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3.3

How a computer can be used

1 to solve problems that may not be solvable by hand.

2 to solve problems (that you may have solved before) in a
different way.

• Many of these simplified examples can be solved
analytically (by hand)

x3 − x2 − 3x + 3 = 0,with solution
√

3

• But most of the examples can not be simplified and can
not be solved analytically.
• Mathematical relationships =⇒ simulate some real word

situations.
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3.4

Five Basic Operations
• In mathematics, solve a problem through equations;

algebra, calculus, differential equations (DE), Partial
DE, . . .
• In numerical analysis; four operations (add, subtract,

multiply, division) and Comparison.
• These operations are exactly those that computers can do

∫

π

0

√

1 + cos2xdx

• length of one arch of the curve y-sinx; no solution with “a
substitution’ or “integration by parts”

• numerical analysis can compute the length of this curve by
standardised methods that apply to essentially any integrand

• Another difference between a numerical results and
analytical answer is that the former is always an
approximation

• this can usually be as accurate as needed (level of
accuracy)

• Numerical Methods require repetitive arithmetic operations
⇒ a computer to carry out
• Also, a human would make so many mistakes
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3.5

Some disasters attributable to bad numerical computing

Have you been paying attention in your numerical analysis or
scientific computation courses? Here are some
real life examples of what can happen when numerical
algorithms are not correctly applied.
• The Patriot Missile failure, in Dharan, Saudi Arabia, on

February 25, 1991 which resulted in 28 deaths, is
ultimately attributable to poor handling of rounding

errors.
• The explosion of the Ariane 5 rocket just after lift-off on its

maiden voyage off French Guiana, on June 4, 1996, was
ultimately the consequence of a simple overflow.
• The sinking of the Sleipner A offshore platform in

Gandsfjorden near Stavanger, Norway, on August 23,
1991, resulted in a loss of nearly one billion dollars. It was
found to be the result of inaccurate finite element

analysis.

https://www-users.cse.umn.edu/~arnold/disasters/patriot.html
https://www-users.cse.umn.edu/~arnold/disasters/ariane.html
https://www-users.cse.umn.edu/~arnold/disasters/sleipner.html
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3.6

Floating-Point Arithmetic I

• Performing an arithmetic operation⇒ no exact answers
unless only integers or exact powers of 2 are involved,
• Floating-point (real numbers)→ not integers,
• Resembles scientific notation,
• IEEE standard→ storing floating-point numbers (see the

Table 1).

Table: Floating→ Normalised.

floating normalised (shifting the decimal point)
13.524 .13524 ∗ 102 (.13524E2)
-0.0442 −.442E − 1

• the sign ±
• the fraction part (called the mantissa)
• the exponent part
• What about the sign of the exponent? Rather than use

one of the bits for the sign of the exponent, exponents are
biased.
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3.7

Floating-Point Arithmetic II

For single precision (we have 8 bits reserved for the
exponent):
• 28=256
• 0−→00000000 = 0
• 255−→11111111=255
• 0 (255)=⇒ -127 (128). An exponent of -127 (128) stored
as 0 (255).
• So biased−→ 2128 = 3.40282E + 38, mantissa gets 1 as
maximum
• Largest: 3.40282E+38; Smallest: 5.87747E-39 (!)
• For double and extended precision the bias values are
1023 and 16383, respectively.
• 0

0 , 0 ∗∞,
√
−1 =⇒ NaN : Undefined.
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3.8

Floating-Point Arithmetic III
There are three levels of precision (see the Fig. )

Figure: Level of precision.

week3_HandsOn.py
1 impor t sys
2 p r i n t ( sys . f l o a t _ i n f o )
3 # sys . f l o a t _ i n f o (max=1.7976931348623157 e+308 , max_exp=1024,

max_10_exp =308 , min=2.2250738585072014 e−308, min_exp=−1021,
4 # min_10_exp=−307, d ig =15 , mant_dig =53 , eps i lon =2.220446049250313 e

−16, rad i x =2 , rounds =1)
5 p r i n t ( sys . f l o a t _ i n f o .max)
6 # 1.7976931348623157 e+308
7 p r i n t ( " %10.6e " % 2**128)
8 # 3.402824e+38
9 p r i n t ( " %10.6e " % 2**1023)

10 # 8.988466e+307 f

http://cemozdogan.net/ScientificComputingwithPython/week3/week3_HandsOn.py
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3.9

Floating-Point Arithmetic IV

EPS: short for epsilon−→used for represent the smallest
machine value that can be added to 1.0 that gives a result
distinguishable from 1.0!
• eps −→ ε =⇒ (1 + ε) + ε = 1 but 1 + (ε+ ε) > 1
• Two numbers that are very close together on the real

number line can not be distinguished on the floating-point
number line if their difference is less than the least
significant bit of their mantissas.

1 impor t sys
2 p r i n t ( sys . f l o a t _ i n f o . eps i lon )
3 # 2.220446049250313 e−16
4 eps=sys . f l o a t _ i n f o . eps i lon
5 p r i n t (1+eps * 0 . 5 )
6 # 1.0
7 p r i n t (1+eps * 0 . 5 )
8 # 1.0
9 p r i n t ( (1+ eps * 0 . 5 )+eps * 0 . 5 )

10 # 1.0
11 p r i n t (1+eps * 0 . 6 )
12 # 1.0000000000000002
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LOGIK

Numerical
Fundamentals

Analysis vs Numerical
Analysis

Some disasters attributable
to bad numerical computing

Floating-Point Arithmetic

Computer Number
Representation

Kinds of Errors in Numerical
Procedures

Absolute vs Relative Error
& Convergence

3.10

Computer Number Representation I

Say we have six bit representation (not single, double) (see the
Fig.)
• 1 bit → sign

• 3(+1) bits → mantissa

• 2 bits → exponent

Figure: Computer numbers with six bit representation.

• For positive range 9
32 ←→ 15

4

• For negative range −15
4 ←→ −9

32 ; even discontinuity at point
zero since it is not in the ranges.
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3.11

Computer Number Representation II

Figure: Upper: number line in the hypothetical system, Lower: IEEE
standard.

• Very simple computer arithmetic system⇒ the gaps
between stored values are very apparent.
• Many values can not be stored exactly. i.e., 0.601, it will be

stored as if it were 0.6250 because it is closer to 10
16 , an

error of 4%
• In IEEE system, gaps are much smaller but they are still

present. (see the lower Fig.)
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3.12

Kinds of Errors in Numerical Procedures I

Computers use only a fixed number of digits

to represent a number.

• As a result, the numerical values stored in a computer are
said to have finite precision.
• Limiting precision has the desirable effects of increasing

the speed of numerical calculations and reducing memory
required to store numbers.
• But, what are the undesirable effects?

Kinds of Errors:

i Round-off Error

ii Truncation Error

iii Propagated Error
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3.13

Kinds of Errors in Numerical Procedures II
i Round-off Error:
1 # ! / usr / b in / python3
2 x = (4 /3 ) * 3 ; p r i n t ( x )
3 # 4.0
4 a =4/3 ; p r i n t ( a ) # s to re double p rec i s i on approx of 4/3
5 # 1.3333333333333333
6 b=a−1; p r i n t ( b ) # remove most s i g n i f i c a n t d i g i t
7 # 0.33333333333333326
8 c=1−3*b ; p r i n t ( c ) # 3*b=1 i n exact math
9 # 2.220446049250313 e−16 # should be 0 ! !

1 from math impor t *
2 # impor t numpy as np
3 # k f i r s t =1.0 ; k l a s t =360.0; k increment =0.1
4 # f o r j i n np . arange ( k f i r s t , k l a s t + kincrement , k increment ) :
5 f o r j i n range (1 ,360) : # In degrees (1−360) as i n t . increment
6 j j = j * ( 2 * p i /360) # Conversion to rad ian
7 a=cos ( j j ) # Return the cosine of j j ( measured i n rad ians )
8 b=s i n ( j j ) # Return the cosine of j j ( measured i n rad ians )
9 z=a−(a / b ) *b # Expected as being 0 ! !

10 p r i n t ( j , j j , z )
11 352 6.14355896702004 0.0
12 353 6.161012259539984 1.1102230246251565 e−16
13 354 6.178465552059927 1.1102230246251565 e−16
14 355 6.19591884457987 1.1102230246251565 e−16
15 356 6.213372137099813 0.0
16 357 6.230825429619756 0.0
17 358 6.2482787221397 0.0
18 359 6.265732014659643 0.0
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LOGIK

Numerical
Fundamentals

Analysis vs Numerical
Analysis

Some disasters attributable
to bad numerical computing

Floating-Point Arithmetic

Computer Number
Representation

Kinds of Errors in Numerical
Procedures

Absolute vs Relative Error
& Convergence

3.14

Kinds of Errors in Numerical Procedures III

1 summation =1.0
2 f o r i i n range (10000) : # Adding 0.00001 to 1.0 as 10000 t imes
3 summation=summation +0.00001
4 p r i n t ( ’ summation = ’ , summation )
5 # summation = 1.1000000000006551 # Expected r e s u l t i s j u s t 1.1 ! !
6 p r i n t ( " summation = %f " % summation )
7 # summation = 1.100000 # Now expected r e s u l t ??

To see the effects of roundoff in a simple calculation, one need
only to force the computer to store the intermediate results.
• All computing devices represents numbers, except for

integers and some fractions, with some imprecision.
• Floating-point numbers of fixed word length; the true

values are usually not expressed exactly by such
representations.
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3.15

Kinds of Errors in Numerical Procedures IV

1 impor t numpy as np
2 x=np . tan ( np . p i / 6 ) ; p r i n t ( x )
3 # 0.5773502691896257
4 y=np . s i n ( np . p i / 6 ) / np . cos ( np . p i / 6 ) ; p r i n t ( y )
5 # 0.5773502691896256
6 i f x==y :
7 p r i n t ( " x and y are equal " )
8 else :
9 p r i n t ( " x and y are not equal : x−y=%e " % ( x−y ) )

10 # x and y are not equal : x−y=1.110223e−16

• The test is true only if x and y are exactly equal in
bit pattern.
• Although x and y are equal in exact arithmetic, their

values differ by a small, but nonzero, amount.
• When working with floating-point values the question “are

x and y equal?” is replaced by “are x and y close?” or,
equivalently, “is x − y small enough?”
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3.16

Kinds of Errors in Numerical Procedures IV

ii Truncation Error: i.e., approximate ex by the cubic power

P3(x) = 1 +
x

1!
+

x2

2!
+

x3

3!
; ex = P3(x) +

∞∑

n=4

xn

n!

• Approximating ex with the cubic gives an inexact answer.
The error is due to truncating the series,

• When to cut series expansion =⇒ be satisfied with an
approximation to the exact analytical answer.

• Unlike roundoff, which is controlled by the hardware and the
computer language being used, truncation error is under
control of the programmer or user.

• Truncation error can be reduced by selecting more accurate
discrete approximations. But, it can not be eliminated
entirely.
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3.17

Kinds of Errors in Numerical Procedures V

Evaluating the Series for sin(x) (Example py-file: sinser.py)

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+ . . .

• An efficient implementation of the series uses recursion to
avoid overflow in the evaluation of individual terms. If Tk is
the k th term (k = 1, 3, 5, . . .) then

Tk =
x2

k(k − 1)
Tk−2

• Study the effect of the parameters tol and nmax by
changing their values (Default values are 5e-9 and 15,
respectively).

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/sinser.py
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3.18

Kinds of Errors in Numerical Procedures VI
1 impor t numpy as np
2 def s i n s e r ( x , t o l , n ) :
3 term = x
4 ssum = term # I n i t i a l i z e s e r i e s
5 p r i n t ( " Ser ies approx imat ion to s in (%f ) \ n k term ssum" % ( x *360/ (2* np . p i ) )

)
6 p r i n t ( " 1 %11.3e %20.16 f " % ( term , ssum) )
7 f o r k i n range (3 , 2*n−1, 2) :
8 term = −term * x * x / ( k * ( k−1)) # Next term i n the s e r i e s
9 ssum = ssum + term

10 p r i n t ( "%3d %11.3e %30.26 f " % ( k , term , ssum) )
11 i f abs ( term / ssum) < t o l :
12 break # True at convergence
13 p r i n t ( " Truncat ion e r r o r a f t e r %d terms i s %g " % ( ( k+1) / 2 , abs (ssum−np . s in ( x ) ) ) )
14 s i n s e r ( np . p i / 6 ,5e−9,10)
15 p r i n t ( " s in (% f )=%f wi th numpy l i b r a r y " % ( np . p i / 6 * 3 6 0 / ( 2 *np . p i ) , np . s in ( np . p i / 6 ) ) )
16 impor t math
17 p r i n t ( " s in (% f )=%f wi th math l i b a r a r y " % ( math . p i / 6 * 3 6 0 / ( 2 *math . p i ) ,math . s in ( math . p i / 6 ) ) )

Figure: Output of sinser.py
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3.19

Kinds of Errors in Numerical Procedures VII

Derivative of Sine function. Truncation & Round-off Errors
(Example py-file: trunroun.py)

Figure: Output and Plot of trunroun.py

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/trunroun.py
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3.20

Kinds of Errors in Numerical Procedures VIII

iii Propagated Error:
• more subtle (difficult to analyse)
• by propagated we mean an error in the succeeding steps of

a process due to an occurrence of an earlier error
• of critical importance
• stable numerical methods; errors made at early points

die out as the method continues
• unstable numerical method; does not die out
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3.21

Absolute vs Relative Error & Convergence I

• Accuracy (how close to the true value) −→ great
importance,
• absolute error = |true value − approximate error |

A given size of error is usually more serious when the
magnitude of the true value is small,
• relative error = absolute error

|true value|

• Convergence of Iterative Sequences:
• Iteration is a common component of numerical algorithms.

In the most abstract form, an iteration generates a
sequence of scalar values xk , k = 1,2, 3, . . .. The sequence
converges to a limit ξ if

|xk − ξ| < δ, for all k > N

where δ is a small number called the convergence
tolerance. We say that the sequence has converged to
within the tolerance δ after N iterations.
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3.22

Absolute vs Relative Error & Convergence II
1 def newtsqr t ( x , de l t a , maxit ) :
2 r = x / 2 ; r o l d = x # I n i t i a l i z e , make sure convergence t e s t f a i l s on f i r s t t r y
3 i t = 0
4 whi le ( r != r o l d ) and ( i t <maxit ) : # Convergence t e s t
5 # whi le ( ( r−r o l d ) > d e l t a ) and ( i t <maxit ) : # Convergence t e s t
6 # whi le ( abs ( r−r o l d ) > d e l t a ) and ( i t <maxit ) : # Convergence t e s t
7 # whi le ( abs ( ( r−r o l d ) / r o l d ) > d e l t a ) and ( i t <maxit ) : # Convergence t e s t
8 r o l d = r # Save o ld value f o r next convergence t e s t
9 r = 0 . 5 * ( r o l d + x / r o l d ) # Update the guess

10 i t = i t + 1
11 r e t u r n r
12 # Test the newtsqr t f u n c t i o n f o r a range of i n p u t s
13 x t e s t = [ 4 , 0 .04 , 4e−4, 4e−6, 4e−8, 4e−10, 4e−12] # arguments to t e s t
14 p r i n t ( " Absolute Convergence C r i t e r i o n " )
15 p r i n t ( " x s q r t ( x ) newtsqr t ( x ) e r r o r r e l e r r " )
16 impor t math
17 f o r x i n x t e s t : # repeat f o r each element in x t e s t
18 r = math . s q r t ( x )
19 rn = newtsqr t ( x ,5 e−9,25)
20 e r r = abs ( rn − r )
21 r e l e r r = e r r / r
22 p r i n t ( " %10.3e %10.3e %10.3e %10.3e %10.3e " % ( x , r , rn , er r , r e l e r r ) )

Figure: Output of newtsqrt.py

Newton’s method to
compute the square root
of a number.
Example py-file:
newtsqrt.py

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/newtsqrt.py
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