
0.0.1 Semaphores for Threads

• If the threads work too quickly, the queue of jobs will empty and the
threads will exit.

• What we might like instead is a mechanism for blocking the threads
when the queue empties until new jobs become available.

• A semaphore is a counter (non-negative integer) that can be used to
synchronize multiple threads. As with a mutex, Linux guarantees that
checking or modifying the value of a semaphore can be done safely,
without creating a race condition.

• A semaphore supports two basic operations:

– A wait (down) operation decrements the value of the semaphore
by 1. If the value is already zero, the operation blocks until the
value of the semaphore becomes positive (due to the action of some
other thread). When the semaphore’s value becomes positive, it
is decremented by 1 and the wait operation returns.

– A post (up) operation increments the value of the semaphore by 1.
If the semaphore was previously zero and other threads are blocked
in a wait operation on that semaphore, one of those threads is
unblocked and its wait operation completes (which brings the
semaphore’s value back to zero).

• A semaphore is represented by a sem t variable.

– initialize it using the sem init function, passing a pointer to the
sem t variable.

– the second parameter should be zero.

– the third parameter is the semaphore’s initial value.

– to deallocate it with sem destroy.

– to wait on a semaphore, use sem wait.

– to post to a semaphore, use sem post.

– a nonblocking wait function, sem trywait, is also provided.

– to retrieve the current value of a semaphore, sem getvalue, (to
do this could lead to a race condition).

• The following code (see Fig. 0.0.1) controls the queue with a semaphore.

1

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/job-queue3.c

#include <malloc.h>

#include <pthread.h>

#include <semaphore.h>

struct job {

/* Link field for linked list. */

struct job* next;

/* Other fields describing work to be done... */

};

/* A linked list of pending jobs. */

struct job* job_queue;

extern void process_job (struct job*);

/* A mutex protecting job_queue. */

pthread_mutex_t job_queue_mutex = PTHREAD_MUTEX_INITIALIZER;

/* A semaphore counting the number of jobs in the queue. */

sem_t job_queue_count;

/* Perform one-time initialization of the job queue. */

void initialize_job_queue ()

{

/* The queue is initially empty. */

job_queue = NULL;

/* Initialize the semaphore which counts jobs in the queue. Its

initial value should be zero. */

sem_init (&job_queue_count, 0, 0);

}

/* Process queued jobs until the queue is empty. */

void* thread_function (void* arg)

{

while (1) {

struct job* next_job;

/* Wait on the job queue semaphore. If its value is positive,

indicating that the queue is not empty, decrement the count by

one. If the queue is empty, block until a new job is enqueued. */

sem_wait (&job_queue_count);

/* Lock the mutex on the job queue. */

pthread_mutex_lock (&job_queue_mutex);

/* Because of the semaphore, we know the queue is not empty. Get

the next available job. */

next_job = job_queue;

/* Remove this job from the list. */

job_queue = job_queue->next;

/* Unlock the mutex on the job queue, since we’re done with the

queue for now. */

pthread_mutex_unlock (&job_queue_mutex);

/* Carry out the work. */

process_job (next_job);

/* Clean up. */

free (next_job);

}

return NULL;

}

/* Add a new job to the front of the job queue. */

void enqueue_job (/* Pass job-specific data here... */)

{

struct job* new_job;

/* Allocate a new job object. */

new_job = (struct job*) malloc (sizeof (struct job));

/* Set the other fields of the job struct here... */

/* Lock the mutex on the job queue before accessing it. */

pthread_mutex_lock (&job_queue_mutex);

/* Place the new job at the head of the queue. */

new_job->next = job_queue;

job_queue = new_job;

/* Post to the semaphore to indicate another job is available. If

threads are blocked, waiting on the semaphore, one will become

unblocked so it can process the job. */

sem_post (&job_queue_count);

/* Unlock the job queue mutex. */

pthread_mutex_unlock (&job_queue_mutex);

}

Figure 1: Job Queue Controlled by a Semaphore

2

• If the semaphore’s value is zero, indicating that the queue is empty, the
thread will simply block until the semaphore s value becomes positive,
indicating that a job has been added to the queue.

0.1 Linux Thread Implementation

• Whenever you call pthread create to create a new thread, Linux cre-
ates a new process that runs that thread.

• However, this process is not the same as a process you would create
with fork; in particular, it shares the same address space and resources
as the original process rather than receiving copies.

• The manager thread is created the first time a program calls pthread create

to create a new thread. thread-pid.c (see Fig. 0.1)

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

void* thread_function (void* arg)

{

fprintf (stderr, "child thread pid is %d\n", (int) getpid ());

/* Spin forever. */

while (1);

return NULL;

}

int main ()

{

pthread_t thread;

fprintf (stderr, "main thread pid is %d\n", (int) getpid ());

pthread_create (&thread, NULL, &thread_function, NULL);

/* Spin forever. */

while (1);

return 0;

}

Figure 2: Print Process IDs for Threads

3

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/thread-pid.c

0.2 Processes Vs. Threads

For some programs that benefit from concurrency, the decision whether to
use processes or threads can be difficult.

• All threads in a program must run the same executable. A child pro-
cess, on the other hand, may run a different executable by calling an
exec function.

• An errant thread can harm other threads in the same process because
threads share the same virtual memory space and other resources. For
instance, a wild memory write through an uninitialized pointer in one
thread can corrupt memory visible to another thread. An errant pro-
cess, on the other hand, cannot do so because each process has a copy
of the program’s memory space.

• Copying memory for a new process adds an additional performance
overhead relative to creating a new thread. However, the copy is per-
formed only when the memory is changed, so the penalty is minimal if
the child process only reads memory.

• Threads should be used for programs that need fine-grained parallelism.
For example, if a problem can be broken into multiple, nearly identical
tasks, threads may be a good choice. Processes should be used for
programs that need coarser parallelism.

• Sharing data among threads is trivial because threads share the same
memory. (However, great care must be taken to avoid race conditions,
as described previously.) Sharing data among processes requires the
use of IPC mechanisms. This can be more cumbersome but makes
multiple processes less likely to suffer from concurrency bugs.

4

1 Interprocess Communication

• The exit status of a child process. That is the simplest form of com-
munication between two processes.

• Interprocess communication (IPC) is the transfer of data among pro-
cesses.

• We discuss five types of interprocess communication:

1. Shared memory permits processes to communicate by simply read-
ing and writing to a specified memory location.

2. Mapped memory is similar to shared memory, except that it is
associated with a file in the filesystem.

3. Pipes permit sequential communication from one process to a re-
lated process.

4. FIFOs are similar to pipes, except that unrelated processes can
communicate because the pipe is given a name in the filesystem.

5. Sockets support communication between unrelated processes even
on different computers.

• These types of IPC differ by the following criteria:

– Whether they restrict communication

∗ to related processes,

∗ to unrelated processes sharing the same filesystem,

∗ to any computer connected to a network.

– Whether a communicating process is limited

∗ to only write data,

∗ to only read data.

– The number of processes permitted to communicate.

– Whether the communicating processes are synchronized by the
IPC for example, a reading process halts until data is available to
read.

1.1 Shared Memory

Shared memory allows two or more processes to access the same memory
as if they all called malloc and were returned pointers to the same actual
memory. When one process changes the memory, all the other processes see
the modification.

5

1.1.1 Fast Local Communication

• Access to the shared memory is as fast as accessing a process’s non-
shared memory, and it does not require a system call or entry to the
kernel. It also avoids copying data unnecessarily.

• The kernel does not synchronize accesses to shared memory, you must
provide your own synchronization.

• A common strategy to avoid these race conditions is to use semaphores.

1.1.2 The Memory Model

• Allocating a new shared memory segment causes virtual memory pages
to be created.

• To permit a process to use the shared memory segment, a process
attaches it, which adds entries mapping from its virtual memory to the
segment’s shared pages.

• When finished with the segment, these mapping entries are removed.
When no more processes want to access these shared memory segments,
exactly one process must deallocate the virtual memory pages.

• All shared memory segments are allocated as integral multiples of the
system’s page size, which is the number of bytes in a page of memory.
On Linux systems, the page size is 4KB, but you should obtain this
value by calling the getpagesize function.

1.1.3 Allocation

• A process allocates a shared memory segment using shmget (SHared
Memory GET).

– First parameter is an integer key that specifies which segment to
create. Unrelated processes can access the same shared segment
by specifying the same key value. Unfortunately, other processes
may have also chosen the same fixed key, which could lead to
conflict. Using the special constant IPC PRIVATE as the key
value guarantees that a brand new memory segment is created.

– Second parameter specifies the number of bytes in the segment.
Because segments are allocated using pages, the number of actu-
ally allocated bytes is rounded up to an integral multiple of the
page size.

6

– Third parameter is the bitwise or flag values that specify options
to shmget. The flag values include these:

∗ IPC CREAT: This flag indicates that a new segment should
be created.This permits creating a new segment while speci-
fying a key value.

∗ IPC EXCL: This flag, which is always used with
IPC CREAT, causes shmget to fail if a segment key is spec-
ified that already exists. If this flag is not given and the key
of an existing segment is used, shmget returns the existing
segment instead of creating a new one.

∗ Mode flags; S IRUSR and S IWUSR specify read and write
permissions for the owner of the shared memory segment, and
S IROTH and S IWOTH specify read and write permis-
sions for others.

int segment_id=shmget(shm_key,getpagesize(),

IPC_CREAT | S_IRUSR | S_IWUSER);

• If the call succeeds, shmget returns a segment identifier. If the shared
memory segment already exists, the access permissions are verified and
a check is made to ensure that the segment is not marked for destruc-
tion.

1.1.4 Attachment and Detachment

• To make the shared memory segment available, a process must use
shmat, (SHared Memory ATtach).

– Pass the shared memory segment identifier SHMID returned by
shmget.

– The second argument is a pointer that specifies where in your
process’s address space you want to map the shared memory; if
you specify NULL, Linux will choose an available address.

– The third argument is a flag, which can include the following:

∗ SHM RND indicates that the address specified for the sec-
ond parameter should be rounded down to a multiple of the
page size.

∗ SHM RDONLY indicates that the segment will be only
read, not written.

7

• If the call succeeds, it returns the address of the attached shared seg-
ment. Children created by calls to fork inherit attached shared seg-
ments; they can detach the shared memory segments, if desired.

1.1.5 Controlling and Deallocating Shared Memory

• The shmctl (SHared Memory ConTroL) call returns information
about a shared memory segment and can modify it.

– The first parameter is a shared memory segment identifier.

– To obtain information about a shared memory segment, pass
IPC STAT as the second argument and a pointer to a struct
shmid ds.

– To remove a segment, pass IPC RMID as the second argument,
and pass NULL as the third argument. The segment is removed
when the last process that has attached it finally detaches it.

– Each shared memory segment should be explicitly deallocated us-
ing shmctl when you are finished with it, to avoid violating the
system wide limit on the total number of shared memory seg-
ments. Invoking exit and exec detaches memory segments but
does not deallocate them.

– The following program (see Fig. 1.1.5) illustrates the use of shared
memory.

$ ipcs -m

$ ipcrm shm 1627649

1.2 Processes Semaphores

Process semaphores are allocated, used, and deallocated like shared mem-
ory segments. Although a single semaphore is sufficient for almost all uses,
process semaphores come in sets.

1.2.1 Allocation and Deallocation

• The calls semget and semctl allocate and deallocate semaphores,
which is analogous to shmget and shmctl for shared memory. In-
voke semget with:

– a key specifying a semaphore set,

8

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/shm.c

#include <stdio.h>

#include <sys/shm.h>

#include <sys/stat.h>

int main ()

{

int segment_id;

char* shared_memory;

struct shmid_ds shmbuffer;

int segment_size;

const int shared_segment_size = 0x6400;

/* Allocate a shared memory segment. */

segment_id = shmget (IPC_PRIVATE, shared_segment_size,

IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR);

/* Attach the shared memory segment. */

shared_memory = (char*) shmat (segment_id, 0, 0);

printf ("shared memory attached at address %p\n", shared_memory);

/* Determine the segment’s size. */

shmctl (segment_id, IPC_STAT, &shmbuffer);

segment_size = shmbuffer.shm_segsz;

printf ("segment size: %d\n", segment_size);

/* Write a string to the shared memory segment. */

sprintf (shared_memory, "Hello, world.");

/* Detach the shared memory segment. */

shmdt (shared_memory);

/* Reattach the shared memory segment, at a different address. */

shared_memory = (char*) shmat (segment_id, (void*) 0x5000000, 0);

printf ("shared memory reattached at address %p\n", shared_memory);

/* Print out the string from shared memory. */

printf ("%s\n", shared_memory);

/* Detach the shared memory segment. */

shmdt (shared_memory);

/* Deallocate the shared memory segment. */

shmctl (segment_id, IPC_RMID, 0);

return 0;

}

Figure 3: Exercise Shared Memory

9

– the number of semaphores in the set,

– permission flags as for shmget

• The return value is a semaphore set identifier. You can obtain the
identifier of an existing semaphore set by specifying the right key value.

• Semaphores continue to exist even after all processes using them have
terminated. The last process to use a semaphore set must explicitly
remove it. To do so, invoke semctl with

– the semaphore identifier,

– the number of semaphores in the set,

– IPC RMID as the third argument,

– any union semun value as the fourth argument (which is ignored).

• Unlike shared memory segments, removing a semaphore set causes
Linux to deallocate immediately.

• The following code (see Fig. 1.2.1) presents functions to allocate and
deallocate a binary semaphore.

#include <sys/ipc.h>

#include <sys/sem.h>

#include <sys/types.h>

/* We must define union semun ourselves. */

union semun {

int val;

struct semid_ds *buf;

unsigned short int *array;

struct seminfo *__buf;

};

/* Obtain a binary semaphore’s ID, allocating if necessary. */

int binary_semaphore_allocation (key_t key, int sem_flags)

{

return semget (key, 1, sem_flags);

}

/* Deallocate a binary semaphore. All users must have finished

their use. Returns -1 on failure. */

int binary_semaphore_deallocate (int semid)

{

union semun ignored_argument;

return semctl (semid, 1, IPC_RMID, ignored_argument);

}

Figure 4: Allocating and Deallocating a Binary Semaphore

10

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/sem_all_deall.c

1.2.2 Initializing Semaphores

• Allocating and initializing semaphores are two separate operations.

– To initialize a semaphore, use semctl with zero as the second
argument,

– SETALL as the third argument,

– For the fourth argument, you must create a union semun object

and point its array field at an array of unsigned short values.
Each value is used to initialize one semaphore in the set.

• The following code (see Fig. 1.2.2) presents a function that initializes
a binary semaphore.

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

/* We must define union semun ourselves. */

union semun {

int val;

struct semid_ds *buf;

unsigned short int *array;

struct seminfo *__buf;

};

/* Initialize a binary semaphore with a value of one. */

int binary_semaphore_initialize (int semid)

{

union semun argument;

unsigned short values[1];

values[0] = 1;

argument.array = values;

return semctl (semid, 0, SETALL, argument);

}

Figure 5: Initializing a Binary Semaphore

1.2.3 Wait and Post Operations

• Each semaphore has a non-negative value and supports wait and post

operations. The semop system call implements both operations.

– First parameter specifies a semaphore set identifier,

11

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/sem_init.c

– Second parameter is an array of struct sembuf elements, which
specify the operations you want to perform. The fields of struct
sembuf are listed:

∗ sem num is the semaphore number in the semaphore set on
which the operation is performed.

∗ sem op is an integer that specifies the semaphore operation.

∗ sem flg is a flag value. Specify IPC NOWAIT to pre-
vent the operation from blocking; if the operation would have
blocked, the call to semop fails instead. If you specify
SEM UNDO, Linux automatically undoes the operation on
the semaphore when the process exits.

– The third parameter is the length of this array.

• The following code (see Fig. 1.2.3) illustrates wait and post operations
for a binary semaphore.

$ ipcs -s

$ ipcrm sem 5790517

1.3 Mapped Memory

• Mapped memory permits different processes to communicate via a
shared file.

• Mapped memory can be used for interprocess communication or as an
easy way to access the contents of a file.

• Linux splits the file into page-sized chunks and then copies them into
virtual memory pages so that they can be made available in a process’s
address space.

1.3.1 Mapping an Ordinary File

• To map an ordinary file to a process’s memory, use the mmap (Memory
MAPped) call.

– The first argument is the address at which you would like Linux
to map the file into your process’s address space; the value NULL
allows Linux to choose an available start address.

– The second argument is the length of the map in bytes.

12

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/sem_pv.c

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

/* Wait on a binary semaphore. Block until the semaphore value

is positive, then decrement it by one. */

int binary_semaphore_wait (int semid)

{

struct sembuf operations[1];

/* Use the first (and only) semaphore. */

operations[0].sem_num = 0;

/* Decrement by 1. */

operations[0].sem_op = -1;

/* Permit undo’ing. */

operations[0].sem_flg = SEM_UNDO;

return semop (semid, operations, 1);

}

/* Post to a binary semaphore: increment its value by one. This

returns immediately. */

int binary_semaphore_post (int semid)

{

struct sembuf operations[1];

/* Use the first (and only) semaphore. */

operations[0].sem_num = 0;

/* Increment by 1. */

operations[0].sem_op = 1;

/* Permit undo’ing. */

operations[0].sem_flg = SEM_UNDO;

return semop (semid, operations, 1);

}

Figure 6: Wait and Post Operations for a Binary Semaphore

13

– The third argument specifies the protection on the mapped ad-
dress range. The protection consists of a bitwise or of
PROT READ, PROT WRITE, and PROT EXEC.

– The fourth argument is a flag value that specifies additional op-
tions. The flag value is a bitwise or of these constraints:

∗ MAP PRIVATE Writes to the memory range should not
be written back to the attached file, but to a private copy of
the file. No other process sees these writes. This mode may
not be used with MAP SHARED.

∗ MAP SHARED Writes are immediately reflected in the un-
derlying file rather than buffering writes. Use this mode when
using mapped memory for IPC. This mode may not be used
with MAP PRIVATE.

– The fifth argument is a file descriptor opened to the file to be
mapped.

– The last argument is the offset from the beginning of the file from
which to start the map.

• When you are finished with a memory mapping, release it by using
munmap. Pass it the start address and length of the mapped memory
region. Linux automatically unmaps mapped regions when a process
terminates.

• The following code (see Fig. 1.3.1) generates a random number and
writes it to a memory-mapped file.

• The following code (see Fig. 1.3.1) reads the number, prints it, and
replaces it in the memory-mapped file with double the value.

$./mmap-write /tmp/integer-file

$ cat /tmp/integer-file

42

$./mmap-read /tmp/integer-file

value: 42

$ cat /tmp/integer-file

84

14

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/mmap-write.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/mmap-read.c

#include <stdlib.h>

#include <stdio.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <time.h>

#include <unistd.h>

#define FILE_LENGTH 0x100

/* Return a uniformly random number in the range [low,high]. */

int random_range (unsigned const low, unsigned const high)

{

unsigned const range = high - low + 1;

return low + (int) (((double) range) * rand () / (RAND_MAX + 1.0));

}

int main (int argc, char* const argv[])

{

int fd;

void* file_memory;

/* Seed the random number generator. */

srand (time (NULL));

/* Prepare a file large enough to hold an unsigned integer. */

fd = open (argv[1], O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);

lseek (fd, FILE_LENGTH+1, SEEK_SET);

write (fd, "", 1);

lseek (fd, 0, SEEK_SET);

/* Create the memory-mapping. */

file_memory = mmap (0, FILE_LENGTH, PROT_WRITE, MAP_SHARED, fd, 0);

close (fd);

/* Write a random integer to memory-mapped area. */

sprintf((char*) file_memory, "%d\n", random_range (-100, 100));

/* Release the memory (unnecessary since the program exits). */

munmap (file_memory, FILE_LENGTH);

return 0;

}

Figure 7: Write a Random Number to a Memory-Mapped File

#include <stdlib.h>

#include <stdio.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <unistd.h>

#define FILE_LENGTH 0x100

int main (int argc, char* const argv[])

{

int fd;

void* file_memory;

int integer;

/* Open the file. */

fd = open (argv[1], O_RDWR, S_IRUSR | S_IWUSR);

/* Create the memory-mapping. */

file_memory = mmap (0, FILE_LENGTH, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

close (fd);

/* Read the integer, print it out, and double it. */

sscanf (file_memory, "%d", &integer);

printf ("value: %d\n", integer);

sprintf ((char*) file_memory, "%d\n", 2 * integer);

/* Release the memory (unnecessary since the program exits). */

munmap (file_memory, FILE_LENGTH);

return 0;

}

Figure 8: Read an Integer from a Memory-Mapped File, and Double It

15

Figure 9: How a pipe is organized.

1.4 Pipes

• A pipe is a communication device that permits unidirectional commu-
nication. (see Fig. 1.4)

– data written to the write end of the pipe,

– read back from the read end,

– pipes are serial devices; the data is always read from the pipe in
the same order it was written.

• This shell command causes the shell to produce two child processes,
one for ls and one for less:

$ ls | less

• A pipe’s data capacity is limited.

– if the writer process writes faster than the reader process consumes
the data,

– if the pipe cannot store more data, the writer process blocks until
more capacity becomes available,

– if the reader tries to read but no data is available, it blocks until
data becomes available.

• Thus, the pipe automatically synchronizes the two processes.

• To create a pipe, invoke the pipe command. Supply an integer array
of size 2. The call to pipe stores the reading file descriptor in array
position 0 and the writing file descriptor in position 1.

int pipe_fds[2];

int read_fd;

int write_fd;

16

pipe (pipe_fds);

read_fd = pipe_fds[0];

write_fd = pipe_fds[1];

1.4.1 Communication Between Parent and Child Processes

• A call to pipe creates file descriptors, which are valid only within that
process and its children.

• A process’s file descriptors cannot be passed to unrelated processes;
however, when the process calls fork, file descriptors are copied to the
new child process. Thus, pipes can connect only related processes.

• In the following program, (see Fig. 1.4.1) a fork spawns a child process.
The child inherits the pipe file descriptors. The parent writes a string
to the pipe, and the child reads it out.

1.4.2 Redirecting the Standard Input, Output, and Error Streams

• Frequently, you will want to create a child process and set up one end
of a pipe as its standard input or standard output.

• Using the dup2 call, you can equate one file descriptor with another.

dup2(fd,STDIN_FILENO);

• The symbolic constant STDIN FILENO represents the file descriptor
for the standard input, which has the value 0.

• The following program, (see Fig. 1.4.2) uses dup2 to send the output
from a pipe to the sort command.

17

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/pipe.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/dup2.c

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

/* Write COUNT copies of MESSAGE to STREAM, pausing for a second

between each. */

void writer (const char* message, int count, FILE* stream)

{

for (; count > 0; --count) {

/* Write the message to the stream, and send it off immediately. */

fprintf (stream, "%s\n", message);

fflush (stream);

/* Snooze a while. */

sleep (1);

}

}

/* Read random strings from the stream as long as possible. */

void reader (FILE* stream)

{

char buffer[1024];

/* Read until we hit the end of the stream. fgets reads until

either a newline or the end-of-file. */

while (!feof (stream)

&& !ferror (stream)

&& fgets (buffer, sizeof (buffer), stream) != NULL)

fputs (buffer, stdout);

}

int main ()

{

int fds[2];

pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe are placed in fds. */

pipe (fds);

/* Fork a child process. */

pid = fork ();

if (pid == (pid_t) 0) {

FILE* stream;

/* This is the child process. Close our copy of the write end of the file descriptor. */

close (fds[1]);

/* Convert the read file descriptor to a FILE object, and read from it. */

stream = fdopen (fds[0], "r");

reader (stream);

close (fds[0]);

}

else {

/* This is the parent process. */

FILE* stream;

/* Close our copy of the read end of the file descriptor. */

close (fds[0]);

/* Convert the write file descriptor to a FILE object, and write

to it. */

stream = fdopen (fds[1], "w");

writer ("Hello, world.", 5, stream);

close (fds[1]);

}

return 0;

}

Figure 10: Using a Pipe to Communicate with a Child Process

18

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

int main ()

{

int fds[2];

pid_t pid;

/* Create a pipe. File descriptors for the two ends of the pipe

are placed in fds. */

pipe (fds);

/* Fork a child process. */

pid = fork ();

if (pid == (pid_t) 0) {

/* This is the child process. Close our copy of the write end of

the file descriptor. */

close (fds[1]);

/* Connect the read end of the pipe to standard input. */

dup2 (fds[0], STDIN_FILENO);

/* Replace the child process with the "sort" program. */

execlp ("sort", "sort", 0);

}

else {

/* This is the parent process. */

FILE* stream;

/* Close our copy of the read end of the file descriptor. */

close (fds[0]);

/* Convert the write file descriptor to a FILE object, and write

to it. */

stream = fdopen (fds[1], "w");

fprintf (stream, "This is a test.\n");

fprintf (stream, "Hello, world.\n");

fprintf (stream, "My dog has fleas.\n");

fprintf (stream, "This program is great.\n");

fprintf (stream, "One fish, two fish.\n");

fflush (stream);

close (fds[1]);

/* Wait for the child process to finish. */

waitpid (pid, NULL, 0);

}

return 0;

}

Figure 11: Redirect Output from a Pipe with dup2

19

1.5 FIFOs

• A first-in, first-out (FIFO) file is a pipe that has a name in the filesys-
tem.

• Any process can open or close the FIFO; the processes on either end
of the pipe need not be related to each other.

• FIFOs are also called named pipes.

$ mkfifo /tmp/fifo

$ ls -l /tmp/fifo

• In one window, read from the FIFO by invoking the following:

$ cat < /tmp/fifo

• In a second window, write to the FIFO by invoking this:

$ cat > /tmp/fifo

• Then type in some lines of text. Each time you press Enter, the line of
text is sent through the FIFO and appears in the first window. Close
the FIFO by pressing Ctrl+D in the second window.

• Remove the FIFO with this line:

$ rm /tmp/fifo

20

	Semaphores for Threads
	Linux Thread Implementation
	Processes Vs. Threads
	Interprocess Communication
	Shared Memory
	Fast Local Communication
	The Memory Model
	Allocation
	Attachment and Detachment
	Controlling and Deallocating Shared Memory

	Processes Semaphores
	Allocation and Deallocation
	Initializing Semaphores
	Wait and Post Operations

	Mapped Memory
	Mapping an Ordinary File

	Pipes
	Communication Between Parent and Child Processes
	Redirecting the Standard Input, Output, and Error Streams

	FIFOs

