Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules Bayes'Rules

Dr. Cem Özdoğan Computer Engineering Department Çankaya University

Lecture 4

Probability II Lecture Information

Ceng272 Statistical Computations at March 8, 2010

Contents

2 Conditional Probability

3 Multiplicative Rules

4 Bayes'Rules

Probability II

Dr. Cem Özdoğan

• Theorem 2.10:

If A and B are any two events, then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Probability II

Dr. Cem Özdoğan

• Theorem 2.10:

If A and B are any two events, then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Probability II

Dr. Cem Özdoğan

• Theorem 2.10:

If A and B are any two events, then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Probability II

Dr. Cem Özdoğan

• Theorem 2.10:

If A and B are any two events, then

$$\mathsf{P}(\mathsf{A}\cup\mathsf{B})=\mathsf{P}(\mathsf{A})+\mathsf{P}(\mathsf{B})-\mathsf{P}(\mathsf{A}\cap\mathsf{B})$$

• Corollary 1:

If A and B are mutually exclusive, then

 $P(A \cup B) = P(A) + P(B)$

Probability II

Dr. Cem Özdoğan

• Theorem 2.10:

If A and B are any two events, then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules Bayes'Rules

• Corollary 1:

If *A* and *B* are mutually exclusive, then

 $P(A \cup B) = P(A) + P(B)$

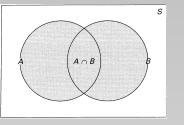


Figure: Additive rule of probability.

• Corollary 2:

If $A_1, A_2, \ldots A_n$, are mutually exclusive, then

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = P(A_1) + P(A_2) + \ldots + P(A_n)$$

Probability II

Dr. Cem Özdoğan

• Corollary 2:

If $A_1, A_2, \ldots A_n$, are mutually exclusive, then

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = P(A_1) + P(A_2) + \ldots + P(A_n)$$

• Corollary 3:

If $A_1, A_2, \ldots A_n$, is a partition of a sample space *S*, then

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = P(A_1) + P(A_2) + \ldots + P(A_n)$$

$$= P(S) = 1$$

Probability II

Dr. Cem Özdoğan

• Theorem 2.11: (an extension of Theorem 2.10)

For three events *A*, *B*, and *C*,

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$

 $-P(B \cap C) + P(A \cap B \cap C)$

Probability II

Dr. Cem Özdoğan

• Theorem 2.11: (an extension of Theorem 2.10)

For three events *A*, *B*, and *C*,

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$$

 $-P(B \cap C) + P(A \cap B \cap C)$

• Theorem 2.12:

If A and A' are complementary events, then

P(A) + P(A') = 1

Proof : Since $A \cup A' = S$ and $A \cap A' = \emptyset$, then

 $1 = P(S) = P(A \cup A') = P(A) + P(A')$

Probability II

Dr. Cem Özdoğan

• **Example 2.32**: The probability that the production procedure meets specification $(2000 \pm 10 \text{ }mm)$ is known to be 0.99. Small cable is just as likely to be defective as large cable.

Probability II

Dr. Cem Özdoğan

- **Example 2.32**: The probability that the production procedure meets specification $(2000 \pm 10 \text{ }mm)$ is known to be 0.99. Small cable is just as likely to be defective as large cable.
 - What is the probability that a cable selected randomly is too large?
 Let M be the event that a cable meets spec. Let S and L be the events that the cable is too small and too large, respectively. Then
 - P(M) = 0.99 and P(S) = P(L) = (1 0.99)/2 = 0.0005

Probability II

Dr. Cem Özdoğan

- **Example 2.32**: The probability that the production procedure meets specification $(2000 \pm 10 \text{ }mm)$ is known to be 0.99. Small cable is just as likely to be defective as large cable.
 - What is the probability that a cable selected randomly is too large?

Let M be the event that a cable meets spec. Let S and L be the events that the cable is too small and too large, respectively. Then

P(M) = 0.99 and P(S) = P(L) = (1 - 0.99)/2 = 0.0005

• What is the probability that a cable selected randomly is larger than 1990 mm?

 $P(X \ge 1990) = 1 - P(S) = 0.995$

where X is the length of a randomly selected cable.

Probability II

Dr. Cem Özdoğan

• Conditional probability: *P*(*B*|*A*)

Probability II

Dr. Cem Özdoğan

- Conditional probability: *P*(*B*|*A*)
 - Sometimes the occurrence of an event is <u>influenced</u> or related with some other event.

Dr. Cem Özdoğan

- Conditional probability: *P*(*B*|*A*)
 - Sometimes the occurrence of an event is <u>influenced</u> or <u>related with</u> some other event.
 - Hence we must take this restriction or the availability of certain limited information into consideration about the outcome of the experiment.

Probability II

Dr. Cem Özdoğan

- Conditional probability: *P*(*B*|*A*)
 - Sometimes the occurrence of an event is <u>influenced</u> or <u>related with</u> some other event.
 - Hence we must take this restriction or the availability of certain limited information into consideration about the outcome of the experiment.
 - The probability of an event *B* occurring when it is known that some event *A* has occurred.

Dr. Cem Özdoğan

- Conditional probability: *P*(*B*|*A*)
 - Sometimes the occurrence of an event is <u>influenced</u> or <u>related with</u> some other event.
 - Hence we must take this restriction or the availability of certain limited information into consideration about the outcome of the experiment.
 - The probability of an event *B* occurring when it is known that some event *A* has occurred.
 - "The probability that *B* occurs given that *A* occurs" or "The probability of *B*,given *A*"

Probability II

Dr. Cem Özdoğan

- Conditional probability: *P*(*B*|*A*)
 - Sometimes the occurrence of an event is <u>influenced</u> or <u>related with</u> some other event.
 - Hence we must take this restriction or the availability of certain limited information into consideration about the outcome of the experiment.
 - The probability of an event *B* occurring when it is known that some event *A* has occurred.
 - "The probability that *B* occurs given that *A* occurs" or "The probability of *B*,given *A*"
 - The notion of conditional probability provides the capability of re-evaluating the idea of probability of an event in light of additional information.

Probability II

Dr. Cem Özdoğan

- Conditional probability: *P*(*B*|*A*)
 - Sometimes the occurrence of an event is <u>influenced</u> or <u>related with</u> some other event.
 - Hence we must take this restriction or the availability of certain limited information into consideration about the outcome of the experiment.
 - The probability of an event *B* occurring when it is known that some event *A* has occurred.
 - "The probability that *B* occurs given that *A* occurs" or "The probability of *B*,given *A*"
 - The notion of conditional probability provides the capability of re-evaluating the idea of probability of an event in light of additional information.

• Example:

 $S = \{1, 2, 3, 4, 5, 6\}, A = \{4, 5, 6\}, B = \{1, 3, 5\}, \Longrightarrow P(B|A)?$

Probability II

Dr. Cem Özdoğan

- Conditional probability: *P*(*B*|*A*)
 - Sometimes the occurrence of an event is <u>influenced</u> or <u>related with</u> some other event.
 - Hence we must take this restriction or the availability of certain limited information into consideration about the outcome of the experiment.
 - The probability of an event *B* occurring when it is known that some event *A* has occurred.
 - "The probability that *B* occurs given that *A* occurs" or "The probability of *B*,given *A*"
 - The notion of conditional probability provides the capability of re-evaluating the idea of probability of an event in light of additional information.

Example:

$$S = \{1, 2, 3, 4, 5, 6\}, A = \{4, 5, 6\}, B = \{1, 3, 5\}, \Longrightarrow P(B|A)$$
?

Definition 2.9:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

provided P(A) > 0

Probability II

Dr. Cem Özdoğan

4.8

Conditional Probability II

• **Example**: Our sample space *S* is the population of adults in a small town. They can be categorized according to gender and employment status (see Table 1).

Table: Categorized adult population in a small town.

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

Probability II

Dr. Cem Özdoğan

• **Example**: Our sample space *S* is the population of adults in a small town. They can be categorized according to gender and employment status (see Table 1).

Table: Categorized adult population in a small town.

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

• One individual is to be selected at random for a publicity tour.

Probability II

Dr. Cem Özdoğan

• **Example**: Our sample space *S* is the population of adults in a small town. They can be categorized according to gender and employment status (see Table 1).

Table: Categorized adult population in a small town.

	Employed	Unemployed	Total	
Male	460	40	500	
Female	140	260	400	
Total	600	300	900	

- One individual is to be selected at random for a publicity tour.
- The concerned events

$$P(M|E) = \frac{460}{600} = \frac{23}{30}$$
$$P(M|E) = \frac{n(E \cap M)/n(S)}{n(E)/n(S)} = \frac{P(E \cap M)}{P(E)} = \frac{\frac{460}{900}}{\frac{600}{900}} = \frac{23}{30}$$

Probability II

Dr. Cem Özdoğan

• **Example**: Our sample space *S* is the population of adults in a small town. They can be categorized according to gender and employment status (see Table 1).

Table: Categorized adult population in a small town.

100

Employed

	Iviale	400	40	500	
	Female	140	260	400	
	Total	600	300	900	
One individual is to be selected at random for a publicity tour.					

Unemployed

Total

<u>
</u>

• The concerned events

Mala

• M: a man is chosen

$$P(M|E) = \frac{460}{600} = \frac{23}{30}$$
$$P(M|E) = \frac{n(E \cap M)/n(S)}{n(E)/n(S)} = \frac{P(E \cap M)}{P(E)} = \frac{\frac{460}{900}}{\frac{600}{900}} = \frac{23}{30}$$

Probability II

Dr. Cem Özdoğan

• Example: Our sample space S is the population of adults in a small town. They can be categorized according to gender and employment status (see Table 1).

Table: Categorized adult population in a small town. . .

		Employed	Unemployed	Iotal	
	Male	460	40	500	
	Female	140	260	400	
	Total	600	300	900	
a individual is to be selected at random for a publicit					

I ha a san lassa a

- One individual is to be selected at random for a publicity tour.
- The concerned events
 - M: a man is chosen
 - E: the one chosen is employed

$$P(M|E) = \frac{460}{600} = \frac{23}{30}$$
$$P(M|E) = \frac{n(E \cap M)/n(S)}{n(E)/n(S)} = \frac{P(E \cap M)}{P(E)} = \frac{\frac{460}{900}}{\frac{600}{900}} = \frac{23}{30}$$

Probability II

Dr. Cem Özdoğan

Additive Rules Multiplicative Rules Baves'Rules

• **Example 2.33**: The probability that a regularly scheduled flight departs on time is P(D) = 0.83;

Probability II

Dr. Cem Özdoğan

- **Example 2.33**: The probability that a regularly scheduled flight departs on time is *P*(*D*) = 0.83;
- the probability that arrives on time is P(A) = 0.82;

Probability II

Dr. Cem Özdoğan

- **Example 2.33**: The probability that a regularly scheduled flight departs on time is *P*(*D*) = 0.83;
- the probability that arrives on time is P(A) = 0.82;
- the probability that it departs and arrives on time is $P(D \cap A) = 0.78$.

Probability II

Dr. Cem Özdoğan

- **Example 2.33**: The probability that a regularly scheduled flight departs on time is *P*(*D*) = 0.83;
- the probability that arrives on time is P(A) = 0.82;
- the probability that it departs and arrives on time is $P(D \cap A) = 0.78$.
- Find the probability that a plane

Probability II

Dr. Cem Özdoğan

- **Example 2.33**: The probability that a regularly scheduled flight departs on time is P(D) = 0.83;
- the probability that arrives on time is P(A) = 0.82;
- the probability that it departs and arrives on time is $P(D \cap A) = 0.78$.
- · Find the probability that a plane
 - · arrives on time given that it departed on time, and

$$P(A|D) = rac{P(D \cap A)}{P(D)} = rac{0.78}{0.83} = 0.94$$

Probability II

Dr. Cem Özdoğan

- **Example 2.33**: The probability that a regularly scheduled flight departs on time is P(D) = 0.83;
- the probability that arrives on time is P(A) = 0.82;
- the probability that it departs and arrives on time is $P(D \cap A) = 0.78$.
- Find the probability that a plane
 - arrives on time given that it departed on time, and

$$P(A|D) = rac{P(D \cap A)}{P(D)} = rac{0.78}{0.83} = 0.94$$

• departed on time given that it has arrived on time.

$$P(D|A) = \frac{P(D \cap A)}{P(A)} = \frac{0.78}{0.82} = 0.95$$

Probability II

Dr. Cem Özdoğan

Definition 2.10:

Two events *A* and *B* are said to be **independent** if and only if

$$P(B|A) = P(B)$$
 or $P(A|B) = P(A)$.

Otherwise, A and B are dependent.

Probability II

Dr. Cem Özdoğan

• Definition 2.10:

Two events *A* and *B* are said to be **independent** if and only if

$$P(B|A) = P(B)$$
 or $P(A|B) = P(A)$.

Otherwise, A and B are dependent.

• If knowing that event *B* occurred doesn't change the probability that *A* will occur, then *B* must carry no information about *A*.

Dr. Cem Özdoğan

Definition 2.10:

Two events *A* and *B* are said to be **independent** if and only if

$$P(B|A) = P(B)$$
 or $P(A|B) = P(A)$.

Otherwise, A and B are dependent.

- If knowing that event *B* occurred doesn't change the probability that *A* will occur, then *B* must carry no information about *A*.
- The condition P(B|A) = P(B) implies that P(A|B) = P(A), and conversely.

Probability II

Dr. Cem Özdoğan

Definition 2.10:

Two events *A* and *B* are said to be **independent** if and only if

$$P(B|A) = P(B)$$
 or $P(A|B) = P(A)$.

Otherwise, A and B are dependent.

- If knowing that event *B* occurred doesn't change the probability that *A* will occur, then *B* must carry no information about *A*.
- The condition P(B|A) = P(B) implies that P(A|B) = P(A), and conversely.
- **Example**: Two cards are drawn in succession, with replacement

Dr. Cem Özdoğan

Definition 2.10:

Two events *A* and *B* are said to be **independent** if and only if

$$P(B|A) = P(B)$$
 or $P(A|B) = P(A)$.

Otherwise, A and B are dependent.

- If knowing that event *B* occurred doesn't change the probability that *A* will occur, then *B* must carry no information about *A*.
- The condition P(B|A) = P(B) implies that P(A|B) = P(A), and conversely.
- Example: Two cards are drawn in succession, with replacement
 - Event A: the first card is an ace

Probability II

Dr. Cem Özdoğan

Definition 2.10:

Two events *A* and *B* are said to be **independent** if and only if

$$P(B|A) = P(B)$$
 or $P(A|B) = P(A)$.

Otherwise, A and B are dependent.

- If knowing that event *B* occurred doesn't change the probability that *A* will occur, then *B* must carry no information about *A*.
- The condition P(B|A) = P(B) implies that P(A|B) = P(A), and conversely.
- **Example**: Two cards are drawn in succession, with replacement
 - Event A: the first card is an ace
 - Event B: the second card is a spade

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{1/52}{4/52} = \frac{13}{52} = \frac{1}{4} \text{ and } P(B) = \frac{13}{52} = \frac{1}{4}$$

Probability II

Dr. Cem Özdoğan

Definition 2.10:

Two events *A* and *B* are said to be **independent** if and only if

$$P(B|A) = P(B)$$
 or $P(A|B) = P(A)$.

Otherwise, A and B are dependent.

- If knowing that event *B* occurred doesn't change the probability that *A* will occur, then *B* must carry no information about *A*.
- The condition P(B|A) = P(B) implies that P(A|B) = P(A), and conversely.
- **Example**: Two cards are drawn in succession, with replacement
 - Event A: the first card is an ace
 - Event B: the second card is a spade

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{1/52}{4/52} = \frac{13}{52} = \frac{1}{4} \text{ and } P(B) = \frac{13}{52} = \frac{1}{4}$$

• Since P(B|A) = P(B), these two events are independent.

Probability II

Dr. Cem Özdoğan

• Multiplying the formula of Definition 2.9 by *P*(*A*), we obtain the **multiplicative rule**, which enables us to calculate the probability that two events will <u>both occur</u>.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Multiplying the formula of Definition 2.9 by *P*(*A*), we obtain the **multiplicative rule**, which enables us to calculate the probability that two events will <u>both occur</u>.
- Theorem 2.13:

If in an experiment the events \boldsymbol{A} and \boldsymbol{B} can both occur, then

 $P(A \cap B) = P(A) * P(B|A)$

provided P(A) > 0

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Multiplying the formula of Definition 2.9 by *P*(*A*), we obtain the **multiplicative rule**, which enables us to calculate the probability that two events will <u>both occur</u>.
- Theorem 2.13:

If in an experiment the events A and B can both occur, then

$$P(A \cap B) = P(A) * P(B|A)$$

provided P(A) > 0

• We can also write

 $P(A \cap B) = P(B \cap A) = P(B) * P(A|B)$

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Multiplying the formula of Definition 2.9 by *P*(*A*), we obtain the **multiplicative rule**, which enables us to calculate the probability that two events will <u>both occur</u>.
- Theorem 2.13:

If in an experiment the events A and B can both occur, then

$$P(A \cap B) = P(A) * P(B|A)$$

provided P(A) > 0

We can also write

$$P(A \cap B) = P(B \cap A) = P(B) * P(A|B)$$

• Example 2.35: Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If 2 fuses are selected at <u>random</u> and removed from the box in succession *without replacing* the first.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Multiplying the formula of Definition 2.9 by *P*(*A*), we obtain the **multiplicative rule**, which enables us to calculate the probability that two events will <u>both occur</u>.
- Theorem 2.13:

If in an experiment the events A and B can both occur, then

$$P(A \cap B) = P(A) * P(B|A)$$

provided P(A) > 0

We can also write

 $P(A \cap B) = P(B \cap A) = P(B) * P(A|B)$

- Example 2.35: Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If 2 fuses are selected at <u>random</u> and removed from the box in succession *without replacing* the first.
- What is the probability that both fuses are defective?

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Multiplying the formula of Definition 2.9 by *P*(*A*), we obtain the **multiplicative rule**, which enables us to calculate the probability that two events will <u>both occur</u>.
- Theorem 2.13:

If in an experiment the events A and B can both occur, then

$$P(A \cap B) = P(A) * P(B|A)$$

provided P(A) > 0

We can also write

 $P(A \cap B) = P(B \cap A) = P(B) * P(A|B)$

- Example 2.35: Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If 2 fuses are selected at <u>random</u> and removed from the box in succession *without replacing* the first.
- What is the probability that both fuses are defective?
 - Event A: the first fuse is defective

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Multiplying the formula of Definition 2.9 by *P*(*A*), we obtain the **multiplicative rule**, which enables us to calculate the probability that two events will <u>both occur</u>.
- Theorem 2.13:

If in an experiment the events A and B can both occur, then

$$P(A \cap B) = P(A) * P(B|A)$$

provided P(A) > 0

We can also write

 $P(A \cap B) = P(B \cap A) = P(B) * P(A|B)$

- Example 2.35: Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If 2 fuses are selected at <u>random</u> and removed from the box in succession *without replacing* the first.
- What is the probability that both fuses are defective?
 - Event A: the first fuse is defective
 - Event B: the second fuse is defective. Hence,

$$P(A \cap B) = P(A) * P(B|A) = \frac{1}{4} * \frac{4}{19} = \frac{1}{19}$$

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Example 2.36: One bag contains 4 white balls and 3 black balls. A second bag contains 3 white balls and 5 black balls.

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example 2.36: One bag contains 4 white balls and 3 black balls. A second bag contains 3 white balls and 5 black balls.
- One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from the second bag is black?

Probability II

Additive Rules Conditional Probability Multiplicative Rules

- Example 2.36: One bag contains 4 white balls and 3 black balls. A second bag contains 3 white balls and 5 black balls.
- One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from the second bag is black?
- Solution: Let *B*₁, *B*₂, and *W*₁ represent, respectively, the drawing of a black ball from bag 1, a black ball from bag 2, and a white ball from bag 1.

 $p[(B_1 \cap B_2) \cup (W_1 \cap B_2)] = P(B_1 \cap B_2) + P(W_1 \cap B_2)$

 $= P(B_1)P(B_2|B_1) + P(W_1)P(B_2|W_1)$ $= \frac{3}{7} * \frac{6}{9} + \frac{4}{7} * \frac{5}{9} = \frac{38}{63}$

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

Probability II

Dr. Cem Özdoğan

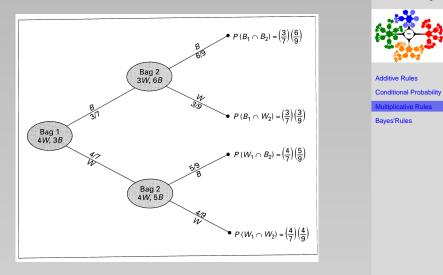


Figure: Tree diagram for Example 2.36.

• Theorem 2.14:

Two events A and B are (statistically or probabilistically) independent if and only if

 $P(A \cap B) = P(A)P(B)$

. Therefore, to obtain the probability that two independent events will both occur, we simply find the product of their individual probabilities. **Probability II**

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.14:

Two events A and B are (statistically or probabilistically) independent if and only if

```
P(A \cap B) = P(A)P(B)
```

. Therefore, to obtain the probability that two independent events will both occur, we simply find the product of their individual probabilities.

• Example 2.37: A small town has one fire engine and one ambulance available for emergencies.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.14:

Two events A and B are (statistically or probabilistically) independent if and only if

```
P(A \cap B) = P(A)P(B)
```

. Therefore, to obtain the probability that two independent events will both occur, we simply find the product of their individual probabilities.

- Example 2.37: A small town has one fire engine and one ambulance available for emergencies.
 - The probability that the <u>fire engine</u> is available when needed is 0.98,

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.14:

Two events A and B are (statistically or probabilistically) independent if and only if

 $P(A \cap B) = P(A)P(B)$

. Therefore, to obtain the probability that two independent events will both occur, we simply find the product of their individual probabilities.

- **Example 2.37**: A small town has one fire engine and one ambulance available for emergencies.
 - The probability that the <u>fire engine</u> is available when needed is 0.98,
 - The probability that the <u>ambulance</u> is available when called is 0.92

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.14:

Two events A and B are (statistically or probabilistically) independent if and only if

 $P(A \cap B) = P(A)P(B)$

. Therefore, to obtain the probability that two independent events will both occur, we simply find the product of their individual probabilities.

- Example 2.37: A small town has one fire engine and one ambulance available for emergencies.
 - The probability that the <u>fire engine</u> is available when needed is 0.98,
 - The probability that the <u>ambulance</u> is available when called is 0.92
 - In the event of an injury resulting from a burning building, find the probability that <u>both</u> the ambulance and the fire engine will be available.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.14:

Two events A and B are (statistically or probabilistically) independent if and only if

 $P(A \cap B) = P(A)P(B)$

. Therefore, to obtain the probability that two independent events will both occur, we simply find the product of their individual probabilities.

- Example 2.37: A small town has one fire engine and one ambulance available for emergencies.
 - The probability that the <u>fire engine</u> is available when needed is 0.98,
 - The probability that the <u>ambulance</u> is available when called is 0.92
 - In the event of an injury resulting from a burning building, find the probability that <u>both</u> the ambulance and the fire engine will be available.

• **Solution**: Let *A* and *B* represent the respective evens that the fire engine and the ambulance are available. Then

 $P(A \cap B) = P(A)P(B) = 0.98 * 0.92 = 0.9016.$

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Example 2.38: Find the probability that

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability

Multiplicative Rules

• Example 2.38: Find the probability that

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability

Multiplicative Rules

• Example 2.38: Find the probability that

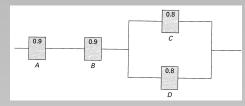


Figure: An electrical system for Example 2.38.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Example 2.38: Find the probability that

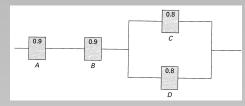


Figure: An electrical system for Example 2.38.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Example 2.38: Find the probability that

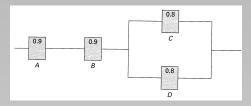


Figure: An electrical system for Example 2.38.

 the entire system works

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Example 2.38: Find the probability that

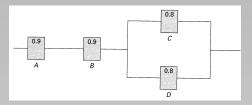


Figure: An electrical system for Example 2.38.

- the entire system works
- the component *C* does not work, given that the entire system works

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Example 2.38: Find the probability that

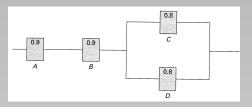


Figure: An electrical system for Example 2.38.

Solution:

 the entire system works

 the component C does not work, given that the entire system works

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

Bayes'Rules

 $P(A \cap B \cap (C \cup D)) = P(A) * P(B) * P(C \cup D)$ = $P(A) * P(B) * (1 - P(C' \cap D')) = P(A) * P(B) * (1 - P(C') * P(D'))$ = 0.9 * 0.9 * (1 - (1 - 0.8) * (1 - 0.8)) = 0.7776

• Example 2.38: Find the probability that

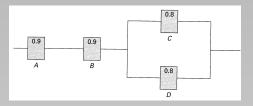
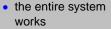


Figure: An electrical system for Example 2.38.

Solution:



 the component C does not work, given that the entire system works

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

Bayes'Rules

$$P(A \cap B \cap (C \cup D)) = P(A) * P(B) * P(C \cup D)$$

= $P(A) * P(B) * (1 - P(C' \cap D')) = P(A) * P(B) * (1 - P(C') * P(D'))$
= $0.9 * 0.9 * (1 - (1 - 0.8) * (1 - 0.8)) = 0.7776$

 $P = \frac{P(\text{the system works but } C \text{ does not work})}{P(\text{the system works})}$ $= \frac{P(A \cap B \cap C' \cap D)}{P(A \cap B \cap (C \cup D))} = \frac{0.9 * 0.9 * (1 - 0.8) * 0.8}{0.7776} = 0.1667$

• Independence is often easy to grasp intuitively.

Probability II

Dr. Cem Özdoğan

- Independence is often easy to grasp intuitively.
- For example, if the occurrence of two events is governed by <u>distinct</u> and <u>non-interacting</u> physical processes, such events will turn out to be independent.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Independence is often easy to grasp intuitively.
- For example, if the occurrence of two events is governed by <u>distinct</u> and <u>non-interacting</u> physical processes, such events will turn out to be independent.
- On the other hand, independence is not easily visualized in terms of the sample space.

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Independence is often easy to grasp intuitively.
- For example, if the occurrence of two events is governed by <u>distinct</u> and <u>non-interacting</u> physical processes, such events will turn out to be independent.
- On the other hand, independence is not easily visualized in terms of the sample space.
- A common fallacy (wrong idea) is that two events are independent if they are <u>disjoint</u>, but in fact the opposite is true:

Two disjoint events *A* and *B* with P(A) > 0 and P(B) > 0 are never independent, since their intersection $A \cap B$ is empty and has probability 0.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Independence is often easy to grasp intuitively.
- For example, if the occurrence of two events is governed by <u>distinct</u> and <u>non-interacting</u> physical processes, such events will turn out to be independent.
- On the other hand, independence is not easily visualized in terms of the sample space.
- A common fallacy (wrong idea) is that two events are independent if they are <u>disjoint</u>, but in fact the opposite is true:

Two disjoint events *A* and *B* with P(A) > 0 and P(B) > 0 are never independent, since their intersection $A \cap B$ is empty and has probability 0.

• We note that

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Independence is often easy to grasp intuitively.
- For example, if the occurrence of two events is governed by <u>distinct</u> and <u>non-interacting</u> physical processes, such events will turn out to be independent.
- On the other hand, independence is not easily visualized in terms of the sample space.
- A common fallacy (wrong idea) is that two events are independent if they are <u>disjoint</u>, but in fact the opposite is true:

Two disjoint events *A* and *B* with P(A) > 0 and P(B) > 0 are never independent, since their intersection $A \cap B$ is empty and has probability 0.

• We note that

(i) independent events are never mutually exclusive,

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Independence is often easy to grasp intuitively.
- For example, if the occurrence of two events is governed by <u>distinct</u> and <u>non-interacting</u> physical processes, such events will turn out to be independent.
- On the other hand, independence is not easily visualized in terms of the sample space.
- A common fallacy (wrong idea) is that two events are independent if they are <u>disjoint</u>, but in fact the opposite is true:

Two disjoint events *A* and *B* with P(A) > 0 and P(B) > 0 are never independent, since their intersection $A \cap B$ is empty and has probability 0.

- We note that
 - (i) independent events are never mutually exclusive,
 - (ii) two mutually exclusive events are always dependent.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.15: If the events $A_1, A_2, A_3, \dots, A_k$ can occur, then $P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)$ $\dots P(A_k|A_1 \cap A_2 \cap \dots \cap A_k)$ If the events $A_1, A_2, A_3, \dots, A_k$ are independent, then $P(A_k|A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2) \dots P(A_k) = \prod_{n=1}^{k} P(A_n)$ Multiplicative RulesBayes'Rules

Probability II

• Theorem 2.15: If the events $A_1, A_2, A_3, \dots, A_k$ can occur, then $P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)$ $\dots P(A_k|A_1 \cap A_2 \cap \dots \cap A_k)$ If the events $A_1, A_2, A_3, \dots, A_k$ are independent, then $P(A_k|A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2) \dots P(A_k) = \prod_{n=1}^k P(A_n)$

• **Example 2.39**: Three cards are drawn in succession without replacement. Find the probability that the event $\overline{A_1 \cap A_2 \cap A_3}$ occurs, where

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.15: If the events $A_1, A_2, A_3, \dots, A_k$ can occur, then $P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)$ $\dots P(A_k|A_1 \cap A_2 \cap \dots \cap A_k)$ If the events $A_1, A_2, A_3, \dots, A_k$ are independent, then $P(A_k|A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2) \dots P(A_k) = \prod_{n=1}^k P(A_n)$

- **Example 2.39**: Three cards are drawn in succession without replacement. Find the probability that the event $\overline{A_1 \cap A_2 \cap A_3}$ occurs, where
 - A1: the first card is red ace

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.15: If the events $A_1, A_2, A_3, \dots, A_k$ can occur, then $P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)$ $\dots P(A_k|A_1 \cap A_2 \cap \dots \cap A_k)$ If the events $A_1, A_2, A_3, \dots, A_k$ are independent, then $P(A_k|A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2) \dots P(A_k) = \prod_{k=1}^{k} P(A_n)$

• Example 2.39: Three cards are drawn in succession without replacement. Find the probability that the event

 $A_1 \cap A_2 \cap A_3$ occurs, where

- A₁: the first card is red ace
- A₂: the second card is a 10 or jack

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.15: If the events $A_1, A_2, A_3, \dots, A_k$ can occur, then $P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)$ $\dots P(A_k|A_1 \cap A_2 \cap \dots \cap A_k)$ If the events $A_1, A_2, A_3, \dots, A_k$ are independent, then $P(A_k|A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2) \dots P(A_k) = \prod_{k=1}^{k} P(A_n)$

• **Example 2.39**: Three cards are drawn in succession without replacement. Find the probability that the event

 $A_1 \cap A_2 \cap A_3$ occurs, where

- A1: the first card is red ace
- A₂: the second card is a 10 or jack
- A₃: the third card is greater than 3 but less than 7

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.15: If the events $A_1, A_2, A_3, \dots, A_k$ can occur, then $P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)$ $\dots P(A_k|A_1 \cap A_2 \cap \dots \cap A_k)$ If the events $A_1, A_2, A_3, \dots, A_k$ are independent, then

$$P(A_k|A_1 \cap A_2 \cap \ldots \cap A_k) = P(A_1)P(A_2) \ldots P(A_k) = \prod_{n=1}^n P(A_n)$$

• Example 2.39: Three cards are drawn in succession without replacement. Find the probability that the event

 $A_1 \cap A_2 \cap A_3$ occurs, where

- A₁: the first card is red ace
- A₂: the second card is a 10 or jack
- A₃: the third card is greater than 3 but less than 7
- Solution:

 $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)$ $= \frac{2}{52} * \frac{8}{51} * \frac{12}{50} = \frac{8}{5525}$

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

Independence of Several Events:

The events $A_1, A_2, A_3, \ldots, A_n$ are **independent** if

$$P(\bigcap_{i\in S}A_i)=\prod_{i\in S}P(A_i)$$

for any subset S of $\{1, 2, \ldots, n\}$.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

Independence of Several Events:

The events $A_1, A_2, A_3, \ldots, A_n$ are **independent** if

$$P(\bigcap_{i\in S}A_i)=\prod_{i\in S}P(A_i)$$

for any subset S of $\{1, 2, \ldots, n\}$.

 Independence means that the occurrence or non-occurrence of any number of the events from that collection carries no information on the remaining events or their complements.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

Independence of Several Events:

The events $A_1, A_2, A_3, \ldots, A_n$ are **independent** if

$$P(\bigcap_{i\in S} A_i) = \prod_{i\in S} P(A_i)$$

for any subset S of $\{1, 2, \ldots, n\}$.

- Independence means that the occurrence or non-occurrence of any number of the events from that collection carries no information on the remaining events or their complements.
- Example: Independence of three events: If A_1, A_2 and A_3 are independent,

 $P(A_1 \cap A_2) = P(A_1)P(A_2)$ $P(A_1 \cap A_3) = P(A_1)P(A_3)$ $P(A_2 \cap A_3) = P(A_2)P(A_3)$ $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• **Example**: Consider two independent fair coin tosses, and the following events:

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability

Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,

Dr. Cem Özdoğan

Additive Rules Conditional Probability

Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,

Dr. Cem Özdoğan

Additive Rules Conditional Probability

Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - *D* = the two tosses have different results.

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - D = the two tosses have different results.
- Pairwise independence does not imply independence.

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - D = the two tosses have different results.
- Pairwise independence does not imply independence.
 - H_1 and H_2 are independent, by definition.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - D = the two tosses have different results.
- Pairwise independence does not imply independence.
 - H_1 and H_2 are independent, by definition.
 - $P(D|H_1) = P(D)$ and $P(D|H_2) = P(D)$

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - D = the two tosses have different results.
- Pairwise independence does not imply independence.
 - H_1 and H_2 are independent, by definition.
 - $P(D|H_1) = P(D)$ and $P(D|H_2) = P(D)$
 - $P(H_1 \cap H_2 \cap D) = 0 \neq P(H_1)P(H_2)P(D)$

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - D = the two tosses have different results.
- Pairwise independence does not imply independence.
 - H_1 and H_2 are independent, by definition.
 - $P(D|H_1) = P(D)$ and $P(D|H_2) = P(D)$
 - $P(H_1 \cap H_2 \cap D) = 0 \neq P(H_1)P(H_2)P(D)$
- **Example**: Consider two independent rolls of a fair die, and the following events:

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - D = the two tosses have different results.
- Pairwise independence does not imply independence.
 - H_1 and H_2 are independent, by definition.
 - $P(D|H_1) = P(D)$ and $P(D|H_2) = P(D)$
 - $P(H_1 \cap H_2 \cap D) = 0 \neq P(H_1)P(H_2)P(D)$
- Example: Consider two independent rolls of a fair die, and the following events:
 - $A = 1^{st}$ roll is 1, 2, or 3, $B = 2^{nd}$ roll is 3, 4, or 5, C = the sum of the two rolls is 9.

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - D = the two tosses have different results.
- Pairwise independence does not imply independence.
 - H_1 and H_2 are independent, by definition.
 - $P(D|H_1) = P(D)$ and $P(D|H_2) = P(D)$
 - $P(H_1 \cap H_2 \cap D) = 0 \neq P(H_1)P(H_2)P(D)$
- Example: Consider two independent rolls of a fair die, and the following events:
 - $A = 1^{st}$ roll is 1, 2, or 3, $B = 2^{nd}$ roll is 3, 4, or 5, C = the sum of the two rolls is 9.
- $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$ is not enough for independence.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - D = the two tosses have different results.
- Pairwise independence does not imply independence.
 - H_1 and H_2 are independent, by definition.
 - $P(D|H_1) = P(D)$ and $P(D|H_2) = P(D)$
 - $P(H_1 \cap H_2 \cap D) = 0 \neq P(H_1)P(H_2)P(D)$
- Example: Consider two independent rolls of a fair die, and the following events:
 - $A = 1^{st}$ roll is 1, 2, or 3, $B = 2^{nd}$ roll is 3, 4, or 5, C = the sum of the two rolls is 9.
- P(A₁ ∩ A₂ ∩ A₃) = P(A₁)P(A₂)P(A₃) is not enough for independence.
 - $P(A \cap B) = \frac{1}{6} \neq \frac{1}{2} * \frac{1}{2} = P(A)P(B)$

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - D = the two tosses have different results.
- Pairwise independence does not imply independence.
 - H_1 and H_2 are independent, by definition.
 - $P(D|H_1) = P(D)$ and $P(D|H_2) = P(D)$
 - $P(H_1 \cap H_2 \cap D) = 0 \neq P(H_1)P(H_2)P(D)$
- Example: Consider two independent rolls of a fair die, and the following events:
 - $A = 1^{st}$ roll is 1, 2, or 3, $B = 2^{nd}$ roll is 3, 4, or 5, C = the sum of the two rolls is 9.
- P(A₁ ∩ A₂ ∩ A₃) = P(A₁)P(A₂)P(A₃) is not enough for independence.

•
$$P(A \cap B) = \frac{1}{6} \neq \frac{1}{2} * \frac{1}{2} = P(A)P(B)$$

• $P(A \cap C) = \frac{1}{36} \neq \frac{1}{2} * \frac{4}{36} = P(A)P(C)$

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - D = the two tosses have different results.
- Pairwise independence does not imply independence.
 - H_1 and H_2 are independent, by definition.
 - $P(D|H_1) = P(D)$ and $P(D|H_2) = P(D)$
 - $P(H_1 \cap H_2 \cap D) = 0 \neq P(H_1)P(H_2)P(D)$
- Example: Consider two independent rolls of a fair die, and the following events:
 - $A = 1^{st}$ roll is 1, 2, or 3, $B = 2^{nd}$ roll is 3, 4, or 5, C = the sum of the two rolls is 9.
- P(A₁ ∩ A₂ ∩ A₃) = P(A₁)P(A₂)P(A₃) is not enough for independence.

•
$$P(A \cap B) = \frac{1}{6} \neq \frac{1}{2} * \frac{1}{2} = P(A)P(B)$$

•
$$P(A \cap C) = \frac{1}{36} \neq \frac{1}{2} * \frac{4}{36} = P(A)P(C)$$

• $P(B \cap C) = \frac{3}{6} \neq \frac{1}{2} * \frac{4}{36} = P(B)P(C)$

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example: Consider two independent fair coin tosses, and the following events:
 - $H_1 = 1^{st}$ toss is a head,
 - $H_2 = 2^{nd}$ toss is a head,
 - D = the two tosses have different results.
- Pairwise independence does not imply independence.
 - H_1 and H_2 are independent, by definition.
 - $P(D|H_1) = P(D)$ and $P(D|H_2) = P(D)$
 - $P(H_1 \cap H_2 \cap D) = 0 \neq P(H_1)P(H_2)P(D)$
- Example: Consider two independent rolls of a fair die, and the following events:
 - $A = 1^{st}$ roll is 1, 2, or 3, $B = 2^{nd}$ roll is 3, 4, or 5, C = the sum of the two rolls is 9.
- P(A₁ ∩ A₂ ∩ A₃) = P(A₁)P(A₂)P(A₃) is not enough for independence.

•
$$P(A \cap B) = \frac{1}{6} \neq \frac{1}{2} * \frac{1}{2} = P(A)P(B)$$

•
$$P(A \cap C) = \frac{1}{36} \neq \frac{1}{2} * \frac{4}{36} = P(A)P(C)$$

- $P(B \cap C) = \frac{3}{6} \neq \frac{1}{2} * \frac{4}{36} = P(B)P(C)$
- $P(A \cap B \cap C) = \frac{1}{36} \neq \frac{1}{2} * \frac{1}{2} * \frac{4}{36} = P(A)P(B)P(C)$

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Our sample space *S* is the population of adults in a small town. They can be categorized according to employment status.

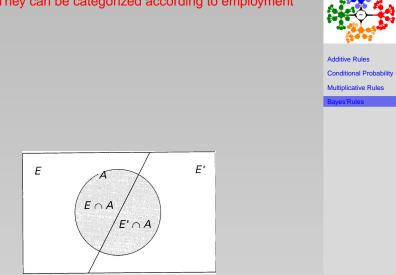


Figure: Venn diagram for the events A, E, and E'.

Probability II

Dr. Cem Özdoğan

- Our sample space S is the population of adults in a small town. They can be categorized according to employment status.
- One individual is to be selected at random for a publicity tour.

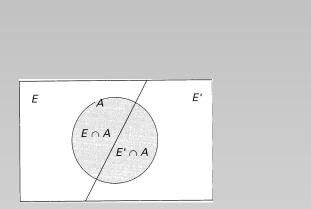


Figure: Venn diagram for the events A, E, and E'.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Our sample space S is the population of adults in a small town. They can be categorized according to employment status.
- One individual is to be selected at random for a publicity tour.
 - The concerned event E: the one chosen is employed

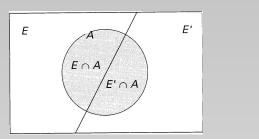


Figure: Venn diagram for the events A, E, and E'.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Our sample space S is the population of adults in a small town. They can be categorized according to employment status.
- One individual is to be selected at random for a publicity tour.
 - The concerned event E: the one chosen is employed
 - Give the additional information that 36 of those employed and 12 of those unemployed are members of the Rotary Club.

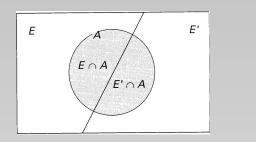


Figure: Venn diagram for the events A, E, and E'.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Our sample space S is the population of adults in a small town. They can be categorized according to employment status.
- One individual is to be selected at random for a publicity tour.
 - The concerned event E: the one chosen is employed
 - Give the additional information that 36 of those employed and 12 of those unemployed are members of the Rotary Club.
 - Find the probability of the event A that individual selected is a member of the Rotary Club.

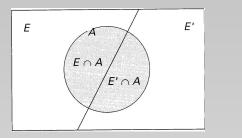


Figure: Venn diagram for the events A, E, and E'.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Event A is the union of the two mutually exclusive events $E \cap A$ and $E' \cap A$. Hence,

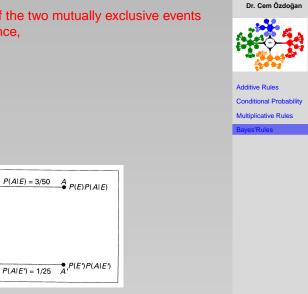


Figure: Tree diagram for the data.

PIE 23

PIEI

Ē'

Probability II

• Event A is the union of the two mutually exclusive events $E \cap A$ and $E' \cap A$. Hence,

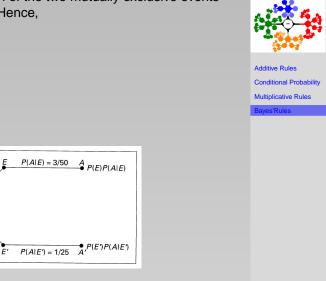


Figure: Tree diagram for the data.

P(E) 213

PIEI

Probability II

Dr. Cem Özdoğan

- Event A is the union of the two mutually exclusive events
 E ∩ *A* and *E'* ∩ *A*. Hence,
- $\bullet A = (E \cap A) \cup (E' \cap A)$
- $\bullet P(A) = P[(E \cap A) \cup (E' \cap A)]$ $= P(E \cap A) + P(E' \cap A)$
- = P(E)P(A|E) + P(E')P(A|E')

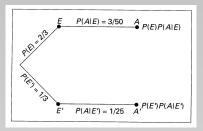


Figure: Tree diagram for the data.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

Event A is the union of the two mutually exclusive events
 E ∩ A and E' ∩ A. Hence,

• $P(E') = \frac{1}{3}, P(A|E) = \frac{12}{300} = \frac{1}{25}$

• $P(A) = \frac{2}{3} * \frac{3}{50} + \frac{1}{3} * \frac{1}{25} = \frac{4}{75}$

$$\bullet A = (E \cap A) \cup (E' \cap A)$$

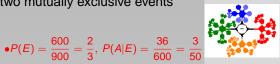
 $\bullet P(A) = P[(E \cap A) \cup (E' \cap A)]$ $= P(E \cap A) + P(E' \cap A)$ = P(E)P(A|E) + P(E')P(A|E')

 $P(E)P(A|E) = 3/50 \xrightarrow{A} P(E)P(A|E)$ $P(E)P(A|E) = 1/25 \xrightarrow{A} P(E)P(A|E')$

Figure: Tree diagram for the data.

Probability II

Dr. Cem Özdoğan



Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.16: (Theorem of total probability or rule of elimination)

If the events B_1, B_2, \ldots, B_k constitute a partition of the sample space *S* such that $P(B_i) \neq 0$ for $i = 1, 2, \ldots, k$, then for any event *A* of *S*,

$$\mathcal{P}(\mathcal{A}) = \sum_{i=1}^{k} \mathcal{P}(\mathcal{B}_i \cap \mathcal{A}) = \sum_{i=1}^{k} \mathcal{P}(\mathcal{B}_i) \mathcal{P}(\mathcal{A}|\mathcal{B}_i)$$

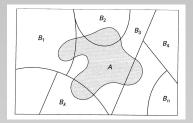


Figure: Partitioning the sample space S.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Example 2.41: In a certain assembly plant, three machines, *B*₁, *B*₂ and *B*₃ make 30%, 45% and 25%, respectively, of the products.

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- **Example 2.41**: In a certain assembly plant, three machines, *B*₁, *B*₂ and *B*₃ make 30%, 45% and 25%, respectively, of the products.
- It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- **Example 2.41**: In a certain assembly plant, three machines, *B*₁, *B*₂ and *B*₃ make 30%, 45% and 25%, respectively, of the products.
- It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective.
- Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

 $P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)$

= 03 * 0.02 + 0.45 * 0.03 + 0.25 * 0.02 = 0.0245

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- **Example 2.41**: In a certain assembly plant, three machines, *B*₁, *B*₂ and *B*₃ make 30%, 45% and 25%, respectively, of the products.
- It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective.
- Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

 $P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)$

= 03 * 0.02 + 0.45 * 0.03 + 0.25 * 0.02 = 0.0245

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- **Example 2.41**: In a certain assembly plant, three machines, *B*₁, *B*₂ and *B*₃ make 30%, 45% and 25%, respectively, of the products.
- It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective.
- Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

 $P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)$

= 03 * 0.02 + 0.45 * 0.03 + 0.25 * 0.02 = 0.0245

- Solution:
- Event *A*: the product is defective.
- Event *B*: the product is made by machine *B_i*

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- **Example 2.41**: In a certain assembly plant, three machines, *B*₁, *B*₂ and *B*₃ make 30%, 45% and 25%, respectively, of the products.
- It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective.
- Now, suppose that a finished product is randomly selected. What is the probability that it is defective?

 $P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)$

= 03 * 0.02 + 0.45 * 0.03 + 0.25 * 0.02 = 0.0245

- Solution:
- Event *A*: the product is defective.
- Event *B*: the product is made by machine *B_i*

 B_1

B₂

 B_3

P(B1) = 0.3

P(B3) # 0.25

 $P(B_2) = 0.45$

 $P(A|B_1) = 0.02$

 $P(A|B_2) = 0.03$

 $P(A|B_3) = 0.02$

Α

А

Α

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.17: (Bayes'Rule)

If the events $B_1, B_2, ..., B_k$ constitute a partition of the sample space S such that $P(B_i) \neq 0$ for i = 1, 2, ..., k, then

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)}$$

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

Theorem 2.17: (Bayes'Rule)

If the events B_1, B_2, \ldots, B_k constitute a partition of the sample space S such that $P(B_i) \neq 0$ for i = 1, 2, ..., k, then

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^{k} P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^{k} P(B_i)P(A|B_i)}$$

Additive Rules Conditional Probability Multiplicative Rules

Baves'Rules

It can be proved by the definition of conditional probability,

 $P(B_r|A) = P(B_r \cap A)/P(A)$

and then using Theorem 2.16 in the denominator.

Probability II

Dr. Cem Özdoğan

• Theorem 2.17: (Bayes'Rule)

If the events $B_1, B_2, ..., B_k$ constitute a partition of the sample space *S* such that $P(B_i) \neq 0$ for i = 1, 2, ..., k, then

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)}$$

 $P(A|B_r)$

It can be proved by the definition of conditional probability,

 $P(B_r|A) = P(B_r \cap A)/P(A)$

and then using Theorem 2.16 in the denominator.

• Useful in problems where $P(B_i|A)$ are not known but $P(A|B_i)$ and $P(B_i)$ are known.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Theorem 2.17: (Bayes'Rule)

If the events $B_1, B_2, ..., B_k$ constitute a partition of the sample space *S* such that $P(B_i) \neq 0$ for i = 1, 2, ..., k, then

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)}$$

 $P(A|B_r)$

It can be proved by the definition of conditional probability,

 $P(B_r|A) = P(B_r \cap A)/P(A)$

and then using Theorem 2.16 in the denominator.

- Useful in problems where $P(B_i|A)$ are not known but $P(A|B_i)$ and $P(B_i)$ are known.
- Some terminology:

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

Theorem 2.17: (Bayes'Rule)

If the events B_1, B_2, \ldots, B_k constitute a partition of the sample space S such that $P(B_i) \neq 0$ for i = 1, 2, ..., k, then

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)}$$

It can be proved by the definition of conditional probability,

 $P(B_r|A) = P(B_r \cap A)/P(A)$

and then using Theorem 2.16 in the denominator.

- Useful in problems where $P(B_i|A)$ are not known but $P(A|B_i)$ and $P(B_i)$ are known.
- Some terminology:
 - $P(B_i)$: priors

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

aves'Rules

Theorem 2.17: (Bayes'Rule)

If the events B_1, B_2, \ldots, B_k constitute a partition of the sample space S such that $P(B_i) \neq 0$ for i = 1, 2, ..., k, then

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)}$$

It can be proved by the definition of conditional probability,

 $P(B_r|A) = P(B_r \cap A)/P(A)$

and then using Theorem 2.16 in the denominator.

- Useful in problems where $P(B_i|A)$ are not known but $P(A|B_i)$ and $P(B_i)$ are known.
- Some terminology:
 - P(B_i) : priors
 - $P(A|B_i)$: likelihoods

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

aves'Rules

Theorem 2.17: (Bayes'Rule)

If the events B_1, B_2, \ldots, B_k constitute a partition of the sample space S such that $P(B_i) \neq 0$ for i = 1, 2, ..., k, then

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)}$$

It can be proved by the definition of conditional probability,

 $P(B_r|A) = P(B_r \cap A)/P(A)$

and then using Theorem 2.16 in the denominator.

- Useful in problems where $P(B_i|A)$ are not known but $P(A|B_i)$ and $P(B_i)$ are known.
- Some terminology:
 - P(B_i) : priors
 - P(A|B_i) : likelihoods
 - $P(B_i|A)$: posteriors

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

aves'Rules

• Example 2.42: With reference to Example 2.41, if a

product were chosen randomly and found to be defective,

what is the probability that it was made by machine B_3

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- **Example 2.42**: With reference to Example 2.41, if a product were chosen randomly and found to be defective, what is the probability that it was made by machine *B*₃
- Using Bayes'rule,

 $P(B_3|A) = \frac{P(B_3)P(A|B_3)}{P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)}$ $= \frac{0.005}{0.006 + 0.0135 + 0.005} = \frac{10}{49}$

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

• Example 2.43: A manufacturing firm employs three analytical plans for the design and development of a particular product.

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example 2.43: A manufacturing firm employs three analytical plans for the design and development of a particular product.
- For cost reasons, all three are used at varying times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products respectively.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example 2.43: A manufacturing firm employs three analytical plans for the design and development of a particular product.
- For cost reasons, all three are used at varying times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products respectively.
- The "defect rate" is different for the three procedures as follows:

 $P(D|P_1) = 0.01, P(D|P_2) = 0.03, P(D|P_3) = 0.5$

where $P(D|P_j)$ is the probability of a defective product, given plan *j*.

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example 2.43: A manufacturing firm employs three analytical plans for the design and development of a particular product.
- For cost reasons, all three are used at varying times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products respectively.
- The "defect rate" is different for the three procedures as follows:

 $P(D|P_1) = 0.01, P(D|P_2) = 0.03, P(D|P_3) = 0.5$

where $P(D|P_j)$ is the probability of a defective product, given plan *j*.

 If a random product was observed and found to be defective, which plan was most likely used and thus responsible?

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules

- Example 2.43: A manufacturing firm employs three analytical plans for the design and development of a particular product.
- For cost reasons, all three are used at varying times. In fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of the products respectively.
- The "defect rate" is different for the three procedures as follows:

$$P(D|P_1) = 0.01, P(D|P_2) = 0.03, P(D|P_3) = 0.5$$

where $P(D|P_j)$ is the probability of a defective product, given plan *j*.

- If a random product was observed and found to be defective, which plan was most likely used and thus responsible?
- Solution: $P(P_1) = 0.3, (P_12) = 0.2, (P_1) = 0.5$

 $P(P_i|D) = \frac{P(P_i)P(D|P_i)}{\sum_{i=1}^{3} P(P_i)P(D|P_i)} = \frac{(0.30)(0.01)}{(0.3)(0.01) + (0.20)(0.03) + (0.50)(0.02)} = \frac{0.003}{0.019}$

 $P(P_1|D) = 0.158, P(P_2|D) = 0.316, P(P_3|D) = 0.526.$

Probability II

Dr. Cem Özdoğan

Additive Rules Conditional Probability Multiplicative Rules