
1 Object-Oriented Programming: Polymor-

phism

1.1 Introduction

• Polymorphism

– ”Program in the general”

– Treat objects in same class hierarchy as if all base class

– Virtual functions and dynamic binding; will explain how polymor-
phism works

– Makes programs extensible; new classes added easily, can still be
processed

• In our examples

– Use abstract base class Shape

∗ Defines common interface (functionality)

∗ Point, Circle and Cylinder inherit from Shape

– Class Employee for a natural example

1.2 Relationships Among Objects in an Inheritance
Hierarchy

• Previously (Section 9.4),

– Circle inherited from Point

– Manipulated Point and Circle objects using member functions

• Now

– Invoke functions using base-class/derived-class pointers

– Introduce virtual functions

• Key concept

– Derived-class object can be treated as base-class object

∗ ”is-a” relationship

∗ Base class is not a derived class object

1



1.2.1 Invoking Base-Class Functions from Derived-Class Objects

Aim pointers (base, derived) at objects (base, derived)

• Base pointer aimed at base object

• Derived pointer aimed at derived object; both straightforward

• Base pointer aimed at derived object

– ”is a” relationship; Circle ”is a” Point

– Will invoke base class functions

• Function call depends on the class of the pointer/handle

– Does not depend on object to which it points

– With virtual functions, this can be changed (more later)

Figure 1: Point class header file.

2



Figure 2: Point class represents an xy-coordinate pair.

3



Figure 3: Circle class header file.

4



Figure 4: Circle class that inherits from class Point.

5



Figure 5: Assigning addresses of base-class and derived-class objects to base-
class and derived-class pointers. (part 1 of 2)

6



Figure 6: Assigning addresses of base-class and derived-class objects to base-
class and derived-class pointers. (part 2 of 2)

7



1.2.2 Aiming Derived-Class Pointers at Base-Class Objects

• Previous example

– Aimed base-class pointer at derived object; Circle ”is a” Point

• Aim a derived-class pointer at a base-class object

– Compiler error

∗ No ”is a” relationship

∗ Point is not a Circle

∗ Circle has data/functions that Point does not

· setRadius (defined in Circle) not defined in Point

– Can cast base-object”s address to derived-class pointer

∗ Called downcasting (more in 10.9)

∗ Allows derived-class functionality

Figure 7: Aiming a derived-class pointer at a base-class object.

8



1.2.3 Derived-Class Member-Function Calls via Base-Class Point-
ers

• Handle (pointer/reference)

– Base-pointer can aim at derived-object; but can only call base-
class functions

– Calling derived-class functions is a compiler error; functions not
defined in base-class

• Common theme

– Data type of pointer/reference determines functions it can call

Figure 8: Attempting to invoke derived-class-only functions via a base-class
pointer. (part 1 of 2)

9



Figure 9: Attempting to invoke derived-class-only functions via a base-class
pointer. (part 2 of 2)

10



1.2.4 Virtual Functions

• Typically, pointer-class determines functions

• virtual functions; object (not pointer) determines function called

• Why useful?

– Suppose Circle, Triangle, Rectangle derived from Shape; each
has own draw function

– To draw any shape

∗ Have base class Shape pointer, call draw

∗ Program determines proper draw function at run time (dy-
namically)

∗ Treat all shapes generically

• Declare draw as virtual in base class

– Override draw in each derived class; like redefining, but new func-
tion must have same signature

– If function declared virtual, can only be overridden

∗ virtual void draw() const;

∗ Once declared virtual, virtual in all derived classes; good
practice to explicitly declare virtual

• Dynamic binding

– Choose proper function to call at run time

– Only occurs off pointer handles; if function called from object,
uses that object”s definition

• Example

– Redo Point, Circle example with virtual functions

– Base-class pointer to derived-class object; will call derived-class
function

• Polymorphism

– Same message, ”print”, given to many objects; all through a base
pointer

– Message takes on ”many forms”

11



Figure 10: Point class header file declares print function as virtual (upper)
and Circle class header file declares print function as virtual.

12



Figure 11: Demonstrating polymorphism by invoking a derived-class virtual
function via a base-class pointer to a derived-class object. (part 1 of 2)

13



Figure 12: Demonstrating polymorphism by invoking a derived-class virtual
function via a base-class pointer to a derived-class object. (part 2 of 2)

14



• Summary

– Base-pointer to base-object, derived-pointer to derived; straight-
forward

– Base-pointer to derived object; can only call base-class functions

– Derived-pointer to base-object

∗ Compiler error

∗ Allowed if explicit cast made (more in section 10.9)

1.3 Polymorphism Examples

• Suppose Rectangle derives from Quadrilateral

– Rectangle more specific Quadrilateral

– Any operation on Quadrilateral can be done on Rectangle (i.e.,
perimeter, area)

• Suppose designing video game

– Base class SpaceObject

∗ Derived Martian, SpaceShip, LaserBeam

∗ Base function draw

– To refresh screen

∗ Screen manager has vector of base-class pointers to objects

∗ Send draw message to each object

∗ Same message has ”many forms” of results

1.4 Type Fields and switch Structures

• One way to determine object’s class

– Give base class an attribute; shapeType in class Shape

– Use switch to call proper print function

• Many problems

– May forget to test for case in switch

– If add/remove a class, must update switch structures; Time con-
suming and error prone

• Better to use polymorphism

– Less branching logic, simpler programs, less debugging

15



1.5 Abstract Classes

• Abstract classes

– Sole purpose: to be a base class (called abstract base classes)

– Incomplete; derived classes fill in “missing pieces”

– Cannot make objects from abstract class; however, can have point-
ers and references

• Concrete classes

– Can instantiate objects

– Implement all functions they define

– Provide specifics

• Abstract classes not required, but helpful

• To make a class abstract

– Need one or more “pure” virtual functions

∗ Declare function with initializer of 0

∗ virtual void draw() const = 0;

– Regular virtual functions; have implementations, overriding is op-
tional

– Pure virtual functions; no implementation, must be overridden

– Abstract classes can have data and concrete functions; required
to have one or more pure virtual functions

• Abstract base class pointers; useful for polymorphism

• Application example

– Abstract class Shape; defines draw as pure virtual function

– Circle, Triangle, Rectangle derived from Shape; each must
implement draw

– Screen manager knows that each object can draw itself

• Iterators (more Chapter 21)

– Walk through elements in vector/array

– Use base-class pointer to send draw message to each

16


	Object-Oriented Programming: Polymorphism
	Introduction
	Relationships Among Objects in an Inheritance Hierarchy
	Invoking Base-Class Functions from Derived-Class Objects
	Aiming Derived-Class Pointers at Base-Class Objects
	Derived-Class Member-Function Calls via Base-Class Pointers
	Virtual Functions

	Polymorphism Examples
	Type Fields and switch Structures
	Abstract Classes


