to find the inverse of the matrix is not useful since *N*³ multiplication and division are required for an N-dimensional matrix.
- To find the inverse of matrix A, <u>use an elimination method</u>.
- We augment the *A* matrix with the identity matrix of the same size and solve. **The solution is** *A*⁻¹**.** Example;

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 & 0 & 1 \end{bmatrix} \quad \left\| \begin{array}{c} R_2 - (3/1)R_1 \rightarrow \\ R_3 - (1/1)R_1 \rightarrow \end{array} \right\|$$

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 3 & -5 & -3 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 3 & -5 & -3 & 1 & 0 \\ \hline R_{00} & Interchange \end{array} \right\|_{R_3 - (3/1)R_2 \rightarrow R_3 - (3/1)R_2 \rightarrow R_3 - (3/1)R_2 \rightarrow R_3 - (3/1)R_2 \rightarrow R_3 - (3/1)R_3 - R_3 - R_$$

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation

The Inverse of a Matrix II

• Contd.

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & -5 & 0 & 1 & -3 \end{bmatrix} \quad \begin{bmatrix} \\ R_3/(-5) \rightarrow \\ \end{bmatrix} \begin{bmatrix} R_1 - (2/1)R_3 \rightarrow \\ R_3/(-5) \rightarrow \\ \end{bmatrix}$$

$$\underbrace{\left[\begin{array}{rrrr} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 1 & 0 & 2 \end{array}\right]}_{A} * \underbrace{\left[\begin{array}{rrrr} 0 & 2/5 & -1/5 \\ -1 & 0 & 1 \\ 0 & -1/5 & 3/5 \end{array}\right]}_{A^{-1}} = \underbrace{\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]}_{I}$$

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix Normal Modes of Coupled Oscillation

Iterative Methods

The Inverse of a Matrix III

 It is more <u>efficient</u> to use <u>Gaussian elimination</u>. We show only the final triangular matrix; we used pivoting:

After doing the back-substitutions, we get

Γ	3	0	1	0	0.4	-0.2]	
	(0.333)	-1	1.667	-1	0	1	
L	(0.333)	(0)	1.667	0	-0.2	0.6	

- If we have the inverse of a matrix, we can use it to solve a set of equations, Ax = b,
- because multiplying by A^{-1} gives the answer (x):

$$A^{-1}Ax = A^{-1}b$$
$$x = A^{-1}b$$

• Phyton Code:

```
import numpy as np
A = np.array([[1.0, -1.0,2.0],[3.0,0.0,1.0],[1.0,0.0,2.0]])
b = np.array([[1.0,0.0,0.0],[0.0,1.0,0.0],[0.0,0.0,1.0]])
x = np.linalg.solve(A, b)
print("NumPy - Inverse Matrix: \n",x)
from scipy import linalg
x=linalg.solve(A,b)
print("SciPy - Inverse Matrix: \n",x)
```

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

```
The Inverse of a Matrix
```

```
Eigenvalues and 
Eigenvectors of a Matrix
```

```
Normal Modes of Coupled
Oscillation
```

```
Iterative Methods
```

Eigenvalues and Eigenvectors I

• For a square matrix A,

 $A\vec{u} = \lambda\vec{u}$

 \vec{u} vectors satisfying this condition are called the *eigenvectors* of the matrix A, and the lambda scalar coefficients are called the *eigenvalues*.

- An *N* × *N* matrix has *N* different eigenvectors. However, the corresponding lambda eigenvalues for these eigenvectors may not be different.
- State of a system can be expressed in terms of the eigenvectors of the system of linear equations and in terms of their eigenvalues for the measured quantities.
- Create an *U* matrix by arranging eigenvectors side by side:

$$U = \begin{bmatrix} u_1 & u_2 & \dots & u_n \\ u_{11} & u_{12} & \dots & u_{1n} \\ u_{21} & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ u_{n1} & u_{n2} & \dots & u_{nn} \end{bmatrix}$$

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation Iterative Methods Jacobi Method

Eigenvalues and Eigenvectors II

• When we multiply the matrix *A* with the matrix *U* and its inverse matrix *U*⁻¹ from both sides, we get

$$A' = U^{-1}AU = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

- That is, the similarity transformation with the eigenvectors matrix makes *A* as being diagonalized and the elements on the diagonal become the eigenvalues of *A*.
- In principle, the eigenvalue problem is easy to solve. So-called characteristic equation is to be solved:

$$det|A - \lambda I| = 0$$

 After finding the roots of this n-degree polynomial equation, the corresponding eigenvectors can be obtained by solving the following system of equations:

$$(\boldsymbol{A} - \lambda \boldsymbol{I})\vec{\boldsymbol{v}} = \boldsymbol{0}$$

 Since this method requires determinant calculation, it is not useful for large dimensional matrices. Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation Iterative Methods Jacobi Method

Normal Modes of Oscillation I

 Consider the coupled oscillations problem of two equal masses *m* connected by springs of constant *k* (see Figure).

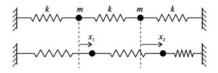


Figure: Mass-Spring system.

 The differential equation provided by each mass is written using Newton's law of motion as follows

$$k(x_2 - x_1) - kx_1 = m \frac{d^2 x_1}{dt^2}$$
$$-kx_2 - k(x_2 - x_1) = m \frac{d^2 x_2}{dt^2}$$

 In this system, the frequencies (ω) that both masses oscillate as in common are called **normal oscillation modes**.

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation

Normal Modes of Oscillation II

 To find the normal mode frequencies, try a solution for both unknowns as:

 $x_1 = x_{10} \cos \omega t$ & $x_2 = x_{20} \cos \omega t$

 Substitute these solutions into the system of linear equations above and simplify by removing cosωt,

$$\frac{2k}{m}x_{10} - \frac{k}{m}x_{20} = \omega^2 x_{10} \\ -\frac{k}{m}x_{10} + \frac{2k}{m}x_{20} = \omega^2 x_{20}$$

 This system of equations can be written as the product of a matrix and a column vector as follows (replace ω² by λ):

$$\begin{bmatrix} 2k/m & -k/m \\ -k/m & 2k/m \end{bmatrix} \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} = \lambda \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix}$$

This structure can also be written as:

$$\begin{bmatrix} 2k/m - \lambda & -k/m \\ -k/m & 2k/m - \lambda \end{bmatrix} \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} = 0$$

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation

Normal Modes of Oscillation III

 The determinant must be zero for this linear system of equations to have a unique solution:

$$det \begin{vmatrix} 2k/m - \lambda & -k/m \\ -k/m & 2k/m - \lambda \end{vmatrix} = 0$$

$$\longrightarrow (2k/m-\lambda)^2 - k^2/m^2 = 0$$

There are two oscillation frequencies (ω) and their corresponding amplitudes x₀ = (x₁₀, x₂₀):

$$\lambda_{1} = k/m \longrightarrow \vec{x_{0,1}} = \begin{pmatrix} 0.71 \\ 0.71 \end{pmatrix}$$
$$\lambda_{2} = 3k/m \longrightarrow \vec{x_{0,2}} = \begin{pmatrix} -0.71 \\ 0.71 \end{pmatrix}$$

- The first of these solutions represents the mode in which the two masses oscillate in the same phase (-> ->)
- and the second represents the mode in which they oscillate in the **opposite phase** (-> <-).

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation

Normal Modes of Oscillation IV

Phyton Code:

```
print("*****************SymPy Solution for Characteristic Equation:
2 from sympy import Matrix, symbols, pprint, factor
3 M = Matrix([[2, -1], [-1, 2]])
4 lamda = symbols('lamda')
5 poly = M. charpoly(lamda) # Get the characteristic polynomial
6 print(poly) # Printing polynomial
7 pprint(factor(poly.as expr())) # Prints expr in pretty form.
9 import numpy as no
  A = np.array([[2, -1], [-1, 2]])
10
  print(np.poly(A))
12 print ("***************** NumPy Solution for Eigenvalues and
       Eigenvectors : ")
13 w.v=np.linalg.eig(A)
14 print ('Eigenvalue:'. w)
15 print('Eigenvector1:', v[0])
16 print ('Eigenvector2:', v[1])
17 print ("**************** SciPy Solution for Eigenvalues and
       Eigenvectors : ")
18 import scipy linalg as la
19 w, v = la.eig(A)
  print('Eigenvalue:'. w)
20
21 print('Eigenvector1:', v[0])
22 print('Eigenvector2:', v[1])
```

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides

The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation

Iterative Methods

- Gaussian elimination and its variants are called *direct methods*.
- An entirely different way to solve many systems is through *iteration*.
- In this way, we start with an initial estimate of the solution vector and proceed to refine this estimate.
- An $n \times n$ matrix A is diagonally dominant if and only if;

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n$$

- Example. Given matrix & After reordering;
- - The solution is $x_1 = 2, x_2 = 1, x_3 = 1$ (for both cases?).
 - Before we begin our iterative scheme we must first reorder the equations so that the coefficient matrix is diagonally dominant.

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides The Inverse of a Matrix Eigenvalues and Eigenvectors of a Matrix Normal Modes of Coupled Oscillation

Iterative Methods

Jacobi Method I

• The iterative methods depend on the <u>rearrangement</u> of the equations in this manner:

$$x_{i} = \frac{b_{i}}{a_{ii}} - \sum_{j=1, j \neq i}^{n} \frac{a_{ij}}{a_{ii}} x_{j}, i = 1, 2, \dots, n, \mapsto x_{1} = \frac{11}{6} - \left(\frac{-2}{6} x_{2} + \frac{1}{6} x_{3}\right)$$
(1)

Each equation now solved for the variables in succession:

- We begin with some initial approximation to the value of the variables.
- Say initial values are; x₁ = 0, x₂ = 0, x₃ = 0. Each component might be taken equal to zero if no better initial estimates are at hand.

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides The Inverse of a Matrix Eigenvalues and Eigenvalues and Eigenvectors of a Matrix Normal Modes of Coupled Oscillation Iterative Methods Jacobi Method

Jacobi Method II

- The new values are substituted in the right-hand sides to generate a second approximation,
- and the process is repeated until successive values of each of the variables are sufficiently alike.
- Now, general form

$$\begin{aligned} x_1^{(n+1)} &= 1.8333 + 0.3333 x_2^{(n)} - 0.1667 x_3^{(n)} \\ x_2^{(n+1)} &= 0.7143 + 0.2857 x_1^{(n)} - 0.2857 x_3^{(n)} \\ x_3^{(n+1)} &= 0.2000 + 0.2000 x_1^{(n)} + 0.4000 x_2^{(n)} \end{aligned}$$

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides The Inverse of a Matrix

Eigenvalues and Eigenvectors of a Matrix

Normal Modes of Coupled Oscillation

Iterative Methods

Jacobi Method

(2)

 Starting with an initial vector of x⁽⁰⁾ = (0, 0, 0,), we obtain Table 1

	First	Second	Third	Fourth	Fifth	Sixth	 Ninth
<i>x</i> ₁	0	1.833	2.038	2.085	2.004	1.994	 2.000
<i>x</i> ₂	0	0.714	1.181	1.053	1.001	0.990	 1.000
<i>x</i> 3	0	0.200	0.852	1.080	1.038	1.001	 1.000

Table: Successive estimates of solution (Jacobi method)

Jacobi Method III

• Rewrite in matrix notation; let A = L + D + U,

$$Ax = b \Longrightarrow \begin{bmatrix} 6 & -2 & 1 \\ -2 & 7 & 2 \\ 1 & 2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \\ -1 \end{bmatrix}$$

$$L = \begin{bmatrix} 0 & 0 & 0 \\ -2 & 0 & 0 \\ 1 & 2 & 0 \end{bmatrix}, D = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -5 \end{bmatrix}, U = \begin{bmatrix} 0 & -2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 0 & -2 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Ax = (L + D + U)x = b$$

$$Dx = -(L + U)x + b$$

$$x = -D^{-1}(L + U)x + D^{-1}b$$

• From this we have, identifying x on the left as the new iterate,

$$x^{(n+1)} = -D^{-1}(L+U)x^{(n)} + D^{-1}b$$

Numerical Techniques Solving Sets of **Equations - Linear** Algebra and Matrix Computing II

> Dr. Cem Özdoğan .

> > x for d Sides ıtrix latrix Coupled

Jacobi Method IV

• In Eqn. 2,

$$b' = D^{-1}b = \begin{bmatrix} 1.8333\\ 0.7143\\ 0.2000 \end{bmatrix}$$
$$D^{-1}(L+U) = \begin{bmatrix} 0 & -0.3333 & 0.1667\\ -0.2857 & 0 & 0.2857\\ -0.2000 & -0.4000 & 0 \end{bmatrix}$$

- This procedure is known as the Jacobi method, also called "the method of simultaneous displacements",
- because each of the equations is simultaneously changed by using the most recent set of *x*-values (see Table 1).
- Example py-file: The Jacobi approximation to the solution of AX = B. myJacobi.py

Numerical Techniques Solving Sets of Equations - Linear Algebra and Matrix Computing II

Dr. Cem Özdoğan

Using the LU Matrix for Multiple Right-Hand Sides The Inverse of a Matrix Eigenvalues and Eigenvectors of a Matrix Normal Modes of Coupled Oscillation Iterative Methods Jacobi Method