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Sampling Distribution of Means VII

• Example 8.6 : An electric firm manufactures light bulbs
that have a length of life that is approximately normally
distributed, with mean equal to 800 hours and a standard
deviation of 40 hours.

• Find the probability that a random sample of 16 bulbs will
have an average life of less than 775 hours.

• Solution:

• Even though 16 < 30, the central limit
theorem can be used because it is
stated that the population distribution is
approximately normal.

• The sampling distribution of X̄ will be
approximately normal, with

µX̄ = 800, σX̄ = 40/
√

16 = 10

x̄ = 75 ⇒ z =
775 − 800

10
= −2.5

P(X̄ < 775) = P(Z < −2.5) = 0.0062

Figure: Area for Example
8.6.
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Sampling Distribution of Means VIII
• Example 8.7 : A engineer conjectures that the population

mean of a certain component parts is 5.0 millimeters. An
experiment is conducted in which 100 parts produced by
the process are selected randomly and the diameter
measured on each.

• It is known that the population standard deviation σ = 0.1.
The experiment indicates a sample average diameter
X̄ = 5.027 millimeters.

• Does this sample information appear to support or refute
the engineer’s conjecture?

• Solution:

P
ˆ

|(X̄ − 5)| ≥ 0.027
˜

= P[(X̄−5) ≥ 0.027]+P[(X̄−5) ≤ −0.027]

= 2P(Z ≥ 2.7) = 2 ∗ 0.0035 = 0.007

Strongly refutes the conjecture!

Figure: Area for Example 8.7.
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Sampling Distribution of Means IX

• Sometimes we are interested in comparing two
populations (i.e., one manufacturing process better than
the other).

• Suppose we have two populations, the first with µ1 and σ1

and the second with µ2 and σ2.

• Let the statistic X̄1 represent the sample mean selected
from the first population and the statistic X̄2 represent the
sample mean selected from the second population.

• How about the sampling distribution

• Solution: Using Theorem 7.11, X̄1 − X̄2 is approximately
normally distributed with mean

µX̄1−X̄2
= µX̄1

− µX̄2
= µ1 − µ2

and variance

σ2
X̄1−X̄2

= σ2
X̄1

+ σ2
X̄2

=
σ2

1

n1
+

σ2
2

n2
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Sampling Distribution of Means X

• Theorem 8.3:
If independent sample of size n1 and n2 are drawn at ran-
dom from two populations, discrete or continuous, with
means µ1 and µ2 and variances σ2

1 and σ2
2 , respectively,

then the sampling distribution of the differences of means,
X̄1 − X̄2 is approximately normally distributed with mean
and variance given by

µX̄1−X̄2
= µ1 − µ2 and σ2

X̄1−X̄2
=

σ2
1

n1
+

σ2
2

n2

Hence

Z =
(X̄1 − X̄2) − (µ1 − µ2)

√

σ2
1

n1
+

σ2
2

n2

is approximately a standard normal variable.
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Sampling Distribution of Means XI
• Example 8.8 : Two independent experiments are being run

in which two different types of paints are compared.
• Eighteen specimens are painted using type A and the

drying time in hours is recorded on each. The same is
done with type B.

• The population standard deviations are both known to be
1.0. Assuming that the mean drying time is equal for the
two types of paint,

• find P(X̄A − X̄B > 1.0) where X̄A and X̄B are average
drying times for samples of size nA = nB = 18.

• Solution:
µX̄A−X̄B

= µA − µB = 0

σ2
X̄A−X̄B

=
σ2

A

nA
+

σ2
B

nB

z =
(X̄1 − X̄2) − (µ1 − µ2)

r

σ
2
1

n1
+

σ
2
2

n2

=
1 − 0
p

1/9
= 3.0

P(Z > 3.0) = 1 − P(Z < 3.0)

= 1 − 0.9987 = 0.0013

Figure: Area for Example 8.8.

Low probability. Assumption?
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Sampling Distribution of Means XII

• Example 8.9 : The television picture tubes of manufacturer
A have a mean lifetime of 6.5 years and a standard
deviation of 0.9 year, while those of manufacturer B have a
mean lifetime of 6.0 years and a standard deviation of 0.8
year.

• What is the probability that a random sample of 36 tubes
from manufacturer A will have a mean lifetime that is at
least 1 year more than the mean lifetime of a sample of 49
tubes from manufacturer B?

Table: Data for Example 8.9.

Population 1 Population 2
µ1= 6.5 µ2= 6.0
σ1= 0.9 σ2= 0.8
n1= 36 n2 = 49

• P(X̄1 − X̄2 ≥ 1.0) =?
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Sampling Distribution of Means XIII

Solution: Since both n1 and n2 is greater than 30, the sampling
distribution of X̄1 − X̄2 will be approximately normal.

µX̄1−X̄2
= µ1 − µ2 = 6.5 − 6.0 = 0.5

σ2
X̄1−X̄2

=
σ2

1

n1
+

σ2
2

n2

=
0.92

36
+

0.82

49
= 0.0356

z =
1 − 0.5√
0.0356

= 2.65

P(X̄1 − X̄2 ≥ 1.0) = P(Z > 2.65)

= 1 − P(Z < 2.65) = 1 − 0.9960

= 0.004

Low probability value.

Figure: Area for Example 8.9.
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Sampling Distribution of S2 I

• If a random sample of size n is taken from a normal
population with mean µ and variance σ2, and the sample
variance S2 is computed.

• Consider the distribution of the statistics (n−1)S2

σ2

n
∑

i=1

(Xi − µ)2 =

n
∑

i=1

[

(Xi − X̄ ) + (X̄ − µ)
]2

=
n

∑

i=1

(Xi − X̄ )2 +
n

∑

i=1

(X̄ − µ)2 + 2(X̄ − µ)
n

∑

i=1

(Xi − X̄ )

=

n
∑

i=1

(Xi − X̄ )2 + n(X̄ − µ)2
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Sampling Distribution of S2 II

• Dividing both sides by σ2 and substituting (n − 1)S2 for
∑n

i=1(Xi − X̄ )2, we obtain

1
σ2

n
∑

i=1

(Xi − µ)2 =

chi-squared random variable
with n degrees of freedom

(n − 1)S2

σ2 +

(X̄ − µ)2

σ2

n

chi-squared
random variable
with 1 degrees
of freedom
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Sampling Distribution of S2 III
• Theorem 8.4 :

If S2 is the variance of a random sample of size n taken
from a normal population having the variance σ2, then the
statistic

χ2 =
(n − 1)S2

σ2 =

n
∑

i=1

(Xi − X̄ )2

σ2

has a chi-squared distribution with ν = n − 1 degrees of
freedom.

• It is customary to let χ2
α represent the χ2-value above

which we find an area of α.
• This is illustrated by the shaded region in Fig. 5.

Figure: The chi-squared distribution.

For
ν = 7,χ2

0.05 = 14.067,
and χ2

0.95 = 2.1677
(Table A.5)
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Sampling Distribution of S2 IV
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Sampling Distribution of S2 V

• Example 8.10 : A manufacturer of car batteries guarantees
that his batteries will last, on the average, 3 years with a
standard deviation of 1 year.

• If five of these batteries have lifetimes of 1.9, 2.4, 3.0, 3.5,
and 4.2 years, is the manufacturer still convinced that his
batteries have a standard deviation of 1 year?

• Assume that the battery lifetime follows a normal
distribution.

• Solution:

s2 =
n

∑n
i=1 X 2

i − (
∑n

i=1 Xi)
2

n(n − 1)
=

5 ∗ 48.26 − 152

5 ∗ 4
= 0.815

χ2 =
(n − 1)s2

σ2 =
4 ∗ 0.815

1
= 3.26
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Sampling Distribution of S2 VI

• Since n = 5, χ2 has ν = n − 1 = 4 degrees of freedom.

• From Table A.5 row ν = 4, wee see that

χ2
0.025 = 11.143 and χ2

0.975 = 0.484

• Since 95% of the values with 4 degrees of freedom fall
between 0.484 and 11.143, the computed value with
σ2 = 1 is reasonable (since our χ2 = 3.26 falls within this
range).

• Therefore the manufacturer has no reason to suspect that
the standard deviation is other than 1 year.
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t-distribution I
• Central Limit Theorem (Theorem 8.2) assumes σ is known

in

Z =
X̄ − µ

σ/
√

n
• However, σ might not be known. Then, consider the

random variable

T =
X̄ − µ

S/
√

n

• The value of sample variance S2 fluctuate considerably
from sample to sample, T does not follow the standard
normal distribution but follows t-distribution with the
degrees of freedom n − 1.

• In developing the sampling distribution of T , we shall
assume that our random sample was selected from a
normal population.

T =
(X̄ − µ)/(σ/

√
n)

√

S2/σ2
=

Z
√

V/(n − 1)

• where Z = X̄−µ
σ/

√

n
and V = (n−1)S2

σ2
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t-distribution II

• Theorem 8.5 :
Let Z be a standard normal random variable and V a chi-
squared random variable with ν degrees of freedom.
If Z and V are independent, then the distribution of the
random variable T , where

T =
Z

√

V/ν

is given by the density function

h(t) =
Γ [(ν + 1)/2]

Γ(ν/2)
√

πν
(1 +

t2

ν
)−(ν+1)/2,−∞ < t < ∞

This is known as the t-distribution with ν degrees of free-
dom.
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t-distribution III

• Corollary 8.1 :
Let X1, X2, . . . , Xn be independent random variables that
are all normal with mean µ and standard deviation σ. Let

X̄ =
n

∑

i=1

Xi

n
and S2 =

∑n
i=1(Xi − X̄ )2

n − 1

Then the random variable T = X̄−µ
S/

√

n
has a t-distribution

with ν = n − 1 degrees of freedom.

• Student t-distribution
• The probability distribution of T was first published in 1908

in a paper by W. S. Gosset.
• Employed by an Irish brewery, but disallowed publication.
• Published his work secretly under the name “Student”.
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t-distribution IV

• The shape of T looks like the standard normal (Z )
(depending on the degrees of freedom, n − 1). Symmetric
about µ = 0, bell-shaped.

• Difference between T and Z : variance of T ≥ 1 and
depends on n

• T and Z are the same as n → ∞
• tα represents the t-value above which we find an area of α

to the right.
• t-distribution is symmetric about 0: t1−α = −tα

Figure: The t-distribution curves for
ν = 2, 5, and ∞

Figure: Symmetry property of the
t-distribution.
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t-distribution VI
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t-distribution VI

• Example 8.11 : The t-value with ν = 14 degrees of
freedom that leaves an area of 0.025 to the left, and
therefore an area of 0.975 to the right, is

t0.975 = −t0.025 = −2.145

Look up t0.025, and then place a negative sign.

• Example 8.12 : Find P(−t0.025 < T < t0.05) =?

P(−t0.025 < T < t0.05) = 1 − 0.05 − 0.025 = 0.925

Since t0.05 leaves an area of 0.05 to the right, and −t0.025

leaves an area of 0.025 to the left, we find a total area of
0.925.

• Find k such that P(k < T < −1.761) = 0.045, for a
random sample of size 15 selected from a normal
distribution and

T =
X̄ − µ

S/
√

n
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t-distribution VII

• Solution:

ν = 15 − 1 = 14

From Table A.4, −t0.05 = −1.761
Let k = −tα,
0.045 = 0.05 − α ⇒ α = 0.005
see Fig. 8

k = −t0.05 = −2.977 (Table A.4) Figure: The t-values for Example
8.13.

• Example 8.14 : A engineer claims that the population
mean of a process is 500 grams. To check this claim he
samples 25 batches each month.

• If the computed t-value falls between −t0.05 and t0.05, he is
satisfied with his claim.

• What conclusion should he draw from a sample that has a
mean x̄ = 518 grams and a sample standard deviation
s = 40 grams? Assume the distribution of yields to be
approximately normal.
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t-distribution VIII

• Solution: From Table A.4,

t0.05 = 1.711 (ν = 24)

Assumption µ = 500 ⇒

t =
518 − 500

40/
√

25
= 2.25

2.25 > 1.711 → error

if µ > 500, t-value would be more reasonable. The
process produces a better product than he thought.
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t-distribution IX

• Exactly 95% of the values of a t-distribution with ν = n − 1
degrees of freedom lie between −t0.025 and t0.025.

• A t-value that falls below −t0.025 or above t0.025 would
tend to make us believe that either a very rare event has
taken place or perhaps our assumption about µ is in error.

• What is the t-distribution used for? . The t-distribution is
used extensively in problems that deal with

• Inference about the population mean.
• Comparative samples (two sample means).

• Use of the t-distribution for the statistic

T =
X̄ − µ

S/
√

n

requires that X1, X2, . . . , Xn be normal.
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Sampling Distribution
of Means (Continued)

Sampling Distribution
of S2

t-distribution

F -distribution

12.25

F -distribution I

• The F -distribution finds enormous application in
comparing sample variances.

• Theorem 8.6 :
Let U and V be two independent random variables hav-
ing chi-squared distribution with ν1 and ν2 degrees of free-
dom, respectively.
Then the distribution of the random variable F = U/ν1

V/ν2
is

given by the density

h(f ) =

{

Γ[(ν1+ν2)/2](ν1/ν2)
ν1/2

Γ(ν1/2)Γ(ν2/2)
f ν1/2−1

(1+ν1f/ν2)
(ν1+ν2)+1 , f > 0

0, f ≤ 0

This is known as the F -distribution with ν1 and ν2 de-
grees of freedom (d.f.).
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Sampling Distribution
of Means (Continued)

Sampling Distribution
of S2

t-distribution

F -distribution

12.26

F -distribution II

Figure: Typical F-distributions.

Figure: Illustration of the fα for the F -distribution.
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F -distribution III
• Theorem 8.7 :

Writing fα(ν1, ν2) for fα with ν1 and ν2 degrees of freedom,
we obtain

f1−α(ν1, ν2) =
1

fα(ν2, ν1)

• E.g., f -value with 6 and 10 degrees of freedom, leaving an
area of 0.95 to the right,

f0.95(6, 10) =
1

f0.05(10, 6)
=

1
4.06

= 0.246

• F -distribution with two sample variances . Suppose that
random samples of size n1 and n2 are selected from two
normal populations with variances σ2

1 and σ2
2

X 2
1 =

(n1 − 1)S2
1

σ2
1

and X 2
2 =

(n2 − 1)S2
2

σ2
2

(from Theorem 8.4)

Let U = X 2
1 and V = X 2

2 having chi-squared distribution
with ν1 = n1 − 1 and ν2 = n2 − 1 degrees of freedom.

• Using Theorem 8.6, we obtain the following result
(theorem:)
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F -distribution IV

• Theorem 8.8 : If S2
1 and S2

2 are the variances of
independent random samples of size n1 and n2 taken from
normal populations with variances σ2

1 and σ2
2 , respectively,

then

F =
U/ν1

V/ν2
=

S2
1/σ2

1

S2
2/σ2

2

=
σ2

2S2
1

σ2
1S2

2

has an F -distribution with ν1 = n1 − 1 and ν2 = n2 − 1
degrees of freedom.
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F -distribution V

• What is the F -distribution used for?
• F -distribution is called the variance ratio distribution .

• It is used two-sample situations to draw inferences about
the population variances. (Theorem 8.8)

• It is also applied to many other types of problems in which
the sample variances are involved.

• Suppose there are three types of paints to compare. We
wish to determine if the population means are equivalent.

Sample Sample Sample
Paint Mean Variance Size

A 4.5 0.20 10
B 5.5 0.14 10
C 6.5 0.11 10
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F -distribution VI

The notion of the important components of variability is best
seen through some simple graphics.

Figure: Data from three distinct samples.

Figure: Data that easily could have come from the same population.
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F -distribution VII

• Two key sources of variability:
1 Variability within samples.
2 Variability between samples.

• Clearly, if (1) >> (2), the data could all have come from a
common distribution.

• The above two sources of variability generate important
ratios of sample variances, which are used in conjunction
with the F -distribution.

• The general procedure involved is called analysis of
variance.
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