
1 Writing Good GNU/Linux Software

1.1 Interaction With the Execution Environment

1.1.1 GNU/Linux Command-Line Conventions

• The arguments that programs expect fall into two categories: options

(or flags) and other arguments. Options modify how the program be-
haves, while other arguments provide inputs (for instance, the names
of input files).

• the command ls -s / displays the contents of the root directory.

• The −−size option is synonymous with -s, so the same command could
have been invoked as ls −−size /.

1.1.2 Using getopt long

• The GNU C library provides a function, getopt long, understands
both short and long options. If you use this function, include the
header file < getopt.h >.

• Suppose, for example, that you are writing a program that is to accept
the three options shown in Table 1. In addition, the program is to

Table 1: Example Program Options

Short Form Long Form Purpose
-h –help Display usage summary and exit
-o filename –output filename Specify output filename
-v –verbose Print verbose messages

accept zero or more additional command-line arguments, which are the
names of input files.

• To use getopt long, you must provide two data structures; one for
short options, each a single letter and one for long options, you con-
struct an array of struct option elements. getopt long.c

#include <getopt.h>

#include <stdio.h>

#include <stdlib.h>

1

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/getopt_long.c

/* The name of this program. */

const char* program_name;

/* Prints usage information for this program to STREAM (typically

stdout or stderr), and exit the program with EXIT_CODE. Does not

return. */

void print_usage (FILE* stream, int exit_code)

{

fprintf (stream, "Usage: %s options [inputfile ...]\n", program_name);

fprintf (stream,

" -h --help Display this usage information.\n"

" -o --output filename Write output to file.\n"

" -v --verbose Print verbose messages.\n");

exit (exit_code);

}

/* Main program entry point. ARGC contains number of argument list

elements; ARGV is an array of pointers to them. */

int main (int argc, char* argv[])

{

int next_option;

/* A string listing valid short options letters. */

const char* const short_options = "ho:v";

/* An array describing valid long options. */

const struct option long_options[] = {

{ "help", 0, NULL, ’h’ },

{ "output", 1, NULL, ’o’ },

{ "verbose", 0, NULL, ’v’ },

{ NULL, 0, NULL, 0 } /* Required at end of array. */

};

/* The name of the file to receive program output, or NULL for

standard output. */

const char* output_filename = NULL;

/* Whether to display verbose messages. */

int verbose = 0;

/* Remember the name of the program, to incorporate in messages.

The name is stored in argv[0]. */

2

program_name = argv[0];

do {

next_option = getopt_long (argc, argv, short_options,

long_options, NULL);

switch (next_option)

{

case ’h’: /* -h or --help */

/* User has requested usage information. Print it to standard

output, and exit with exit code zero (normal termination). */

print_usage (stdout, 0);

case ’o’: /* -o or --output */

/* This option takes an argument, the name of the output file. */

output_filename = optarg;

break;

case ’v’: /* -v or --verbose */

verbose = 1;

break;

case ’?’: /* The user specified an invalid option. */

/* Print usage information to standard error, and exit with exit

code one (indicating abnormal termination). */

print_usage (stderr, 1);

case -1: /* Done with options. */

break;

default: /* Something else: unexpected. */

abort ();

}

}

while (next_option != -1);

/* Done with options. OPTIND points to first non-option argument.

For demonstration purposes, print them if the verbose option was

specified. */

if (verbose) {

int i;

for (i = optind; i < argc; ++i)

printf ("Argument: %s\n", argv[i]);

}

3

/* The main program goes here. */

return 0;

}

1.1.3 Standard I/O

• The standard C library provides standard input and output streams
(stdin and stdout, respectively).

• The C library also provides stderr, the standard error stream. Pro-
grams should print warning and error messages to standard error in-
stead of standard output.

• The fprintf function can be used to print to stderr, for example:

fprintf (stderr, ("Error: ..."));

• Note that stdout is buffered. Data written to stdout is not sent to
the console (or other device, if it’s redirected) until the buffer fills, the
program exits normally, or stdout is closed.You can explicitly flush
the buffer by calling the following:

fflush (stdout);

In contrast, stderr is not buffered; data written to stderr goes directly
to the console.

• For example, this loop does not print one period every second; instead,
the periods are buffered, and a bunch of them are printed together
when the buffer fills.

while (1) {

printf (".");

sleep (1);

}

In this loop, however, the periods do appear once a second:

while (1) {

fprintf (stderr, ".");

sleep (1);

}

4

1.1.4 Program Exit Codes

• When a program ends, it indicates its status with an exit code. The
exit code is a small integer; by convention, an exit code of zero denotes
successful execution, while nonzero exit codes indicate that an error
occurred.

• Some programs use different nonzero exit code values to distinguish
specific errors.

• With most shells, it’s possible to obtain the exit code of the most
recently executed program using the special $? variable.

$ ls /

$ echo $?

0

$ ls bogusfile

ls: bogusfile: No such file or directory

$ echo $?

1

1.1.5 The Environment

• GNU/Linux provides each running program with an environment.The
environment is a collection of variable/value pairs. Both environment
variable names and their values are character strings.

• By convention, environment variable names are spelled in all capital
letters.

– USER contains your username.

– HOME contains the path to your home directory.

– PATH contains a colon-separated list of directories through which
Linux searches for commands you invoke.

– DISPLAY contains the name and display number of the X Window
server on which windows from graphical X Window programs will
appear.

• Your shell, like any other program, has an environment. Shells provide
methods for examining and modifying the environment directly.

– The shell automatically creates a shell variable for each environ-
ment variable that it finds, so you can access environment variable
values using the $varname syntax. For instance:

5

$ echo $USER

$ echo $HOME

– You can use the export command to export a shell variable into
the environment. For example, to set the EDITOR environment
variable, you would use this:

$ export EDITOR=emacs

• In a program, you access an environment variable with the getenv
function in < stdlib.h >.

• To set or clear environment variables, use the setenv and unsetenv
functions, respectively. print env.c

#include <stdio.h>

/* The ENVIRON variable contains the environment. */

extern char** environ;

int main ()

{

char** var;

for (var = environ; *var != NULL; ++var)

printf ("%s\n", *var);

return 0;

}

Don’t modify environ yourself; use the setenv and unsetenv func-
tions instead. client.c

#include <stdio.h>

#include <stdlib.h>

int main ()

{

char* server_name = getenv ("SERVER_NAME");

if (server_name == NULL)

/* The SERVER_NAME environment variable was not set. Use the

default. */

server_name = "server.my-company.com";

printf ("accessing server %s\n", server_name);

/* Access the server here... */

6

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/print_env.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/client.c

return 0;

}

$ client

accessing server server.my-company.com

$ export SERVER_NAME=backup-server.elsewhere.net

$ client

accessing server backup-server.elsewhere.net

1.1.6 Using Temporary Files

• Sometimes a program needs to make a temporary file, to store large
data for a while or to pass data to another program.

• On GNU/Linux systems, temporary files are stored in the /tmp direc-
tory. When using temporary files, you should be aware of the following
pitfalls:

– More than one instance of your program may be run simultane-
ously (by the same user or by different users).The instances should
use different temporary filenames so that they don’t collide.

– The file permissions of the temporary file should be set in such a
way that unauthorized users cannot alter the program’s execution
by modifying or replacing the temporary file.

– Temporary filenames should be generated in a way that cannot
be predicted externally; otherwise, an attacker can exploit the
delay between testing whether a given name is already in use and
opening a new temporary file.

• GNU/Linux provides functions, mkstemp and tmpfile, that take care
of these issues for you

• Using mkstemp

– The mkstemp function creates a unique temporary filename from
a filename template, creates the file with permissions so that only
the current user can access it, and opens the file for read/write.

– The filename template is a character string ending with ”XXXXXX”
(six capital X’s); mkstemp replaces the X’s with characters so
that the filename is unique.

– The return value is a file descriptor; use the write family of func-
tions to write to the temporary file. temp file.c

7

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/temp_file.c

#include <stdlib.h>

#include <unistd.h>

/* A handle for a temporary file created with write_temp_file. In

this implementation, it’s just a file descriptor. */

typedef int temp_file_handle;

/* Writes LENGTH bytes from BUFFER into a temporary file. The

temporary file is immediately unlinked. Returns a handle to the

temporary file. */

temp_file_handle write_temp_file (char* buffer, size_t length)

{

/* Create the filename and file. The XXXXXX will be replaced with

characters that make the filename unique. */

char temp_filename[] = "/tmp/temp_file.XXXXXX";

int fd = mkstemp (temp_filename);

/* Unlink the file immediately, so that it will be removed when the

file descriptor is closed. */

unlink (temp_filename);

/* Write the number of bytes to the file first. */

write (fd, &length, sizeof (length));

/* Now write the data itself. */

write (fd, buffer, length);

/* Use the file descriptor as the handle for the temporary file. */

return fd;

}

/* Reads the contents of a temporary file TEMP_FILE created with

write_temp_file. The return value is a newly-allocated buffer of

those contents, which the caller must deallocate with free.

*LENGTH is set to the size of the contents, in bytes. The

temporary file is removed. */

char* read_temp_file (temp_file_handle temp_file, size_t* length)

{

char* buffer;

/* The TEMP_FILE handle is a file descriptor to the temporary file. */

int fd = temp_file;

/* Rewind to the beginning of the file. */

lseek (fd, 0, SEEK_SET);

/* Read the size of the data in the temporary file. */

read (fd, length, sizeof (*length));

8

/* Allocate a buffer and read the data. */

buffer = (char*) malloc (*length);

read (fd, buffer, *length);

/* Close the file descriptor, which will cause the temporary file to

go away. */

close (fd);

return buffer;

}

1.2 Coding Defensively

1.2.1 Errors and Resource Allocation

• Often, when a system call fails, it’s appropriate to cancel the current
operation but not to terminate the program because it may be possible
to recover from the error.

• One way to do this is to return from the current function, passing a
return code to the caller indicating the error.

• If you decide to return from the middle of a function, it’s important to
make sure that any resources successfully allocated previously in the
function are first deallocated.

• Otherwise, if your program continues running, the resources allocated
before the failure occurred will be leaked.

• Consider, for example, a function that reads from a file into a buffer.The
function might follow these steps:

1. Locate the buffer.

2. Open the file.

3. Read from the file into the buffer.

4. Close the file.

5. Return the buffer.

readfile.c

#include <fcntl.h>

#include <stdlib.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

9

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/readfile.c

char* read_from_file (const char* filename, size_t length)

{

char* buffer;

int fd;

ssize_t bytes_read;

/* Allocate the buffer. */

buffer = (char*) malloc (length);

if (buffer == NULL)

return NULL;

/* Open the file. */

fd = open (filename, O_RDONLY);

if (fd == -1) {

/* open failed. Deallocate buffer before returning. */

free (buffer);

return NULL;

}

/* Read the data. */

bytes_read = read (fd, buffer, length);

if (bytes_read != length) {

/* read failed. Deallocate buffer and close fd before returning. */

free (buffer);

close (fd);

return NULL;

}

/* Everything’s fine. Close the file and return the buffer. */

close (fd);

return buffer;

}

• Linux cleans up allocated memory, open files, and most other resources
when a program terminates, so it’s not necessary to deallocate buffers
and close files before calling exit.

• You might need to manually free other shared resources, however, such
as temporary files and shared memory, which can potentially outlive a
program.

1.3 Writing and Using Libraries

• Virtually all programs are linked against one or more libraries.Any
program that uses a C function (such as printf or malloc) will be

10

linked against the C runtime library.

• If your program has a graphical user interface (GUI), it will be linked
against windowing libraries.

• In each of these cases, you must decide whether to link the library
statically or dynamically.

• If you choose to link statically, your programs will be bigger and harder
to upgrade. If you link dynamically, your programs will be smaller,
easier to upgrade.

1.3.1 Archives

• An archive (or static library) is simply a collection of object files stored
as a single file.

• When you provide an archive to the linker, the linker searches the
archive for the object files it needs, extracts them, and links them into
your program much as if you had provided those object files directly.

• You can create an archive using the ar command.

$ ar cr libtest.a test1.o test2.o

The cr flags tell ar to create the archive. Now you can link with this
archive using the -ltest option with gcc or g++

• When the linker encounters an archive on the command line, it searches
the archive for all definitions of symbols (functions or variables) that
are referenced from the object files that it has already processed but
not yet defined.

• The object files that define those symbols are extracted from the archive
and included in the final executable. test.c

int f ()

{

return 3;

}

app.c

11

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/test.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/app.c

int main ()

{

return f ();

}

The following command line will not work:

$ gcc -o app -L. -ltest app.o

app.o: In function ’main’:

app.o(.text+0x4): undefined reference to ’f’

collect2: ld returned 1 exit status

On the other hand, if we use this line, no error messages are issued:

$ gcc -o app app.o -L. -ltest

The reason is that the reference to f in app.o causes the linker to
include the test.o object file from the libtest.a archive.

1.3.2 Shared Libraries

• A shared library (also known as a shared object, or as a dynamically
linked library) is similar to a archive in that it is a grouping of object
files.

• The most fundamental difference is that when a shared library is linked
into a program, the final executable does not actually contain the code
that is present in the shared library. Instead, the executable contains
a reference to the shared library.

• Thus, the library is ”shared” among all the programs that link with it.

• A second important difference is that a shared library is not a collection
of object files. Instead, the object files that compose the shared library
are combined into a single object file so that a program that links
against a shared library always includes all of the code in the library,
rather than just those portions that are needed.

• To create a shared library, you must compile the objects that will make
up the library using the -fPIC option to the compiler, like this:

$ gcc -c -fPIC test1.c

Then you combine the object files into a shared library, like this:

12

$ gcc -shared -fPIC -o libtest.so test1.o test2.o

• Shared libraries use the extension .so, which stands for shared object.
Like static archives, the name always begins with lib to indicate that
the file is a library.

$ gcc -o app app.o -L. -ltest

• Suppose that both libtest.a and libtest.so are available. The linker
searches each directory (first those specified with −L options, and then
those in the standard directories).When the linker finds a directory that
contains either libtest.a or libtest.so, the linker stops search directories.

• If only one of the two variants is present in the directory, the linker
chooses that variant. Otherwise, the linker chooses the shared library
version, unless you explicitly instruct it otherwise.

$ gcc -static -o app app.o -L. -ltest

• Using LD LIBRARY PATH

– When you link a program with a shared library, the linker does not
put the full path to the shared library in the resulting executable.
Instead, it places only the name of the shared library.

– Suppose that you use this:

$ gcc -o app app.o -L. -ltest -Wl,-rpath,/usr/local/lib

Then, when app is run, the system will search /usr/local/lib
for any required shared libraries.

– Another solution to this problem is to set the LD LIBRARY PATH
environment variable when running the program. Like the PATH
environment variable.

– LD LIBRARY PATH is a colon-separated list of directories. For
example, if LD LIBRARY PATH is /usr/local/lib : /opt/lib, then
/usr/local/lib and /opt/lib will be searched before the standard
/lib and /usr/lib directories.

13

1.3.3 Library Dependencies

• One library will often depend on another library. For example, many
GNU/Linux systems include libtiff, a library that contains functions
for reading and writing image files in the TIFF format.This library,
in turn, uses the libraries libjpeg (JPEG image routines) and libz
(compression routines).

#include <stdio.h>

#include <tiffio.h>

int main (int argc, char** argv)

{

TIFF* tiff;

tiff = TIFFOpen (argv[1], "r");

TIFFClose (tiff);

return 0;

}

$ gcc -o tifftest tifftest.c -ltiff

$ ldd tifftest

libtiff.so.3 => /usr/lib/libtiff.so.3 (0x4001d000)

libc.so.6 => /lib/libc.so.6 (0x40060000)

libjpeg.so.62 => /usr/lib/libjpeg.so.62 (0x40155000)

libz.so.1 => /usr/lib/libz.so.1 (0x40174000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

• Static libraries, on the other hand, cannot point to other libraries. If
decide to link with the static version of libtiff by specifying −static
on your command line, you will encounter unresolved symbols:

$ gcc -static -o tifftest tifftest.c -ltiff

/usr/bin/../lib/libtiff.a(tif_jpeg.o): In function ’TIFFjpeg_error_exit’:

tif_jpeg.o(.text+0x2a): undefined reference to ’jpeg_abort’

/usr/bin/../lib/libtiff.a(tif_jpeg.o): In function ’TIFFjpeg_create_compress’:

tif_jpeg.o(.text+0x8d): undefined reference to ’jpeg_std_error’

tif_jpeg.o(.text+0xcf): undefined reference to ’jpeg_CreateCompress’

...

To link this program statically, you must specify the other two libraries
yourself:

$ gcc -static -o tifftest tifftest.c -ltiff -ljpeg -lz

14

1.3.4 Pros and Cons

• One major advantage of a shared library is that it saves space on the
system.

• A related advantage to shared libraries is that users can upgrade the
libraries without upgrading all the programs that depend on them.

• If you’re developing mission-critical software, you might rather link to
a static archive so that an upgrade to shared libraries on the system
won’t affect your program.

• If you’re not going to be able to install your libraries in /lib or /usr/lib.

15

	Writing Good GNU/Linux Software
	Interaction With the Execution Environment
	GNU/Linux Command-Line Conventions
	Using getopt_long
	Standard I/O
	Program Exit Codes
	The Environment
	Using Temporary Files

	Coding Defensively
	Errors and Resource Allocation

	Writing and Using Libraries
	Archives
	Shared Libraries
	Library Dependencies
	Pros and Cons

