
1 Classes Part II

1.1 const (Constant) Objects and const Member Func-
tions

Some objects need to be modifiable and some do not. The programmer may
use keyword const to specify that an object is not modifiable and that any
attempt to modify the object should result in a compiler error.

• Principle of least privilege; Only allow modification of necessary objects

• Keyword const

– Specify object not modifiable

– Compiler error if attempt to modify const object

– Example

∗ const Time noon(12, 0, 0);

∗ Declares const object noon of class Time

∗ Initializes to 12

• const member functions

– Member functions for const objects must also be const; Cannot
modify object

– Specify const in both prototype and definition

∗ Prototype; After parameter list

∗ Definition; Before beginning left brace

• Constructors and destructors

– Cannot be const

– Must be able to modify objects

∗ Constructor; Initializes objects

∗ Destructor; Performs termination housekeeping

The program of Figs. 1-4 modifies class Time by making its get functions
and printUniversal function const.

• Member initializer syntax

– Initializing with member initializer syntax

1

∗ Can be used for; All data members

∗ Must be used for

· const data members

· Data members that are references

Figs. 4-6 introduces using member initializer syntax. Figs. 7-8 illustrates the
compiler errors for a program that attempts to initialize const data member
increment with an assignment statement in the Increment constructor’s
body rather than with a member initializer.

2

Figure 1: Time class definition with const member functions.

3

Figure 2: Time class member-function definitions, including const member
functions. (part 1 of 2)

4

Figure 3: Time class member-function definitions, including const member
functions. (part 2 of 2)

5

Figure 4: const objects and const member functions.

6

Figure 5: Member initializer used to initialize a constant of a built-in data
type. (part 1 of 2)

7

Figure 6: Member initializer used to initialize a constant of a built-in data
type. (part 2 of 2)

8

Figure 7: Erroneous attempt to initialize a constant of a built-in data type
by assignment. (part 1 of 2)

9

Figure 8: Erroneous attempt to initialize a constant of a built-in data type
by assignment. (part 2 of 2)

10

Figure 9: Date class definition.

1.2 Composition: Objects as Members of Classes

An AlarmClock object needs to know when it is supposed to sound its
alarm, so why not include a Time object as a member of the AlarmClock
class? Such a capability is called composition.

• Composition; Class has objects of other classes as members

• Construction of objects; Member objects constructed in order declared

– Not in order of constructor’s member initializer list

– Constructed before enclosing class objects (host objects)

The program of Figs. 9-14 uses class Date and class Employee to demon-
strate objects as members of other objects. The colon (:) in the header
separates the member initializers from the parameter list. In Fig. 14, when
each of the Employee’s Date member object’s initialized in the Employee
constructor’s member initializer list, the default copy constructor for class
Date is called. This constructor is defined implicitly by the compiler and
does not contain any output statements.

11

Figure 10: Date class member-function definitions. (part 1 of 2)

12

Figure 11: Date class member-function definitions. (part 2 of 2)

13

Figure 12: Employee class definition showing composition.

14

Figure 13: Employee class member-function definitions,including construc-
tor with a member-initializer list.

15

Figure 14: Member-object initializers.

16

1.3 friend Functions and friend Classes

• friend function

– Defined outside class’s scope

– Right to access non-public members

• Declaring friends

– Function; Precede function prototype with keyword friend

– All member functions of class ClassTwo as friends of class Clas-
sOne

∗ Place declaration of form; friend class ClassTwo;

∗ in ClassOne definition

• Properties of friendship

– Friendship granted, not taken

∗ Class B friend of class A; Class A must explicitly declare
class B friend

• Not symmetric

– Class B friend of class A

– Class A not necessarily friend of class B

• Not transitive

– Class A friend of class B

– Class B friend of class C

– Class A not necessarily friend of Class C

The program of Figs. 15-16 (top) defines friend function setX to set the
private data member x of class Count. Friend declaration can appear any-
where in the class. The program of Figs. 16 (bottom) -17 demonstrates the
error messages produced by the compiler when nonfriend function cannot-
SetX is called to modify private data member x.

17

Figure 15: Friends can access private members of the class.

18

Figure 16: Nonfriend/nonmember functions cannot access private members.
(part 1 of 2)

19

Figure 17: Nonfriend/nonmember functions cannot access private members.
(part 2 of 2)

20

1.4 Using the this Pointer

We have seen that an object’s member functions can manipulate the object’s
data. How do member functions know which object’s data members to ma-
nipulate? Every object has access to its own address through a pointer called
this (a C++ keyword).

• Allows object to access own address

• Not part of object itself; Implicit argument to non-static member func-
tion call

• Implicitly reference member data and functions

• Type of this pointer depends on

– Type of object

– Whether member function is const

– In non-const member function of Employee

∗ this has type Employee * const ; Constant pointer to non-
constant Employee object

– In const member function of Employee

∗ this has type const Employee * const ; Constant pointer
to constant Employee object

The program of Figs. 18-19 demonstrates the implicit and explicit use
of the this pointer to enable a member function of class Test to print
the private data x of a Test object. The program of Figs. 20-24
modifies class Time’s set functions setTime, setHour, setMinute
and setSecond such that each returns a reference to a Time object
to enable cascaded member-function calls.

• Cascaded member function calls

– Multiple functions invoked in same statement

– Function returns reference pointer to same object; { return *this;
}

• Other functions operate on that pointer

• Functions that do not return references must be called last

21

Figure 18: this pointer implicitly and explicitly used to access an object’s
members. (part 1 of 2)

22

Figure 19: this pointer implicitly and explicitly used to access an object’s
members. (part 2 of 2)

23

Figure 20: Time class definition modified to enable cascaded member-
function calls.

24

Figure 21: Time class member-function definitions modified to enable cas-
caded member-function calls. (part 1 of 3)

25

Figure 22: Time class member-function definitions modified to enable cas-
caded member-function calls. (part 2 of 3)

26

Figure 23: Time class member-function definitions modified to enable cas-
caded member-function calls. (part 3 of 3)

27

Figure 24: Cascading member-function calls.

28

	Classes Part II
	 const (Constant) Objects and const Member Functions
	Composition: Objects as Members of Classes
	friend Functions and friend Classes
	Using the this Pointer

