
1 The /proc File System

• In the old days, certain UNIX programs, such as ps and uptime,
accessed kernel data structures directly to retrieve system information.

– This required knowledge of kernel externals and required care to
ensure that the values were not modified as they were being ac-
cessed.

– The programs needed to be setuid root in order to access the
kernel data structures; this meant they were vulnerable to security
exploits if they were not carefully written.

– These programs also frequently had to be rebuilt when the ker-
nel was changed because the positions and layouts of the data
structures may have changed.

• Modern systems implement a /proc filesystem that contains special
files that can be read to access system status information.

• /proc is a window into the running Linux kernel. Files in the /proc
file system don’t correspond to actual files on a physical device.

– Instead, they are magic objects that behave like files but provide
access to parameters, data structures, and statistics in the kernel.

• The contents of these files are not always fixed blocks of data, as ordi-
nary file contents are.

– Instead, they are generated on the fly by the Linux kernel when
you read from the file.

• You can also change the configuration of the running kernel by writing
to certain files in the /proc file system.

• The code that implements the /proc filesystem and some of its entries
can be found in /usr/src/linux/fs/proc. Portions of the proc namespace
are registered using the kernel function proc register().

$ ls -l /proc/version

$ cat /proc/version

$ man 5 proc
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1.1 Extracting Information from /proc

• Most of the entries in /proc provide information formatted to be read-
able by humans.

$ cat /proc/cpuinfo

• The program in Fig. 1 shows a simple way to extract a value from the
output by reading the file into a buffer and parse it in memory using
sscanf. The program includes the function get cpu clock speed that
reads from /proc/cpuinfo into memory and extracts the first CPU’s
clock speed.

1.2 Process Information

• The /proc file system contains a directory entry for each process run-
ning on the system.

• The name of each directory is the process ID of the corresponding
process.

• Each process directory contains these entries:

– cmdline contains the argument list for the process.

∗ The command line may be blank for zombie processes and the
arguments might not be available if the process is swapped
out.

∗ You can take a quick look at what is running on your system
by issuing the following command:

$ strings -f /proc/[0-9]*/cmdline

– cwd is a symbolic link that points to the inode for the current
working directory of the process.

– cpu entry appears only on SMP Linux kernels. It contains a
breakdown of process time (user and system) by CPU.

– environ contains the process’s environment.

– exe is a symbolic link that points to the executable image running
in the process. This could also point to a script that is being
executed or the executable processing it, depending on the nature
of the script.
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#include <stdio.h>

#include <string.h>

/* Returns the clock speed of the system’s CPU in MHz, as reported by

/proc/cpuinfo. On a multiprocessor machine, returns the speed of

the first CPU. On error returns zero. */

float get_cpu_clock_speed ()

{

FILE* fp;

char buffer[1024];

size_t bytes_read;

char* match;

float clock_speed;

/* Read the entire contents of /proc/cpuinfo into the buffer. */

fp = fopen ("/proc/cpuinfo", "r");

bytes_read = fread (buffer, 1, sizeof (buffer), fp);

fclose (fp);

/* Bail if read failed or if buffer isn’t big enough. */

if (bytes_read == 0 || bytes_read == sizeof (buffer))

return 0;

/* NUL-terminate the text. */

buffer[bytes_read] = ’\0’;

/* Locate the line that starts with "cpu MHz". */

match = strstr (buffer, "cpu MHz");

if (match == NULL)

return 0;

/* Parse the line to extract the clock speed. */

sscanf (match, "cpu MHz : %f", &clock_speed);

return clock_speed;

}

int main ()

{

printf ("CPU clock speed: %4.0f MHz\n", get_cpu_clock_speed ());

return 0;

}

Figure 1: Extract CPU Clock Speed from /proc/cpuinfo.
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– fd is a subdirectory that contains entries for the file descriptors
opened by the process as a symbolic link to the actual file’s inode.

∗ Opening the file descriptor entry (for example, /proc/self/fd/1)
opens the file itself; if the file is a terminal or other special
device, it may interfere with the process itself by stealing data.

– maps displays information about files mapped into the process’s
address. For each mapped file, maps displays the range of ad-
dresses in the process’s address space into which the file is mapped,
the permissions on these addresses, the name of the file, and other
information.
The maps table for each process displays the executable running
in the process, any loaded shared libraries, and other files that the
process has mapped in.

– root is a symbolic link to the root directory for this process. Usu-
ally, this is a symbolic link to /, the system root directory. (chroot)

– stat contains lots of status and statistical information about the
process. These are the same data as presented in the status entry,
but in raw numerical format, all on a single line.

– statm contains information about the memory used by the pro-
cess.

∗ The variable names, in order, used in array.c are size, resident,
share, trs, lrs, drs, and dt.

∗ These give the total size (including code, data, and stack),
resident set size, shared pages, text pages, stack pages, and
dirty pages.

– status contains lots of status and statistical information about the
process, formatted to be comprehensible by humans. It includes
the name, state, process id, parent process id, uids and group ids
(including real, effective, and saved ids), virtual memory statistics,
and signal masks.

– mem entry can be used to access the memory image of a particular
process.

• The source file /usr/src/linux/fs/proc/array.c seems to have most of
the routines that actually generate /proc output for the per process
entries.
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#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

/* Returns the process id of the calling processes, as determined from

the /proc/self symlink. */

pid_t get_pid_from_proc_self ()

{

char target[32];

int pid;

/* Read the target of the symbolic link. */

readlink ("/proc/self", target, sizeof (target));

/* The target is a directory named for the process id. */

sscanf (target, "%d", &pid);

return (pid_t) pid;

}

int main ()

{

printf ("/proc/self reports process id %d\n",

(int) get_pid_from_proc_self ());

printf ("getpid() reports process id %d\n", (int) getpid ());

return 0;

}

Figure 2: Obtain the Process ID from /proc/self.

1.2.1 /proc/self

• One additional entry in the /proc file system makes it easy for a pro-
gram to use /proc to find information about its own process.

• The entry /proc/self is a symbolic link to the /proc directory corre-
sponding to the current process.

• The destination of the /proc/self link depends on which process looks
at it: Each process sees its own process directory as the target of the
link.

• The program in Fig. 2 reads the target of the /proc/self link to
determine its process ID.
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1.2.2 Process Argument List

• The arguments are presented as a single character string, with argu-
ments separated by NULs.

• NUL vs. NULL. NUL is the character with integer value 0. It is
different from NULL, which is a pointer with value 0.

• NULL is a pointer value that you can be sure will never correspond
to a real memory address in your program.

• In C and C++, NUL is expressed as the character constant ’
0’, or (char) 0. The definition of NULL differs among operating sys-
tems; on Linux, it is defined as ((void*)0) in C and simply 0 in C++.

• The program Fig. 3 prints the argument list of the process with the
specified process ID.

$ ./print-arg-list PID

1.2.3 Process Environment

• The environ entry contains a process’s environment.

• The program Fig. 4 takes a process ID number on its command line
and prints the environment for that process by reading it from /proc.

1.2.4 Process Executable

• The exe entry points to the executable file being run in a process.

• Typically the program executable name is passed as the first element
of the argument list.

• Using the exe entry in the /proc file system is a more reliable way to
determine which executable is running.

• The function get executable path in the program (See Fig. 5) de-
termines the path of the executable running in the calling process by
examining the symbolic link /proc/self/exe.
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#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

/* Prints the argument list, one argument to a line, of the process

given by PID. */

void print_process_arg_list (pid_t pid)

{

int fd;

char filename[24];

char arg_list[1024];

size_t length;

char* next_arg;

/* Generate the name of the cmdline file for the process. */

snprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);

/* Read the contents of the file. */

fd = open (filename, O_RDONLY);

length = read (fd, arg_list, sizeof (arg_list));

close (fd);

/* read does not NUL-terminate the buffer, so do it here. */

arg_list[length] = ’\0’;

/* Loop over arguments. Arguments are separated by NULs. */

next_arg = arg_list;

while (next_arg < arg_list + length) {

/* Print the argument. Each is NUL-terminated, so just treat it

like an ordinary string. */

printf ("%s\n", next_arg);

/* Advance to the next argument. Since each argument is

NUL-terminated, strlen counts the length of the next argument,

not the entire argument list. */

next_arg += strlen (next_arg) + 1;

}

}

int main (int argc, char* argv[])

{

pid_t pid = (pid_t) atoi (argv[1]);

print_process_arg_list (pid);

return 0;

}

Figure 3: Print the Argument List of a Running Process.
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#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

/* Prints the environment, one environment variable to a line, of the

process given by PID. */

void print_process_environment (pid_t pid)

{

int fd;

char filename[24];

char environment[8192];

size_t length;

char* next_var;

/* Generate the name of the environ file for the process. */

snprintf (filename, sizeof (filename), "/proc/%d/environ", (int) pid);

/* Read the contents of the file. */

fd = open (filename, O_RDONLY);

length = read (fd, environment, sizeof (environment));

close (fd);

/* read does not NUL-terminate the buffer, so do it here. */

environment[length] = ’\0’;

/* Loop over variables. Variables are separated by NULs. */

next_var = environment;

while (next_var < environment + length) {

/* Print the variable. Each is NUL-terminated, so just treat it

like an ordinary string. */

printf ("%s\n", next_var);

/* Advance to the next variable. Since each variable is

NUL-terminated, strlen counts the length of the next variable,

not the entire variable list. */

next_var += strlen (next_var) + 1;

}

}

int main (int argc, char* argv[])

{

pid_t pid = (pid_t) atoi (argv[1]);

print_process_environment (pid);

return 0;

}

Figure 4: Display the Environment of a Process.
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#include <limits.h>

#include <stdio.h>

#include <string.h>

#include <unistd.h>

/* Finds the path containing the currently-running program executable.

The path is placed into BUFFER, which is of length LEN. Returns

the number of characters in the path, or -1 on error. */

size_t get_executable_path (char* buffer, size_t len)

{

char* path_end;

/* Read the target of /proc/self/exe. */

if (readlink ("/proc/self/exe", buffer, len) <= 0)

return -1;

/* Find the last occurrence of a forward slash, the path separator. */

path_end = strrchr (buffer, ’/’);

if (path_end == NULL)

return -1;

/* Advance to the character past the last slash. */

++path_end;

/* Obtain the directory containing the program by truncating the

path after the last slash. */

*path_end = ’\0’;

/* The length of the path is the number of characters up through the

last slash. */

return (size_t) (path_end - buffer);

}

int main ()

{

char path[PATH_MAX];

get_executable_path (path, sizeof (path));

printf ("this program is in the directory %s\n", path);

return 0;

}

Figure 5: Get the Path of the Currently Running Program.
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1.2.5 Process File Descriptors

• The fd entry is a subdirectory that contains entries for the file descrip-
tors opened by a process. Each entry is a symbolic link to the file or
device opened on that file descriptor.

• You can write to or read from these symbolic links; this writes to or
reads from the corresponding file or device opened in the target process.
The entries in the fd subdirectory are named by the file descriptor
numbers.

• Open a new window, and find the process ID of the shell process by
running ps.

$ ps

• Now open a second window, and look at the contents of the fd subdi-
rectory for that process.

$ ls -l /proc/PID/fd

• File descriptors 0, 1, and 2 are initialized to standard input, output,
and error, respectively.

• Thus, by writing to /proc/PID/fd/1, you can write to the device
attached to stdout for the shell process.

• In the second window, try writing a message to that file:

$echo "Hello, world." >> /proc/PID/fd/1

• The program in Fig. 6 presents a program that simply opens a file
descriptor to a file specified on the command line and then loops forever.

$ ./open-and-spin open-and-spin.c (in one window)

$ ls -l /proc/PID/fd (in other window)
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#include <fcntl.h>

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

int main (int argc, char* argv[])

{

const char* const filename = argv[1];

int fd = open (filename, O_RDONLY);

printf ("in process %d, file descriptor %d is open to %s\n",

(int) getpid (), (int) fd, filename);

while (1);

return 0;

}

Figure 6: Open a File for Reading.

1.2.6 Process Memory Statistics

• The statm entry contains a list of seven numbers, separated by spaces.
Each number is a count of the number of pages of memory used by
the process in a particular category. The categories, in the order the
numbers appear, are listed here:

1. The total process size.

2. The size of the process resident in physical memory.

3. The memory shared with other processes; that is, memory mapped
both by this process and at least one other (such as shared libraries
or untouched copy-on-write pages).

4. The text size of the process; that is, the size of loaded executable
code.

5. The size of shared libraries mapped into this process.

6. The memory used by this process for its stack.

7. The number of dirty pages; that is, pages of memory that have
been modified by the program.

1.3 Hardware Information

• Several of the other entries in the /proc file system provide access to
information about the system hardware.
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• CPU Information; /proc/cpuinfo contains information about the
CPU or CPUs.

– The Processor field lists the processor number; this is 0 for single-
processor systems.

– The Vendor, CPU Family, Model, and Stepping fields enable you
to determine the exact model and revision of the CPU.

– More useful, the Flags field shows which CPU flags are set, which
indicates the features available in this CPU. For example, mmx
indicates the availability of the extended MMX instructions.

– The last element, bogomips, is a Linux-specific value. It is a mea-
surement of the processor’s speed spinning in a tight loop and is
therefore a rather poor indicator of overall processor speed.

• Device Information; the /proc/devices file lists major device num-
bers for character and block devices available to the system.

• PCI Bus Information; the /proc/pci file lists a summary of devices
attached to the PCI bus or buses. These are actual PCI expansion cards
and may also include devices built into the system’s motherboard, plus
AGP graphics cards.

• Serial Port Information; the /proc/tty/driver/serial file lists
configuration information and statistics about serial ports. For ex-
ample, this line from /proc/tty/driver/serial might describe serial
port 1 (which would be COM2 under Windows).

• DMA Information; the /proc/dma file lists which DMA channels
have been reserved by drivers and the name the driver gave when re-
serving them. The cascade entry is for the DMA line that is used to
cascade the secondary DMA controller off of the primary controller;
this line is not available for other use.

• Interrupt Information; /proc/interrupts file has one line per re-
served interrupt.

– The fields are the interrupt number, the number of interrupts re-
ceived on that line, a field that may have a plus sign (SA INTERRUPT
flag set) and the name a driver used when registering that inter-
rupt.

– The function get irq list() in /usr/src/linux/arch/i386/kernel/irq.c
(assuming Intel platform) generates this data.
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– This is a very handy file to manually ”cat” before installing new
hardware, as are /proc/dma and /proc/ioports. They list the
resources that are currently in use (but not those used by hardware
for which no driver is loaded).

• IOPorts Information; /proc/ioports file lists the various I/O port
ranges registered by various device drivers such as your disk drives,
ethernet, and sound devices.

• Raid Devices; textbf/proc/mdstat file contains information on raid
devices controlled by the md device driver.

• Memory Information; /proc/meminfo file gives information on
memory status and is used by the free program. Its format is similar
to that displayed by free. This displays the total amount of free and
used physical and swap memory in the system. This also shows the
shared memory and buffers used by the kernel.

• Clock Information; /proc/rtc file gives information on the hard-
ware real-time clock including the current date and time, alarm setting,
battery status, and various features supported. The /sbin/hwclock
command is normally used to manipulate the real-time clock.

• Net Information; /proc/net subdirectory contains files that de-
scribe and/or modify the behavior of the networking code. Many of
these special files are set or queried through the use of the arp, net-
stat, route, and ipfwadm commands.

• SCSI Information; /proc/scsi subdirectory contains one file that
lists all detected SCSI devices and one directory for each controller
driver, with a further subdirectory for each separate instance of that
controller installed.

1.3.1 Kernel Information

• Many of the entries in /proc provide access to information about the
running kernel’s configuration and state. Some of these entries are at
the top level of /proc; others are under /proc/sys/kernel.

– kcore Information; /proc/kcore file is the physical memory of
the system in core file format. It is used with GDB to examine
kernel data structures. This file is not in a text format.
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– kmsg Information; /proc/kmsg file; only one process, which
must have root privileges, can read this file at any given time. This
is used to retrieve kernel messages generated using printk().

– ksyms Information; /proc/ksyms file lists the kernel symbols
that have been registered; these symbols give the address of a
variable or function.

∗ Each line gives the address of a symbol, the name of the sym-
bol, and the module that registered the symbol.

∗ The ksyms, insmod, and kmod programs probably use this
file. It also lists the number of running tasks, the total number
of tasks, and the last pid assigned.

– Modules Information; /proc/modules file gives information
on loadable kernel modules. This information is used by the
lsmod program to display the information on the name, size,
usecount, and referring modules.

– Version Information; the file /proc/version contains a long
string describing the kernel’s release number and build version. It
also includes information about how the kernel was built: the user
who compiled it, the machine on which it was compiled, the date
it was compiled, and the compiler release that was used.

$ cat /proc/version

$ cat /proc/sys/kernel/ostype

$ cat /proc/sys/kernel/osrelease

$ cat /proc/sys/kernel/version

– Hostname and Domain Name; the /proc/sys/kernel/hostname
and /proc/sys/kernel/domainname entries contain the com-
puter’s hostname and domain name, respectively.

– Memory Usage; the /proc/meminfo entry contains information
about the system’s memory usage.

$ cat /proc/meminfo

∗ The Shared column displays total shared memory currently
allocated on the system.

∗ The Buffers column displays the memory allocated by Linux
for block device buffers. These buffers are used by device
drivers to hold blocks of data being read from and written to
disk.
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∗ The Cached column displays the memory allocated by Linux
to the page cache. This memory is used to cache accesses to
mapped files.

∗ You can use the free command to display the same memory
information.

1.3.2 Drives, Mounts, and File Systems

• The /proc file system also contains information about the disk drives
present in the system and the file systems mounted from them.

• File Systems; the /proc/filesystems entry displays the file system
types known to the kernel. File systems can be loaded and unloaded
dynamically as kernel modules. The contents of /proc/filesystems list
only file system types that either are statically linked into the kernel
or are currently loaded.

• The /proc/locks contains information on locks that are held on open
files.

– It is generated by the get locks status() function in /usr/src/linux/fs/locks.c.

– Each line represents lock information for a specific file, and docu-
ments the type of lock applied to the file.

– The functions fcntl() and flock() are used to apply locks to files.

– The kernel may also apply locks to files when needed.

• Drives and Partitions; the /proc file system includes information
about devices connected to both IDE controllers and SCSI controllers
(if the system includes them).

– Each IDE device directory contains several entries providing access
to identification and configuration information for the device. A
few of the most useful are listed here:

∗ model contains the device’s model identification string.

∗ media contains the device’s media type. Possible values are
disk, cdrom, tape, floppy, and UNKNOWN.

∗ capacity contains the device’s capacity, in 512-byte blocks.

$ cat /proc/ide/ide1/hdc/media

$ cat /proc/ide/ide1/hdc/model

$ cat /proc/scsi/scsi

$ cat /proc/sys/dev/cdrom/info
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– The /proc/partitions entry displays the partitions of recognized
disk devices. For each partition, the output includes the major
and minor device number, the number of 1024-byte blocks, and
the device name corresponding to that partition.

• Mounts; the /proc/mounts file provides a summary of mounted
file systems that you would normally expect in /etc/mtab. Each line
corresponds to a single mount descriptor and lists the mounted device,
the mount point, and other information.

– The first element on the line is the mounted device.

– The second element is the mount point, the place in the root file
system at which the file system contents appear. For the root file
system itself, the mount point is listed as /. For swap drives, the
mount point is listed as swap.

– The third element is the file system type. Currently, most GNU/Linux
systems use the ext2 file system for disk drives, but DOS or Win-
dows drives may be mounted with other file system types, such as
fat or vfat. Most CD-ROMs contain an iso9660 file system.

– The fourth element lists mount flags. These are options that were
specified when the mount was added.

1.4 System Statistics

Two entries in /proc contain useful system statistics.

• The /proc/loadavg file contains information about the system load.

– The first three numbers represent the number of active tasks on
the system averaged over the last 1, 5, and 15 minutes.

– The next entry shows the instantaneous current number of runnable
tasks; processes that are currently scheduled to run rather than
being blocked in a system call and the total number of processes
on the system.

– The final entry is the process ID of the process that most recently
ran.

• The /proc/uptime file contains the length of time since the system
was booted, as well as the amount of time since then that the system
has been idle. Both are given as floating-point values, in seconds.
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#include <stdio.h>

/* Summarize a duration of time to standard output. TIME is the

amount of time, in seconds, and LABEL is a short descriptive label. */

void print_time (char* label, long time)

{

/* Conversion constants. */

const long minute = 60;

const long hour = minute * 60;

const long day = hour * 24;

/* Produce output. */

printf ("%s: %ld days, %ld:%02ld:%02ld\n", label, time / day,

(time % day) / hour, (time % hour) / minute, time % minute);

}

int main ()

{

FILE* fp;

double uptime, idle_time;

/* Read the system uptime and accumulated idle time from /proc/uptime. */

fp = fopen ("/proc/uptime", "r");

fscanf (fp, "%lf %lf\n", &uptime, &idle_time);

fclose (fp);

/* Summarize it. */

print_time ("uptime ", (long) uptime);

print_time ("idle time", (long) idle_time);

return 0;

}

Figure 7: Print the System Uptime and Idle Time.

$ cat /proc/uptime

The following program (see Fig. 7) extracts the uptime and idle time from
the system and displays them in friendly units.

2 Secure Programming

• Multiple users and networking. Security is vital for some types of
programs and certain types of environments.

• Many people can use the system at once, and they can connect to the
system from remote locations. Unfortunately, with this power comes
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risk, especially for systems connected to the Internet. Security is impor-
tant, however, for a much wider range of programs and environments
than people often realize.

• Crackers cover their tracks by breaking into insecure systems and using
them to launch attacks against other systems.

• Crackers regularly install password sniffers on compromised machines
and use the intercepted passwords to log in to and compromise other
systems, repeating the process ad-infinitum.

2.1 Types of Applications

The following sections briefly cover some of the many different types of pro-
grams that can be exploited.

• Setuid Programs;

– The UNIX security model relies heavily on providing access to
privileged services through trusted programs that are run by ordi-
nary users but execute with all the privileges of a more powerful
user.

– The files storing these executables have the setuid or setgid bits
set, which gives the program all the privileges of the file owner
(often root).

– The untrusted user, however, has control of the arguments, data
files, and environment variables used by the program. The user
can control the path used by the program to search for other pro-
grams it may execute or for shared libraries it may rely on (for-
tunately many systems, including Linux, will override the shared
library path for setuid programs).

– The user can control when the program runs and when it is pre-
maturely terminated.

• Network Servers (Daemons);

– A cracker can easily launch a series of attacks against a server
until one of them succeeds.

– The attacker has full control of the data sent to the server and
when it is sent. The attacker can cause signals to be sent over a
tcp stream.

18



• Network Clients;

– Although clients are not as easy to attack as servers (because they
establish connections at their convenience and not the attacker’s),
they tend to be very vulnerable.

– Many clients are very large and complicated programs, and much
less attention has been given to security than for a typical server.

– Web browsers often permit the server to execute code on the client
machine (Java, JavaScript, ActiveX, and so on).

• Mail User Agents;

– Mail User Agents (MUAs) can be targeted directly, particularly
with buffer overflow type exploits. And attachments to messages
may contain hostile programs or documents that contain macro
viruses.

• CGI Programs;

– CGI programs are invoked by the Web server at the request of an
HTTP client to handle certain queries, form submissions, or even
dynamic generation of entire Web sites.

– They have most of the vulnerabilities that would be associated
with a server. Further, CGI programs are often written in very
insecure scripting languages.

• Utilities;

– General utility programs that are not setuid are often thought of
as not having security implications. Unfortunately, they may be
used in contexts where that is not the case.

– Most UNIX compatible systems used to run the find utility pe-
riodically to locate old temporary files and core files and delete
them. When find executes another program with the files it has
located, it passes the command, including a filename, to the shell
blindly.

– Special characters in a filename would be interpreted by the shell,
resulting in the ability to execute arbitrary commands.

– Other programs that are driven by the names of existing files
and invoke other programs may have similar vulnerabilities unless
precautions are taken.

19



– Consider what happens when you unpack a tar archive contain-
ing a few extra files with names like /etc/passwd or /etc/rhosts.
Buffer overflows are theoretically possible in the filename or other
header fields.

– Simple utilities, such as fgrep, cut, head, and tail, might be called
from a CGI program. If these programs were vulnerable to buffer
overflows as a result of input patterns, a system using them would
be vulnerable to compromise.

• Applications;

– Applications such as word processors and spreadsheets are vul-
nerable as well. The simple fact of the matter is that people will
receive data files from untrustworthy sources.

– Many of these have macro capabilities and the ability to have
a macro automatically execute when a file is loaded; thus the
popular ”macro virus” was born.

– Even worse, some systems have mail and Web browsers configured
to automatically open the application whenever a data file of that
type is received. Far more subtle exploits are possible using buffer
overflows, for example.

2.2 Users and Groups

• The system converts your username to a particular user ID, and from
then on it’s only the user ID that counts.

• You can control access to a file or other resource by associating it with
a particular user ID.

• Sometimes, you want to share a resource among multiple users.

• Linux doesn’t allow you to associate multiple user IDs with a file, so
you can’t just create a list of all the people to whom you want to give
access and attach them all to the file.

• You can, however, create a group. Each group is assigned a unique
number, called a group ID, or GID. Every group contains one or more
user IDs.

• A single user ID can be a member of lots of groups, but groups can’t
contain other groups.
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• Like users, groups have names. Also like usernames, however, the group
names don’t really matter; the system always uses the group ID inter-
nally.

• You can associate only one group with a resource.

$ id

• One user account is very special. This user has user ID 0 and usually
has the username root. The root user can do just about anything.

• Lots of special operations can be performed only by processes running
with root privilege.

• The trouble with this design is that a lot of programs need to be run
by root because a lot of programs need to perform one of these special
operations. If any of these programs misbehaves, chaos can result.

• There’s no effective way to contain a program when it’s run by root; it
can do anything. Programs run by root must be written very carefully.

2.3 Process User IDs and Process Group IDs

• The system knows only which user ID is in use, not which user is typing
the commands.

• Every process has an associated user ID and group ID. When you invoke
a command, it typically runs in a process whose user and group IDs
are the same as your user and group IDs.

– When we say that a user performs an operation, we really mean
that a process with the corresponding user ID performs that op-
eration.

– When the process makes a system call, the kernel decides whether
to allow the operation to proceed. It makes that determination by
examining the permissions associated with the resources that the
process is trying to access and by checking the user ID and group
ID associated with the process trying to perform the action.

• The program in Fig. 8 shows a simple program that provides a subset
of the functionality provide by the id command:

$ ./simpleid

21

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/simpleid.c 


#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

int main()

{

uid_t uid = geteuid ();

gid_t gid = getegid ();

printf ("uid=%d gid=%d\n", uid, gid);

return 0;

}

Figure 8: Print User and Group IDs.

2.4 File System Permissions

• By examining how the system associates permissions with each file and
then seeing how the kernel checks to see who is allowed to access which
files, the concepts of user ID and group ID should become clearer.

• Each file has exactly one owning user and exactly one owning group.
When you create a new file, the file is owned by the user and group of
the creating process.

• You can view these permission bits interactively with the ls command
by using the -l or -o options and programmatically with the stat system
call.

• This stat function takes two parameters: the name of the file you want
to find out about, and the address of a data structure that is filled in
with information about the file.

• The program in Fig. 9 shows an example of using stat to obtain file
permissions.

$ ./stat-perm hello

• The S IWUSR constant corresponds to write permission for the owning
user. (S IRGRP, S IXOTH )

chmod ("hello", S_IRUSR | S_IXUSR);

• The same permission bits apply to directories, but they have different
meanings.
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#include <stdio.h>

#include <sys/stat.h>

int main (int argc, char* argv[])

{

const char* const filename = argv[1];

struct stat buf;

/* Get file information. */

stat (filename, &buf);

/* If the permissions are set such that the file’s

owner can write to it, print a message. */

if (buf.st_mode & S_IWUSR)

printf ("Owning user can write ‘%s’.\n", filename);

return 0;

}

Figure 9: Determine File Owner’s Write Permission.

– If a user is allowed to read from a directory, the user is allowed to
see the list of files that are present in that directory.

– If a user is allowed to write to a directory, the user is allowed to add
or remove files from the directory. Note that a user may remove
files from a directory if she is allowed to write to the directory, even
if she does not have permission to modify the file she is removing.

– If a user is allowed to execute a directory, the user is allowed to
enter that directory and access the files therein. Without execute
access to a directory, a user is not allowed to access the files in that
directory independent of the permissions on the files themselves.

• To summarize, let’s review how the kernel decides whether to allow a
process to access a particular file. It checks to see whether the accessing
user is the owning user, a member of the owning group, or someone else.

• Then the kernel checks the operation that is being performed against
the permission bits that apply to this user.

2.5 Security Hole: Programs Without Execute Per-

missions

• Here’s a first example of where security gets very tricky. You might
think that if you disallow execution of a program, then nobody can run
it. After all, that’s what it means to disallow execution.
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• But a malicious user can make a copy of the program, change the
permissions to make it executable, and then run the copy! If you rely
on users not being able to run programs that aren’t executable but then
don’t prevent them from copying the programs, you have a security hole
means by which users can perform some action that you didn’t intend.

2.5.1 Sticky Bits

• In addition to read, write, and execute permissions, there is a magic
bit called the sticky bit. This bit applies only to directories.

• A directory that has the sticky bit set allows you to delete a file only
if you are the owner of the file. As mentioned previously, you can
ordinarily delete a file if you have write access to the directory that
contains it, even if you are not the file’s owner.

• When the sticky bit is set, you still must have write access to the
directory, but you must also be the owner of the file that you want to
delete.

• A few directories on the typical GNU/Linux system have the sticky
bit set. For example, the /tmp directory, in which any user can place
temporary files, has the sticky bit set.

• Only the owning user (or root, of course) can remove a file.

$ ls -ld /tmp

• The corresponding constant to use with stat and chmod is S ISVTX
(Save text image after execution).

• If your program creates directories that behave like /tmp, in that lots
of people put things there but shouldn’t be able to remove each other’s
files, then you should set the sticky bit on the directory.

$ chmod o+t directory

chmod (dir_path, S_IRWXU | S_IRWXG | S_IRWXO | S_ISVTX);

2.6 Real and Effective IDs

• Every process really has two user IDs: the effective user ID and the
real user ID.
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• Most of the time, the kernel checks only the effective user ID. For
example, if a process tries to open a file, the kernel checks the effective
user ID when deciding whether to let the process access the file.

• The geteuid and getegid functions described previously return the
effective user ID and the effective group ID. Corresponding getuid
and getgid functions return the real user ID and real group ID.

• There is one very important case in which the real user ID matters. If
you want to change the effective user ID of an already running process,
the kernel looks at the real user ID as well as the effective user ID.

• Suppose that there’s a server process that might need to look at any
file on the system, regardless of the user who created it.

• The server process could carefully examine the permissions associated
with the files in question and try to decide whether user should be
allowed to access those files.

– But that would mean duplicating all the processing that the kernel
would normally do to check file access permissions. Reimplement-
ing that logic would be complex, errorprone, and tedious.

• A better approach is simply to temporarily change the effective user ID
of the process from root to user and then try to perform the operations
required.

– If user is not allowed to access the data, the kernel will prevent
the process from doing so and will return appropriate indications
of error.

– After all the operations taken on behalf of user are complete, the
process can restore its original effective user ID to root.

• When the user enters a username and password, the login program
verifies the username and password in the system password database.

• Then the login program changes both the effective user ID and the real
ID to be that of the user.

• Finally, the login program calls exec to start the user’s shell, leaving
the user running a shell whose effective user ID and real user ID are
that of the user.

• The function used to change the user IDs for a process is setreuid.
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setreuid (geteuid(), getuid ());

• If a process were allowed to change its effective user ID at will, then
any user could easily impersonate any other user, simply by changing
the effective user ID of one of his processes.

• The kernel will let a process running with an effective user ID of 0
change its user IDs as it sees fit.

• Any other process, however, can do only one of the following things:

– Set its effective user ID to be the same as its real user ID.
Would be used by our accounting process when it has finished
accessing files as user and wants to return to being root.

– Set its real user ID to be the same as its effective user ID.
Could be used by a login program after it has set the effective user
ID to that of the user who just logged in. Setting the real user ID
ensures that the user will never be able go back to being root.

– Swap the two user IDs.
Swapping the two user IDs is almost a historical artifact; modern
programs rarely use this functionality.

2.6.1 Setuid Programs

$ whoami

user

$ su

Password: ...

$ whoami

root

• The whoami command is just like id, except that it shows only the
effective user ID, not all the other information.

• The su command enables you to become the superuser if you know the
root password.

• The trick is that the su program is a setuid program. That means
that when it is run, the effective user ID of the process will be that
of the file’s owner rather than the effective user ID of the process that
performed the exec call. (The real user ID will still be that of the
executing user.)
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#include <stdio.h>

#include <unistd.h>

int main ()

{

printf ("uid=%d euid=%d\n", (int) getuid (), (int) geteuid ());

return 0;

}

Figure 10: Setuid Demonstration Program.

• To create a setuid program, you use chmod +s at the command line,
or use the S ISUID flag if calling chmod programmatically.

• For example, consider the program in Fig. 10

$ ./setuid-test

$ chmod +s setuid-test

$ ls -la

$ ./setuid-test

$ ls -la

$ su

$ ./setuid-test

• Note that the effective user ID is set to 0 when the program is run.

• su is capable of changing the effective user ID through this mechanism.
It runs initially with an effective user ID of 0.

• Then it prompts you for a password. If the password matches the root
password, it sets its real user ID to be root as well and then starts a
new shell.

• Take a look at the permissions on the su program:

$ ls -l /bin/su

• Notice that it’s owned by root and that the setuid bit is set.

• Note that su doesn’t actually change the user ID of the shell from
which it was run. Instead, it starts a new shell process with the new
user ID. The original shell is blocked until the new shell completes and
su exits.
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2.7 More Security Holes

• Although this lecture will point out a few common security holes, a
great many have already been discovered, and many more are out there
waiting to be found.

2.7.1 Buffer Overruns

• Almost every major Internet application daemon, including the send-
mail daemon, the finger daemon, the talk daemon, and others, has
at one point been compromised through a buffer overrun.

• If you are writing

– any code that will ever be run as root,

– a program that performs any kind of interprocess communication,

– a program that reads files.

you should be aware of this kind of security hole.

• The idea behind a buffer overrun attack is to trick a program into
executing code that it did not intend to execute.

• The usual mechanism for achieving this feat is to overwrite some por-
tion of the program’s process stack.

– The program’s stack contains, among other things, the memory
location to which the program will transfer control when the cur-
rent function returns.

– Therefore, if you can put the code that you want to have executed
into memory somewhere and then change the return address to
point to that piece of memory, you can cause the program to
execute anything.

– When the program returns from the function it is executing, it
will jump to the new code and execute whatever is there, running
with the privileges of the current process.

• If the program is running as a daemon and listening for incoming net-
work connections, the situation is even worse. A daemon typically runs
as root.

• A program that does not engage in network communications is much
safer because only users who are already able to log in to the computer
running the program are able to attack it.
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• The buggy versions of finger, talk, and sendmail all shared a common
flaw. Each used a fixed-length string buffer, which implied a constant
upper limit on the size of the string but then allowed network clients
to provide strings that overflowed the buffer.

• For example, they contained code similar to this:

#include <stdio.h>

int main ()

{

/* Nobody in their right mind would have more than 32

characters in their username. Plus, I think UNIX allows

only 8-character usernames. So, this should be plenty

of space. */

char username[32];

/* Prompt the user for the username. */

printf ("Enter your username: ");

/* Read a line of input. */

gets (username);

/* Do other things here... */

return 0;

}

• The combination of the 32-character buffer with the gets function per-
mits a buffer overrun.

• The gets function reads user input up until the next newline character
and stores the entire result in the username buffer.

– The attacker might deliberately type in a very long username.

– Local variables such as username are stored on the stack, so by
exceeding the array bounds, it’s possible to put arbitrary bytes
onto the stack beyond the area reserved for the username variable.

– The username will overrun the buffer and overwrite parts of the
surrounding stack, allowing the kind of attack described previ-
ously.

• Fortunately, it’s relatively easy to prevent buffer overruns. When read-
ing strings, you should always use a function, such as getline, that
either dynamically allocates a sufficiently large buffer or stops reading
input if the buffer is full. For example, you could use this:
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#include <stdlib.h>

#include <stdio.h>

main()

{

char command[80]="date";

char name[20];

printf("Please enter your name: ");

gets(name);

printf("Hello, %s, the current date and time is: ",name);

fflush(stdout);

system(command);

}

Figure 11: A Simple Buffer Overflow Program and Its Execution.

char* username = getline (NULL, 0, stdin);

This call automatically uses malloc to allocate a buffer big enough to
hold the line and returns it to you. You have to remember to call free
to deallocate the buffer, of course, to avoid leaking memory.

• Of course, buffer overruns can occur with any statically sized array, not
just with strings.

• If you want to write secure code, you should never write into a data
structure, on the stack or elsewhere, without verifying that you’re not
going to write beyond its region of memory.

• In the simplest case, a buffer overflow allows the user supplying input to
one untrusted variable to overwrite another variable, which is assumed
to be safe from untrusted input. Imagine the trivial program in Fig.
11 running with stdin/stdout connected to an outside source through
some means. then execute like

./bufferoverflow

Please enter your name: 12345678whoami

Hello, 12345678whoami, the current date and time is: ozdogan

– It turns out that ”command” is stored in memory right above
”name”.

– Local variables in most implementations of C and many other
languages are stored next to each other on the stack. Of course,
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Table 1: Vulnerable Standard Library Functions and Alternatives

Bad Syntax Better Syntax Notes
gets() fgets() Different handling of newlines may

leave unread characters in stream
sprintf() snprintf() Not available on many other OSes
vsprintf() vsnprintf() Not available on many other OSes
strcpy() strncpy() Omits trailing null if there is an over-

flow
strcat() strncat() Omits trailing null if there is an over-

flow
stpcpy() stpncpy() Copies exactly the specified size of

characters into the target

crackers trying to repeat this feat with other programs often found
the variables they were overwriting were too mundane to be of
much use.

– They could only usefully overwrite those variables declared in the
same function before the variable in question.

– True, the variables for the function that called this function were
just a little further along on the stack, as well as the function which
called it, and the function before it; but before you overwrote those
variables you would overwrite the return address in between and
the program would never make it back to those functions.

– You see, the return address is a very important value. By over-
writing its value, you can transfer control of the program to any
existing section of code.

– Of course, you still need an existing section of code that will suit
your evil purposes and you need to know exactly where it is located
in memory on the target system.

– Dissatisfied with being limited to the existing code? Well, why
not supply your own binary executable code in the string itself?

• If you must execute a program with any untrusted user input as argu-
ments, use one of the exec() family of calls instead of system().

• For vulnerable standard library functions and alternatives see Table 1
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2.7.2 Race Conditions in /tmp

• Another very common problem involves the creation of files with pre-
dictable names, typically in the /tmp directory.

– Suppose that your program prog, running as root, always creates a
temporary file called /tmp/prog and writes some vital information
there.

– A malicious user can create a symbolic link from /tmp/prog to
any other file on the system.

– When your program goes to create the file, the open system call
will succeed.

– However, the data that you write will not go to /tmp/prog ; in-
stead, it will be written to some arbitrary file of the attacker’s
choosing.

• This kind of attack is said to exploit a race condition. There is implicitly
a race between you and the attacker. Whoever manages to create the
file first wins.

• One attempt at avoiding this attack is to use a randomized name for
the file. For example, you could read from /dev/random to get some
bits to use in the name of the file.

• This certainly makes it harder for a malicious user to guess the filename,
but it doesn’t make it impossible. The attacker might just create a large
number of symbolic links, using many potential names. Even if she has
to try 10,000 times before wining the race condition.

• Another approach is to use the O EXCL flag when calling open. This
flag causes open to fail if the file already exists.

• Unfortunately, if you’re using the Network File System (NFS), or if
anyone who’s using your program might ever be using NFS, that’s not
a sufficiently robust approach because O EXCL is not reliable when
NFS is in use.

• One approach that works is to call lstat on the newly created file.

• The lstat function is like stat, except that if the file referred to is a
symbolic link, lstat tells you about the link, not the file to which it
refers.
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• If lstat tells you that your new file is an ordinary file, not a symbolic
link, and that it is owned by you, then you should be okay.

• This attack doesn’t create any direct harm, but it does make it impos-
sible for our program to get its work done. Such an attack is called a
denial-of-service (DoS) attack.

• The program in Fig. 12 presents a function that tries to securely open
a file in /tmp.

• This function calls open to create the file and then calls lstat a few
lines later to make sure that the file is not a symbolic link.

2.7.3 Using system or popen

• The third common security hole that every programmer should bear in
mind involves using the shell to execute other programs.

• Let’s consider a dictionary server. This program is designed to accept
connections via internet.

• Each client sends a word, and the server tells it whether that is a valid
English word.

$ grep -x word /usr/dict/words

• The program in Fig. 13 shows how you might try to code the part of
the server that invokes grep:

• Note that by calculating the number of characters we need and then
allocating the buffer dynamically, we’re sure to be safe from buffer
overruns.

• Unfortunately, the use of the system function is unsafe. This function
invokes the standard system shell to run the command and then returns
the exit value.

– But what happens if a malicious hacker sends a ”word” that is
actually the following line or a similar string?

foo /dev/null; rm -rf /

grep -x foo /dev/null; rm -rf / /usr/dict/words

• The same problem can arise with popen, which creates a pipe between
the parent and child process but still uses the shell to run the command.

33

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/temp-file.c 
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/grep-dictionary.c 


#include <fcntl.h> #include <stdio.h> #include <stdlib.h>

#include <sys/stat.h> #include <unistd.h>

/* Returns the file descriptor for a newly created temporary file. The temporary

file will be readable and writable by the effective user ID of the current

process but will not be readable or writable by anybody else.

Returns -1 if the temporary file could not be created. */

int secure_temp_file ()

{ /* This file descriptor points to /dev/random and allows us to get a

good source of random bits. */

static int random_fd = -1;

/* A random integer. */

unsigned int random;

/* A buffer, used to convert from a numeric to a string representation of

random. This buffer has fixed size, meaning that we potentially have a

buffer overrun bug if the integers on this machine have a *lot* of bits. */

char filename[128];

/* The file descriptor for the new temporary file. */

int fd;

/* Information about the newly created file. */

struct stat stat_buf;

/* If we haven’t opened /dev/random, do so now. (This is not threadsafe.) */

if (random_fd == -1) {

/* Open /dev/random. Note that we’re assuming that /dev/random really is a source

of random bits, not a file full of zeros placed there by an attacker. */

random_fd = open ("/dev/random", O_RDONLY);

/* If we couldn’t open /dev/random, give up. */

if (random_fd == -1)

return -1; }

/* Read an integer from /dev/random. */

if (read (random_fd, &random, sizeof (random)) !=

sizeof (random))

return -1;

/* Create a filename out of the random number. */

sprintf (filename, "/tmp/%u", random);

/* Try to open the file. */

fd = open (filename,

/* Use O_EXECL, even though it doesn’t work under NFS. */

O_RDWR | O_CREAT | O_EXCL,

/* Make sure nobody else can read or write the file. */

S_IRUSR | S_IWUSR);

if (fd == -1)

return -1;

/* Call lstat on the file, to make sure that it is not a symbolic link. */

if (lstat (filename, &stat_buf) == -1)

return -1;

/* If the file is not a regular file, someone has tried to trick us. */

if (!S_ISREG (stat_buf.st_mode))

return -1;

/* If we don’t own the file, someone else might remove it, read it,

or change it while we’re looking at it. */

if (stat_buf.st_uid != geteuid () || stat_buf.st_gid != getegid ())

return -1;

/* If there are any more permission bits set on the file, something’s fishy.*/

if ((stat_buf.st_mode & ~(S_IRUSR | S_IWUSR)) != 0)

return -1;

return fd;}

Figure 12: Create a Temporary File.

34



#include <stdio.h>

#include <stdlib.h>

/* Returns a non-zero value if and only if the WORD appears in

/usr/dict/words. */

int grep_for_word (const char* word)

{

size_t length;

char* buffer;

int exit_code;

/* Build up the string ‘grep -x WORD /usr/dict/words’. Allocate the

string dynamically to avoid buffer overruns. */

length =

strlen ("grep -x ") + strlen (word) + strlen (" /usr/dict/words") + 1;

buffer = (char*) malloc (length);

sprintf (buffer, "grep -x %s /usr/dict/words", word);

/* Run the command. */

exit_code = system (buffer);

/* Free the buffer. */

free (buffer);

/* If grep returned zero, then the word was present in the

dictionary. */

return exit_code == 0;

}

Figure 13: Search for a Word in the Dictionary.
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• There are two ways to avoid these problems.

– One is to use the exec family of functions instead of system
or popen. That solution avoids the problem because characters
that the shell treats specially (such as the semicolon in the previ-
ous command) are not treated specially when they appear in the
argument list to an exec call.

– The other alternative is to validate the string. In the dictionary
server example, you would make sure that the word provided con-
tains only alphabetic characters, using the isalpha function. If it
doesn’t contain any other characters, there’s no way to trick the
shell into executing a second command.
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