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Additive Rules I

• Theorem 2.10 :
If A and B are any two events, then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

• Corollary 1 :
If A and B are mutually exclu-
sive, then

P(A ∪ B) = P(A) + P(B)

Figure: Additive rule of probability.
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Additive Rules II

• Corollary 2 :
If A1, A2, . . . An, are mutually exclusive, then

P(A1 ∪ A2 ∪ . . . ∪ An) = P(A1) + P(A2) + . . . + P(An)

• Corollary 3 :
If A1, A2, . . . An, , is a partition of a sample space S, then

P(A1 ∪ A2 ∪ . . . ∪ An) = P(A1) + P(A2) + . . . + P(An)

= P(S) = 1
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Additive Rules III

• Theorem 2.11 : (an extension of Theorem 2.10)
For three events A, B, and C,

P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)

−P(B ∩ C) + P(A ∩ B ∩ C)

• Theorem 2.12 :
If A and A′ are complementary events, then

P(A) + P(A′) = 1

Proof : Since A ∪ A′ = S and A ∩ A′ = ∅, then

1 = P(S) = P(A ∪ A′) = P(A) + P(A′)
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Additive Rules IV

• Example 2.32 : The probability that the production
procedure meets specification (2000± 10 mm) is known to
be 0.99. Small cable is just as likely to be defective as
large cable.

• What is the probability that a cable selected randomly is too
large?
Let M be the event that a cable meets spec. Let S and L be
the events that the cable is too small and too large,
respectively. Then

P(M) = 0.99 and P(S) = P(L) = (1 − 0.99)/2 = 0.0005

• What is the probability that a cable selected randomly is
larger than 1990 mm?

P(X ≥ 1990) = 1 − P(S) = 0.995

where X is the length of a randomly selected cable.
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Conditional Probability I

• Conditional probability: P(B|A)

• Sometimes the occurrence of an event is influenced or
related with some other event.

• Hence we must take this restriction or the availability of
certain limited information into consideration about the
outcome of the experiment.

• The probability of an event B occurring when it is known
that some event A has occurred.

• “The probability that B occurs given that A occurs” or “The
probability of B,given A”

• The notion of conditional probability provides the capability
of re-evaluating the idea of probability of an event in light of
additional information.

• Example :
S = {1, 2, 3, 4, 5, 6}, A = {4, 5, 6}, B = {1, 3, 5}, =⇒ P(B|A)?

• Definition 2.9 :

P(B|A) =
P(A ∩ B)

P(A)

provided P(A) > 0
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Conditional Probability II

• Example : Our sample space S is the population of adults
in a small town. They can be categorized according to
gender and employment status (see Table 1).

Table: Categorized adult population in a small town.

Employed Unemployed Total
Male 460 40 500
Female 140 260 400
Total 600 300 900

• One individual is to be selected at random for a publicity
tour.

• The concerned events
• M: a man is chosen
• E : the one chosen is employed

P(M|E) =
460
600

=
23
30

P(M|E) =
n(E ∩ M)/n(S)

n(E)/n(S)
=

P(E ∩ M)

P(E)
=

460
900
600
900

=
23
30
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Conditional Probability III

• Example 2.33 : The probability that a regularly scheduled
flight departs on time is P(D) = 0.83;

• the probability that arrives on time is P(A) = 0.82;

• the probability that it departs and arrives on time is
P(D ∩ A) = 0.78.

• Find the probability that a plane
• arrives on time given that it departed on time, and

P(A|D) =
P(D ∩ A)

P(D)
=

0.78
0.83

= 0.94

• departed on time given that it has arrived on time.

P(D|A) =
P(D ∩ A)

P(A)
=

0.78
0.82

= 0.95
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Conditional Probability IV

• Definition 2.10 :
Two events A and B are said to be independent if and
only if

P(B|A) = P(B) or P(A|B) = P(A).

Otherwise, A and B are dependent .

• If knowing that event B occurred doesn’t change the
probability that A will occur, then B must carry no
information about A.

• The condition P(B|A) = P(B) implies that P(A|B) = P(A),
and conversely.

• Example : Two cards are drawn in succession, with
replacement

• Event A: the first card is an ace
• Event B: the second card is a spade

P(B|A) =
P(A ∩ B)

P(A)
=

1/52
4/52

=
13
52

=
1
4

and P(B) =
13
52

=
1
4

• Since P(B|A) = P(B), these two events are independent.
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Multiplicative Rules I
• Multiplying the formula of Definition 2.9 by P(A), we obtain

the multiplicative rule , which enables us to calculate the
probability that two events will both occur.

• Theorem 2.13 :
If in an experiment the events A and B can both occur,
then

P(A ∩ B) = P(A) ∗ P(B|A)

provided P(A) > 0
• We can also write

P(A ∩ B) = P(B ∩ A) = P(B) ∗ P(A|B)

• Example 2.35 : Suppose that we have a fuse box
containing 20 fuses, of which 5 are defective. If 2 fuses are
selected at random and removed from the box in
succession without replacing the first.

• What is the probability that both fuses are defective?
• Event A: the first fuse is defective
• Event B: the second fuse is defective. Hence,

P(A ∩ B) = P(A) ∗ P(B|A) =
1
4
∗

4
19

=
1

19
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Multiplicative Rules II

• Example 2.36 : One bag contains 4 white balls and 3 black
balls. A second bag contains 3 white balls and 5 black
balls.

• One ball is drawn from the first bag and placed unseen in
the second bag. What is the probability that a ball now
drawn from the second bag is black?

• Solution: Let B1, B2, and W1 represent, respectively, the
drawing of a black ball from bag 1, a black ball from bag 2,
and a white ball from bag 1.

p[(B1 ∩ B2) ∪ (W1 ∩ B2)] = P(B1 ∩ B2) + P(W1 ∩ B2)

= P(B1)P(B2|B1) + P(W1)P(B2|W1)

=
3
7
∗

6
9

+
4
7
∗

5
9

=
38
63
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Multiplicative Rules III

Figure: Tree diagram for Example 2.36.
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Multiplicative Rules IV
• Theorem 2.14 :

Two events A and B are (statistically or probabilistically)
independent if and only if

P(A ∩ B) = P(A)P(B)

. Therefore, to obtain the probability that two independent
events will both occur, we simply find the product of their
individual probabilities.

• Example 2.37 : A small town has one fire engine and one
ambulance available for emergencies.

• The probability that the fire engine is available when needed
is 0.98,

• The probability that the ambulance is available when called
is 0.92

• In the event of an injury resulting from a burning building,
find the probability that both the ambulance and the fire
engine will be available.

• Solution : Let A and B represent the respective evens that
the fire engine and the ambulance are available. Then

P(A ∩ B) = P(A)P(B) = 0.98 ∗ 0.92 = 0.9016.
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Multiplicative Rules V
• Example 2.38 : Find the probability that

Figure: An electrical system for Example
2.38.

• the entire system
works

• the component C
does not work, given
that the entire system
works

• Solution:

P(A ∩ B ∩ (C ∪ D)) = P(A) ∗ P(B) ∗ P(C ∪ D)

= P(A)∗P(B)∗(1−P(C′∩D′)) = P(A)∗P(B)∗(1−P(C′)∗P(D′))

= 0.9 ∗ 0.9 ∗ (1 − (1 − 0.8) ∗ (1 − 0.8)) = 0.7776

•

P =
P(the system works but C does not work)

P(the system works)

=
P(A ∩ B ∩ C′ ∩ D)

P(A ∩ B ∩ (C ∪ D))
=

0.9 ∗ 0.9 ∗ (1 − 0.8) ∗ 0.8
0.7776

= 0.1667
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Multiplicative Rules VI

• Independence is often easy to grasp intuitively.

• For example, if the occurrence of two events is governed
by distinct and non-interacting physical processes, such
events will turn out to be independent.

• On the other hand, independence is not easily visualized
in terms of the sample space.

• A common fallacy (wrong idea) is that two events are
independent if they are disjoint, but in fact the opposite is
true:
Two disjoint events A and B with P(A) > 0 and P(B) > 0
are never independent, since their intersection A ∩ B is
empty and has probability 0.

• We note that
(i) independent events are never mutually exclusive,
(ii) two mutually exclusive events are always dependent.
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Multiplicative Rules VII
• Theorem 2.15 :

If the events A1, A2, A3, . . . , Ak can occur, then

P(A1 ∩ A2 ∩ . . . ∩ Ak ) = P(A1)P(A2|A1)P(A3|A1 ∩ A2)

. . . P(Ak |A1 ∩ A2 ∩ . . . ∩ Ak )

If the events A1, A2, A3, . . . , Ak are independent, then

P(Ak |A1 ∩ A2 ∩ . . . ∩ Ak ) = P(A1)P(A2) . . . P(Ak ) =

k
Y

n=1

P(An)

• Example 2.39 : Three cards are drawn in succession
without replacement. Find the probability that the event
A1 ∩ A2 ∩ A3 occurs, where

• A1: the first card is red ace
• A2: the second card is a 10 or jack
• A3: the third card is greater than 3 but less than 7

• Solution :

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2|A1)P(A3|A1 ∩ A2)

=
2

52
∗

8
51

∗
12
50

=
8

5525
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Multiplicative Rules VIII

• Independence of Several Events :
The events A1, A2, A3, . . . , An are independent if

P(
⋂

i∈S

Ai) =
∏

i∈S

P(Ai)

for any subset S of {1, 2, . . . , n}.

• Independence means that the occurrence or
non-occurrence of any number of the events from that
collection carries no information on the remaining events
or their complements.

• Example: Independence of three events : If A1, A2 and
A3 are independent,

P(A1 ∩ A2) = P(A1)P(A2)

P(A1 ∩ A3) = P(A1)P(A3)

P(A2 ∩ A3) = P(A2)P(A3)

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3)
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Multiplicative Rules IX

• Example : Consider two independent fair coin tosses, and
the following events:

• H1= 1st toss is a head,
• H2= 2nd toss is a head,
• D = the two tosses have different results.

• Pairwise independence does not imply independence.
• H1 and H2 are independent, by definition.
• P(D|H1) = P(D) and P(D|H2) = P(D)
• P(H1 ∩ H2 ∩ D) = 0 6= P(H1)P(H2)P(D)

• Example : Consider two independent rolls of a fair die, and
the following events:

• A = 1st roll is 1, 2, or 3, B = 2nd roll is 3, 4, or 5, C = the sum
of the two rolls is 9.

• P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3) is not enough for
independence.

• P(A ∩ B) = 1
6 6= 1

2 ∗ 1
2 = P(A)P(B)

• P(A ∩ C) = 1
36 6= 1

2 ∗ 4
36 = P(A)P(C)

• P(B ∩ C) = 3
6 6= 1

2 ∗ 4
36 = P(B)P(C)

• P(A ∩ B ∩ C) = 1
36 6= 1

2 ∗ 1
2 ∗ 4

36 = P(A)P(B)P(C)
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Bayes’Rules I
• Our sample space S is the population of adults in a small

town. They can be categorized according to employment
status.

• One individual is to be selected at random for a publicity
tour.

• The concerned event E : the one chosen is employed
• Give the additional information that 36 of those employed

and 12 of those unemployed are members of the Rotary
Club.

• Find the probability of the event A that individual selected is
a member of the Rotary Club.

Figure: Venn diagram for the events A, E , and E ′.
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Bayes’Rules II

• Event A is the union of the two mutually exclusive events
E ∩ A and E ′ ∩ A. Hence,

•A = (E ∩ A) ∪ (E ′ ∩ A)

•P(A) = P[(E ∩ A) ∪ (E ′ ∩ A)]

= P(E ∩ A) + P(E ′ ∩ A)

= P(E)P(A|E) + P(E ′)P(A|E ′)

•P(E) =
600

900
=

2

3
, P(A|E) =

36

600
=

3

50

•P(E ′) =
1

3
, P(A|E) =

12

300
=

1

25

•P(A) =
2

3
∗

3

50
+

1

3
∗

1

25
=

4

75

Figure: Tree diagram for the data.
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Bayes’Rules III
• Theorem 2.16 : (Theorem of total probability or rule of

elimination )
If the events B1, B2, . . . , Bk constitute a partition of the
sample space S such that P(Bi) 6= 0 for i = 1, 2, . . . , k ,
then for any event A of S,

P(A) =

k∑

i=1

P(Bi ∩ A) =

k∑

i=1

P(Bi)P(A|Bi)

Figure: Partitioning the sample space S.
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Additive Rules

Conditional Probability

Multiplicative Rules

Bayes’Rules

4.23

Bayes’Rules IV
• Example 2.41 : In a certain assembly plant, three

machines, B1, B2 and B3 make 30%, 45% and 25%,
respectively, of the products.

• It is known from past experience that 2%, 3%, and 2% of
the products made by each machine, respectively, are
defective.

• Now, suppose that a finished product is randomly
selected. What is the probability that it is defective?

P(A) = P(B1)P(A|B1) + P(B2)P(A|B2) + P(B3)P(A|B3)

= 03 ∗ 0.02 + 0.45 ∗ 0.03 + 0.25 ∗ 0.02 = 0.0245

• Solution:
• Event A: the product is
defective.
• Event B: the product is made
by machine Bi

Figure: Tree diagram for Example
2.41.
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Bayes’Rules V

• Theorem 2.17 : (Bayes’Rule)
If the events B1, B2, . . . Bk constitute a partition of the sam-
ple space S such that P(Bi) 6= 0 for i = 1, 2, . . . , k , then

P(Br |A) =
P(Br ∩ A)

∑k
i=1 P(Bi ∩ A

=
P(Br )P(A|Br )∑k
i=1 P(Bi)P(A|Bi)

• It can be proved by the definition of conditional probability,

P(Br |A) = P(Br ∩ A)/P(A)

and then using Theorem 2.16 in the denominator.

• Useful in problems where P(Bi |A) are not known but
P(A|Bi) and P(Bi) are known.

• Some terminology:
• P(Bi) : priors
• P(A|Bi) : likelihoods
• P(Bi |A) : posteriors
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Bayes’Rules VI

• Example 2.42 : With reference to Example 2.41, if a
product were chosen randomly and found to be defective,
what is the probability that it was made by machine B3

• Using Bayes’rule,

P(B3|A) =
P(B3)P(A|B3)

P(B1)P(A|B1) + P(B2)P(A|B2) + P(B3)P(A|B3)

=
0.005

0.006 + 0.0135 + 0.005
=

10
49
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Bayes’Rules VII
• Example 2.43 : A manufacturing firm employs three

analytical plans for the design and development of a
particular product.

• For cost reasons, all three are used at varying times. In
fact, plans 1, 2, and 3 are used for 30%, 20%, and 50% of
the products respectively.

• The “defect rate” is different for the three procedures as
follows:

P(D|P1) = 0.01, P(D|P2) = 0.03, P(D|P3) = 0.5

where P(D|Pj) is the probability of a defective product,
given plan j .

• If a random product was observed and found to be
defective, which plan was most likely used and thus
responsible?

• Solution : P(P1) = 0.3, (P12) = 0.2, (P1) = 0.5

P(Pi |D) =
P(Pi )P(D|Pi )

P3
i=1 P(Pi )P(D|Pi )

=
(0.30)(0.01)

(0.3)(0.01) + (0.20)(0.03) + (0.50)(0.02)
=

0.003

0.019

P(P1|D) = 0.158, P(P2|D) = 0.316, P(P3|D) = 0.526.
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