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6.3

Differential Equations I

• Most problems in the real world are modeled with
differential equations because it is easier to see the
relationship in terms of a derivative.

• e.g. Newton’s Law: F=Ma, d2s/dt2 = a = F/M (constant
acceleration). 2nd order ordinary differential equation.

• It is ordinary since it does not involve partial differentials.
• Second order since the order of the derivative is two.
• The solution to this equation is a function,

s(t) = (1/2)at2 + v0t + s0.
• Two arbitrary constants, v0 and s0, the initial values for the

velocity and position.
• The equation for s(t) allows the computation of a numerical

value for s, the position of the object, at any value for time,
the independent variable, t.

• e.g. Harmonic oscillator problem in mechanics,
• e.g. One-dimensional Schrödinger equation in quantum

mechanics,
• e.g. One-dimensional Laplace equation in electromagnetic

theory, etc.
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6.4

Differential Equations II
• Analytical solutions of these equations are often

non-existent or very complicated.
• Numerical solutions are the remedy. In terms of solution

technique, we can divide differential equations into three
groups:

1 Initial Value Problems:

In time-dependent problems, the initial state at time t=0 is given
and a solution is searched for later t values. For example, in
the following quadratic equation

d2y

dt2
= f (y , y ′, t)

two initial conditions must be given at t=0, namely y(0) and
y ′(0) values. (Nth order DE → N initial conditions).

2 Boundary Value Problems.

3 Eigenvalue (characteristic-value) Problems.
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6.5

Projectile Motion with Air Resistance I

• In addition to a vertical gravitational force on a 2D
projectile motion, there is also a friction force to a certain
extent due to air resistance.

• This frictional force is usually in the opposite direction to
velocity and is proportional to the square of the velocity:
~Fr = −kv~v (Drag force, FD = −(1/2)cρAv2~v/|~v | here, c is
the drag coefficient, ρ the air density, and A the projectile’s
cross-sectional area).

If we write Newton’s 2nd law as
a vector in two dimensions,

m~a = ~Fnet

m
d2~r

dt2
= m~g − kv~v

• and component wise (where k/m = γ):

d2x

dt2
= −γ

(
√

v2
x + v2

y

)

vx &
dx

dt
= vx

d2y

dt2
= −g − γ

(
√

v2
x + v2

y

)

vy &
dy

dt
= vy

• Now, we have a set of equations.
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6.6

Planetary Motion I
• In the previous projectile motion example, we used the

gravitational force with the expression F = mg and
gravitational acceleration as being constant near the
Earth’s surface.

• However, the gravitational force between masses is most
generally given by Newton’s law of universal gravitation:

F = G
m1m2

r2

Here, G = 6.6743 × 10−11 m3kg−1s−2 is called the
universal gravitational constant. The force is attractive and
along the direction connecting the two masses.

• This expression should be used when studying the motion
of planets and moons.

• Let’s study the motion of a planet (mass m )moving under
the gravitational force of the Sun (mass M). If we take the
sun at the origin, the vector expression of the force acting
on the planet would be:

~F = −G
Mm

r3
~r
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6.7

Planetary Motion II

• Since the orbit of the planet will be at a plane (2D), the
position vector ~r and accordingly the acceleration vector ~a
would have two components as:

~r = x î + y ĵ

~a =
d2x

dt2
î +

d2y

dt2
ĵ

• Newton’s 2nd law as ~a = ~F/m and also velocity
expressions for the x- and y-components:

d2x

dt2
= −G

M

r3
x &

dx

dt
= vx

d2y

dt2
= −G

M

r3
y &

dy

dt
= vy

• Now, we have a set of equations.
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6.8

Euler Method I

• In an initial-value problem, the numerical solution
begins at the initial point and marches from there to
increasing values for the independent variable.

• The Euler method. Describes a method that is
easy to use but is not very precise unless the step size,
the intervals for the projection of the solution, is very small.

• Consider the following first-order differential equation:

dy

dx
= y ′(x) = f (x , y) & y(x0) = y0 (1)

• Here x is the variable, y(x) and f(x,y) are real functions,
and the initial condition y0 is a real number.

• From the solution of this equation, we get y1, y2, . . . , yn

values for the function at the points x1, x2, . . . , xn with
equal step lengths h.

• Equations of higher order are solved by converting
them to a system of linear equations.
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6.9

Euler Method II

• The expression given by Equation 1 is written as the
forward-difference approximation at a point xi by Euler’s
method.

yi+1 − yi

h
+ O(h) = f (xi , yi)

• If we solve this expression for yi+1, we get the
Euler method formula:

yi+1 = yi + hf (xi , yi) + O(h2)

• This expression shows that the error in one step of Euler
method is O(h2). But, this error is just the local error. Over
many steps, the global error becomes O(h) (as
NO(h2) ≈ O(h) for N steps).

• The method is easy to program when we know the formula

for y ′(x)(≡ f (xi , yi)) and a starting value, y0 = y(x0).
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6.10

Euler Method III
• Let’s see the application of this method on an example.

Given differential equation,

dy

dx
= x + y

• The analytical solution of this equation is given as
y(x) = 2ex − x − 1. Initial condition: y(x = 0) = 1

Table: Solution of the differential equation dy/dx = x + y in the
interval [0, 1] by Euler method.
(Example py-file: myeuler.py)

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myeuler.py
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6.11

Euler Method IV
As can be seen from the table, the margin of error is large in
the Euler method.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y

Approximate and Exact Solution for Simple ODE: dydx = x+ y

Approximate
Exact
SciPy

Figure: Solution of the differential equation dy/dx = x + y in the
interval [0, 1] by Euler method.
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6.12

Runge-Kutta Method I

• Simple Euler method comes from using just one term from
the Taylor series for y(x) expanded about x = x0.

• What if we use more terms of the Taylor series? Runge
and Kutta, developed algorithms from using more than two
terms of the series.

• In the Euler method, the increment is directly from xi to
xi+1.

• Second-order Runge-Kutta methods are obtained by using
a weighted average of two increments to y(x0), k1 and k2.

• Let’s take a "trial step" in the middle and then increment to
xi+1 by using these middle x- and y-values. Two quantities
are defined here as k1 and k2,

k1 = hf (xi , yi)

k2 = hf (xi +
1
2

h, yi +
1
2

k1)
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6.13

Runge-Kutta Method II

• The parameter;
• k1 is for the calculation at xi , yi ,
• k2 is for a half-step away (xi +

1
2 h, yi +

1
2 k1) calculation.

• Accordingly, the 2nd order Runge-Kutta formula becomes:

yi+1 = yi + k2 + O(h3)

• In the Runge-Kutta method, the margin of error in one step
is O(h3) and is O(h2) in the entire interval.

• It works better than the Euler method, but it comes at a
cost: f(x, y) will be calculated twice at each step.

• This "trial step" technique can be taken even further.
Fourth-order Runge-Kutta (RK4) methods are most widely
used and are derived in similar fashion.
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6.14

Runge-Kutta Method III

k1 = f (xi , yi)

k2 = f (xi +
1
2

h, yi +
1
2

hk1)

k3 = f (xi +
1
2

h, yi +
1
2

hk2)

k4 = f (xi + h, yi + hk3)

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4) + O(h5)

• The local error term for the fourth-order Runge-Kutta
method is O(h5); the global error would be O(h4).

• It is computationally more efficient than the (modified)
Euler method because the steps can be manyfold larger
for the same accuracy.

• However, four evaluations of the function are required
per step rather than two.
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6.15

Runge-Kutta Method IV
• Let’s apply the RK4 method on the previous example.

Given differential equation,

dy

dx
= x + y

• The analytical solution of this equation is given as
y(x) = 2ex − x − 1. Initial condition: y(x = 0) = 1

Table: Solution of the differential equation dy/dx = x + y in the
interval [0, 1] by 4th order Runge-Kutta method.

(Example py-file: myrungekutta.py)

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/myrungekutta.py
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6.16

Runge-Kutta Method V
As can be seen from the Table, much more sensitive results
are obtained compared to the Euler method.
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Approximate and Exact Solution for Simple ODE: dydx = x+ y
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Figure: Solution of the differential equation dy/dx = x + y in the
interval [0, 1] by Euler method.
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6.17

2nd Degree Equations & Linear Systems I

• Any second-order or higher-order differential equation
can be converted into a system of first-order (linear)
equations. For example,

d2y

dx2
+ A(x)

dy

dx
+ B(x)y(x) = 0

• Let’s define two new functions for the equation, y1(x) and
y2(x):

y1(x) = y(x) & y2(x) =
dy

dx

• With this transformation, instead of one 2nd order
equation, two 1st order equations are formed:

(1)
dy1

dx
= y2(x)

(2)
dy2

dx
= −A(x)y2 − B(x)y1
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6.18

2nd Degree Equations & Linear Systems II

• All we need to do to solve higher-order equations, even a
system of higher-order initial-value problems, is to reduce
them to a system of first-order equations.

• Such as: One M-order equation → a system with M
first-order equations.

• Let’s take the most general system of differential equations
with M unknowns:

dy1

dx
= f1(x , y1, . . . , yM) & y1(0) = y10

...
... (2)

dyM

dx
= fM(x , y1, . . . , yM) & yM(0) = yM0

• The next step for solving is to apply the methods (such as;
Euler, Runge-Kutta) for the 1st t order differential equation
to these linear system.
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6.19

Projectile Motion with Air Resistance II

We had a set of equations. Two second degree and two first
degree differential equations with two unknowns.

(3)
d2x

dt2
= −γ

(√

v2
x + v2

y

)

vx & (1)
dx

dt
= vx

(4)
d2y

dt2
= −g − γ

(√

v2
x + v2

y

)

vy & (2)
dy

dt
= vy

• To solve these two 2nd degree equations
(plus two 1st degree equations) given above,
we first convert them to a system of 4 1st

degree (linear) equations.
• To this end, let’s define the four unknowns

as follows:

• x → y1

• y → y2

• vx → y3

• vy → y4
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6.20

Projectile Motion with Air Resistance III

• Accordingly, the above 2nd degree system is written as:

(1)
dy1

dt
= y3

(2)
dy2

dt
= y4

(3)
dy3

dt
= −γ

(

√

y2
3 + y2

4

)

y3

(4)
dy4

dt
= −g − γ

(

√

y2
3 + y2

4

)

y4

• When γ = 0 in this system of equations, we obtain our
usual parabolic curve y = (v0y/v0x)x − (g/2v2

0x )x
2.
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6.21

Projectile Motion with Air Resistance IV
To calculate the effect of air friction, let’s take the initial
conditions (t = 0) and constants (g & γ):

x0 = y1(t = 0) = 0 & y0 = y2(t = 0) = 0

v0x = y3(t = 0) = 6.0 & v0y = y4(t = 0) = 8.0

g = 10.0 & γ = 0.01

0 2 4 6 8 10
x

−3

−2

−1

0

1

2

3

4

y

Projectile motion with Air Resistance
Air Friction
No Air Friction

Figure: Numerical solution of projectile motion with and without air
friction. (Example py-file: airfriction.py)

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/airfriction.py
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6.22

Planetary Motion III

We had a set of equations. Two second degree and two first
degree differential equations with two unknowns.

(3)
d2x

dt2
= −G

M

r3
x & (1)

dx

dt
= vx

(4)
d2y

dt2
= −G

M

r3
y & (2)

dy

dt
= vy

• To solve these two 2nd degree equations
(plus two 1st degree equations) given above,
we first convert them to a system of 4 1st

degree (linear) equations.
• To this end, let’s define the four unknowns

as follows:

• x → y1

• y → y2

• vx → y3

• vy → y4
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6.23

Planetary Motion IV
• Accordingly, the above 2nd degree system is written as:

(1)
dy1

dt
= y3

(2)
dy2

dt
= y4

(3)
dy3

dt
= −

GM

[y2
1 + y2

2 ]
3/2

y1 (3)

(4)
dy4

dt
= −

GM

[y2
1 + y2

2 ]
3/2

y2

• For the motion of the planets, we use the astronomical unit
system. The Earth-Sun average distance would be in units
of astronomical length: 1 au ≈ 1.5 × 1011 m. The time
taken for the Earth to go around the Sun once is 1 year (y)
as the unit of time.

• Calculated in these units, the product of GM,

GM ≈ 40(au)3/y2
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6.24

Planetary Motion V
• To calculate the planetary motion, let’s take the initial

conditions at time t=0 in terms of four unknowns:

x0 = y1(t = 0) = 1.0 au & y0 = y2(t = 0) = 0

v0x = y3(t = 0) = 0.0 & v0y = y4(t = 0) = 6.0 au/y

• Then, also take v0y = y4(t = 0) = 8.0 au/y .

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

Planetary Motion 
Closed
Unbounded

Figure: Numerical solution of planetary motion. There can be closed
orbits (ellipse), or solutions going to infinity (unbounded, hyperbola)
for different velocities. (Example py-file: planetarymotion.py)

http://cemozdogan.net/ScientificComputingwithPython/pyfiles/planetarymotion.py
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