Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0) [Neville's Method](#page-19-0)

Dr. Cem Özdoğan Engineering Sciences Department ˙Izmir Kâtip Çelebi University

Lecture 12 Data Analysis: Interpolation and Curve Fitting I Interpolating Polynomials

IKC-MH.55 *Scientific Computing with Python* at January 12, 2024

Contents

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)

[Neville's Method](#page-19-0)

1 [Interpolation and Curve Fitting](#page-2-0)

[Interpolating Polynomials](#page-4-0) [Interpolation versus Curve Fitting](#page-5-0) [Fitting a Polynomial to Data](#page-6-0) [Lagrangian Polynomials](#page-12-0) [Neville's Method](#page-19-0)

Interpolation and Curve Fitting I

- Sines, logarithms, and other nonalgebraic functions *from tables*.
- Those tables had values of the function at *uniformly spaced values* of the argument.
- Most often *interpolated* linearly: The value for $x = 0.125$ was computed as at the halfway point between $x = 0.12$ and $x = 0.13$.
- If the function does not vary too rapidly and the tabulated points are close enough together, this linearly estimated value would be accurate enough.
- As a conclusion: **Data can be interpolated to estimate values**.

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0) [Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

Interpolation and Curve Fitting II

Interpolating Polynomials:

Describes a straightforward but computationally inconvenient way to fit a polynomial to a set of data points **so that an interpolated value can be computed**.

Divided Differences

Spline Curves

Least-Squares Approximations

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)

Interpolating Polynomials

- We have a table of *x* and *y*-values.
- Two entries in this table might be *^y* ⁼ ².36 at *^x* ⁼ ⁰.41 and $y = 3.11$ at $x = 0.52$.
- If we desire an estimate for y at $x = 0.43$, we would use the two table values for that estimate.
- Why not interpolate as if $y(x)$ was linear between the two *x*-values (similar triangles)?

where

$$
y(0.43) \approx 2.36 + \frac{2}{11}(3.11 - 2.36) = 2.50
$$
 $\frac{2}{11} \implies \frac{0.43 - 0.41}{0.52 - 0.41}$

- We will be most interested in techniques adapted to situations where the data are far from linear.
- The basic principle is to fit a polynomial curve to the data.

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0) [Interpolation versus Curve](#page-5-0) Fitting [Fitting a Polynomial to](#page-6-0) Data [Lagrangian Polynomials](#page-12-0) [Neville's Method](#page-19-0)

Interpolation versus Curve Fitting

Given a set of data $v_i = f(x_i)$ $i = 1, \ldots, n$ obtained from an experiment or from some calculation.

In curve fitting,

the approximating function **passes near the data points**, but (usually) not exactly through them. There is some uncertainty.

In interpolation,

process inherently assumes that the data have no uncertainty. The interpolation function **passes** *exactly* **through** points.

Figure shows a plot of some hypothetical experimental data, a curve fit function and interpolating with piecewise-linear function.

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data [Lagrangian Polynomials](#page-12-0) [Neville's Method](#page-19-0)

Fitting a Polynomial to Data I

- Interpolation involves constructing and then evaluating an interpolating function.
- **interpolant**, $y = F(x)$, determined by requiring that it \boldsymbol{p} ass through the known data (x_i, y_i) .
- In its most general form, interpolation involves determining the coefficients a_1, a_2, \ldots, a_n
- in the linear combination of *n basis functions*, Φ(*x*), that constitute the interpolant

$$
F(x) = a_1\Phi_1(x) + a_2\Phi_2(x) + \ldots + a_n\Phi_n(x)
$$

• such that $F(x) = y_i$ for $i = 1, \ldots, n$. The **basis function** may be **polynomial**

$$
F(x) = a_1 + a_2x + a_3x^2 + \ldots + a_nx^{n-1}
$$

• or **trigonometric**

$$
F(x) = a_1 + a_2 e^{ix} + a_3 e^{i2x} + \ldots + a_n e^{i(n-1)x}
$$

• or some other **suitable set of functions**.

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

Fitting a Polynomial to Data II

Polynomials are often used for interpolation because they are easy to evaluate and easy to manipulate analytically.

Table: Fitting a polynomial to data.

- Suppose that we have a data set.
- First, we need to select the points that determine our polynomial.
- The maximum degree of the polynomial is always one less than the number of points.
- Suppose we choose the first four points.

If the cubic is $ax^3 + bx^2 + cx + d$

• We can write four equations involving the unknown coefficients *^a*, *^b*, *^c*, and *^d*;

when $x = 3.2 \Rightarrow a(3.2)^3 + b(3.2)^2 + c(3.2) + d = 22.0$ *when* $x = 2.7 \Rightarrow a(2.7)^3 + b(2.7)^2 + c(2.7) + d = 17.8$ *when* $x = 1.0 \Rightarrow a(1.0)^3 + b(1.0)^2 + c(1.0) + d = 14.2$ $when x = 4.8 \Rightarrow a(4.8)^3 + b(4.8)^2 + c(4.8) + d = 38.3$

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

Fitting a Polynomial to Data III

• Solving these equations gives

 $a = -0.5275$ $b = 6.4952$ $c = -16.1177$ $d = 24.3499$

• and our polynomial is

 $-0.5275x^3 + 6.4952x^2 - 16.1177x + 24.3499$

- At $x = 3.0$, the **estimated value** is 20.212.
- if we want a new polynomial that is also made to fit at the point (5.6, ⁵¹.7) ?
- or if we want to see what difference it would make to use a quadratic instead of a cubic?
- **Example py-file:** Polynomial Interpolation. Gaussian elimination & back substitution. No pivoting. [myGEshow_interpolation.py](http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myGEshow_interpolation.py)

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

Fitting a Polynomial to Data IV

```
My6Eshow - Solution Vector: [[ -0.52748013 6.49522788 -16.11768944 24.3499417 ]]
         \overline{\mathbf{z}}b
-0.5275 x + 6.495 x - 16.12 x + 24.35
MyGEshow - Estimated v-value for x=3.000000 : 20.211961
NumPy Solve - Solution Vector : [[ -0.52748013 6.49522788 -16.11768944 24.3499417 ]]
         \overline{3}\overline{2}-0.5275 x + 6.495 x - 16.12 x + 24.35
NumPy Solve - Estimated y-value for x=3.000000 : 20.211961
```


Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0) [Neville's Method](#page-19-0)

Figure: Polynomial Interpolation.

Fitting a Polynomial to Data V

Table: Interpolation of gasoline prices.

- Another example;
- Use the polynomial order 5, why?

$$
P = a_1 + a_2y + a_3y^2 + a_4y^3 + a_5y^4 + a_6y^5
$$

- Make a guess about the prices of aasoline at year of 1991 (2011).
- **Example py-file:** Interpolation of gasoline prices. Gaussian elimination & back substitution. No pivoting. [myGEshow_gasoline.py](http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myGEshow_gasoline.py)
	- Now, try with the shifted dates
	- (Xdata=Xdata-np.mean(Xdata)).
	- Make the necessary corrections for the array A.
	- What differs in the plot and why?

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

Fitting a Polynomial to Data VI

```
MyGEshow - Solution Vector: [[-2.39583357e-01 1.42985014e+03 -2.84447812e+06 1.88622242e+09]]
          \overline{3}\overline{2}-0.2396 x + 1430 x - 2.844e+06 x + 1.886e+09
MyGEshow - Estimated v-value for x=1991.000000 : 141.281250
NumPy Solve - Solution Vector : [[-2.39583352e-01 1.42985011e+03 -2.84447807e+06 1.88622238e+09]]
          \overline{3}\overline{2}-0.2396 x + 1430 x - 2.844e+06 x + 1.886e+09
NumPy Solve - Estimated y-value for x=1991.000000 : 141.281251
```


Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0) [Neville's Method](#page-19-0)

Figure: Polynomial Interpolation - Gasoline Case.

Lagrangian Polynomials I

- *Straightforward approach*-the Lagrangian polynomial.
- The simplest way to exhibit the existence of a polynomial for interpolation with *unevenly* spaced data.
	- **Linear interpolation**
	- **Quadratic interpolation**
	- **Cubic interpolation**
- Lagrange polynomials have two important advantages over interpolating polynomials.
	- **1** the construction of the interpolating polynomials does not require the solution of a system of equations (such as Gaussian elimination).
	- 2 the evaluation of the Lagrange polynomials is much less susceptible to roundoff.

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)

Lagrangian Polynomials II

• **Linear interpolation**

$$
P_1(x)=c_1x+c_2
$$

• put the values

$$
\frac{y_1 = c_1x_1 + c_2}{y_2 = c_1x_2 + c_2}
$$

• then

$$
c_1 = \frac{y_2 - y_1}{x_2 - x_1} \qquad \qquad c_2 = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}
$$

• substituting back and rearranging

$$
P_1(x) = y_1 \frac{x - x_2}{x_1 - x_2} + y_2 \frac{x - x_1}{x_2 - x_1}
$$

• redefining as

$$
P_1(x) = y_1 L_1(x) + y_2 L_2(x)
$$

• where Ls are the first-degree *Lagrange interpolating polynomials.*

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)

Lagrangian Polynomials III

• **Quadratic interpolation**

$$
P_2(x) = y_1 L_1(x) + y_2 L_2(x) + y_3 L_3(x)
$$

where *L^s* are not the same with the previous *Ls*!

$$
L_1(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)}, \quad L_2(x) = \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)},
$$

$$
L_3(x)=\frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}.
$$

$$
L_3(x)=\frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}.
$$

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)

[Neville's Method](#page-19-0)

- **Cubic interpolation**
- Suppose we have a table of data with four pairs of *x* and $f(x)$ -values, with x_i indexed by variable *i*:

Through these four data pairs we can pass a cubic.

Lagrangian Polynomials IV

• The Lagrangian form is

$$
P_3(x)=\frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}t_0+\frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}
$$

$$
+\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}t_2+\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}t_3
$$

- This equation is made up of four terms, each of which is a cubic in *x*; hence the sum is a cubic.
- The pattern of each term is to form the numerator as a product of linear factors of the form $(x - x_i)$, omitting one *xi* in each term.

• The omitted value being used to form the denominator by replacing *x* in each of the numerator factors.

- In each term, we multiply by the *fi*.
- It will have $n + 1$ terms when the degree is *n*.
- Fit a cubic through the first four points of the preceding Table [1](#page-7-0) (first four points) and use it to find the interpolated value for $x = 3.0$.

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

*f*1

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)

Lagrangian Polynomials V

Table: Fitting a polynomial to data.

x f(x) 3.2 22.0 2.7 17.8 1.0 14.2 4.8 38.3 5.6 51.7

$$
\frac{(x-3.2)(x-1.0)(x-4.8)}{(2.7-3.2)(2.7-1.0)(2.7-4.8)}17.8+
$$

$$
\frac{(x-3.2)(x-2.7)(x-4.8)}{(1.0-3.2)(1.0-2.7)(1.0-4.8)}14.2+
$$

$$
\frac{(x-3.2)(x-2.7)(x-1.0)}{(4.8-3.2)(4.8-2.7)(4.8-1.0)}38.3
$$

• Carrying out the arithmetic,
$$
P_3(3.0) = 20.21
$$
.

• In general

$$
P_{n-1}(x) = y_1L_1(x)+y_2L_2(x)+\ldots+y_nL_n(x) = \sum_{j=1}^n y_jL_j(x)
$$

where
$$
L_j(x) = \prod_{k=1, k \neq j}^{n} \frac{x - x_k}{x_j - x_k}
$$

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)

Lagrangian Polynomials VI Example py-file: Interpolation of gasoline prices. Lagrange Interpolation. myLagInt gasoline.py

MyLagInt - Estimated v-value for x=1991.888888 : 141.281258 SciPy Lagrange - Polynomial : Ъ. $\overline{2}$ -0.2396 x + 1430 x - 2.8440+06 x + 1.8860+09 SciPy Lagrange - Estimated y-value for x=1991.000000 : 141.281243 NumPy Polynomial - Estimated y-value for x=1991.880880 : 141.281243 NumPy Solve - Solution Vector : [[-2.39583282e-81 1.42984969e+83 -2.84447723e+86 1.88622183e+89]] 3 -0.2396 x + 1430 x - 2.844e+06 x + 1.886e+09 NumPy Solve - Estimated v-value for x=1991.000000 : 141.281250

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)

[Neville's Method](#page-19-0)

Figure: Lagrange Polynomial Interpolation - Gasoline Case.

Lagrangian Polynomials VII

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)

- **Error of Interpolation**; When we fit a polynomial $P_n(x)$ to some data points, it will pass exactly through those points,
	- but between those points $P_n(x)$ will not be precisely the same as the function $f(x)$ that generated the points (unless the function is that polynomial).
	- How much is $P_n(x)$ different from $f(x)$?
	- How large is the error of $P_n(x)$?
- It is most important that you never fit a polynomial of a degree higher than 4 or 5 to a set of points.
- If you need to fit to a set of more than six points, be sure to break up the set into subsets and fit separate polynomials to these.
- You cannot fit a function that is discontinuous or one whose derivative is discontinuous with a polynomial.

Neville's Method I

- The trouble with the standard *Lagrangian polynomial technique* is that we **do not know which degree** of polynomial to use.
	- If the degree is **too low**, the interpolating polynomial does **not give good estimates** of *f*(*x*).
	- If the degree is **too high**, **undesirable oscillations** in polynomial values can occur.
- **Neville's method** can overcome this difficulty.
	- It computes the interpolated value with polynomials of successively higher degree,
	- *stopping when the successive values are close together*.
- The successive approximations are actually computed by linear interpolation from the previous values.
- The Lagrange formula for linear interpolation to get *f*(*x*) from two data pairs, (x_1, f_1) and (x_2, f_2) , is

$$
f(x) = \frac{(x - x_2)}{(x_1 - x_2)} f_1 + \frac{(x - x_1)}{(x_2 - x_1)} f_2
$$

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)

Neville's Method II

- Neville's method begins by arranging the given data pairs, (x_i, f_i) .
- Such that the successive values are in order of the closeness of the *xⁱ* to *x*.
- Suppose we are given these data

and we want to interpolate for $x = 27.5$.

We first *rearrange* the data pairs in order of closeness to $x = 27.5$

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)

Neville's Method III

- Neville's method begins by renaming the *fⁱ* as *Pi*0.
- We build a table

• Thus, the value of P_{01} is computed by

$$
f(x) = \frac{(27.5 - x_1)}{(x_0 - x_1)} * 0.52992 + \frac{(27.5 - x_0)}{(x_1 - x_0)} * 0.37784
$$

substituting all;

$$
P_{01}=\frac{(27.5-22.2)}{(32.0-22.2)}*0.52992+\frac{(27.5-32.0)}{(22.2-32.0)}*0.37784=0.46009
$$

Data Analysis: Interpolation and Curv Fitting I

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0) [Interpolation versus Curve](#page-5-0)

Fitting [Fitting a Polynomial to](#page-6-0)

Data

[Lagrangian Polynomials](#page-12-0)

Neville's Method IV

• Once we have the column of P_{i1} 's, we compute the next column.

$$
P_{22} = \frac{(27.5 - 41.6) * 0.37379 + (50.5 - 27.5) * 0.44524}{50.5 - 41.6} = 0.55843
$$

- The remaining columns are computed similarly.
- The general formula for computing entries into the table is

$$
p_{i,j} = \frac{(x - x_i) * P_{i+1,j-1} + (x_{i+j} - x) * P_{i,j-1}}{x_{i+j} - x_i}
$$

• The **top line of the table** represents Lagrangian interpolates at *^x* ⁼ ²⁷.5 using polynomials of *degree equal to the second subscript* of the *P* ′*s*.

• The preceding data are for sines of angles in degrees and the correct value for $x = 27.5$ is 0.46175.

Dr. Cem Özdogan ˘

[Interpolation and](#page-2-0) Curve Fitting

[Interpolating Polynomials](#page-4-0)

[Interpolation versus Curve](#page-5-0) Fitting

[Fitting a Polynomial to](#page-6-0) Data

[Lagrangian Polynomials](#page-12-0)