
Ceng 205 Compter Programming II

Cem Özdoğan

29th July 2004

2

Contents

1 Introduction, Classes and Data Abstraction 13
1.1 History: The Rise and Decline of Structured Programming . . 18

1.1.1 The Problem - Complexity 18
1.2 Object-Oriented Programming (OOP) 18

1.2.1 Encapsulation . 19
1.2.2 Inheritance . 19
1.2.3 Polymorphism . 19
1.2.4 Advantages of OOP . 20
1.2.5 OOP Terminology . 21
1.2.6 Other Object-Oriented Languages 22

1.3 Structure Definitions . 22
1.4 Accessing Structure Members 23
1.5 Implementing a User-Defined Type Time with a struct 24
1.6 Implementing a Time Abstract Data Type with a class . . . 24
1.7 Class Scope and Accessing Class Members 28
1.8 Separating Interface from Implementation (see Figs 1.8-1.11) . 32
1.9 Controlling Access to Members (see Fig. 1.12) 32
1.10 Access Functions and Utility Functions 39
1.11 Initializing Class Objects: Constructors 43
1.12 Using Default Arguments with Constructors 43
1.13 Destructors . 48
1.14 When Constructors and Destructors Are Called 49
1.15 Using Set and Get Functions 54
1.16 Default Memberwise Assignment 60
1.17 Software Reusability . 62

2 Classes Part II 63
2.1 const (Constant) Objects and const Member Functions 63
2.2 Composition: Objects as Members of Classes 65
2.3 friend Functions and friend Classes 65
2.4 Using the this Pointer . 80

3

4 CONTENTS

2.5 Dynamic Memory Management with Operators new and delete 92

2.6 static Class Members . 93

2.7 Data Abstraction and Information Hiding 98

2.7.1 Example: Array Abstract Data Type 99

2.7.2 Example: String Abstract Data Type 99

2.7.3 Example: Queue Abstract Data Type 99

2.8 Container Classes and Iterators 100

2.9 Proxy Classes . 100

3 Operator Overloading 105

3.1 Introduction . 105

3.2 Fundamentals of Operator Overloading 105

3.3 Restrictions on Operator Overloading 106

3.4 Operator Functions As Class Members Vs. As Friend Functions107

3.5 Overloading Stream-Insertion and Stream-Extraction Operators108

3.6 Overloading Unary Operators 108

3.7 Overloading Binary Operators 109

3.8 Case Study: Array class . 111

3.9 Converting between Types . 122

3.10 Case Study: A String Class 123

3.11 Overloading ++ and – . 133

3.12 Case Study: A Date Class . 134

3.13 Standard Library Classes string and vector 140

4 Object-Oriented Programming: Inheritance 151

4.1 Introduction . 151

4.2 Base Classes and Derived Classes 152

4.3 protected Members . 155

4.4 Relationship between Base Classes and Derived Classes 155

4.4.1 Creating a Circle class without using inheritance 160

4.4.2 Point/Circle Hierarchy using Inheritance 164

4.4.3 Point/Circle Hierarchy using protected data 167

4.4.4 Point/Circle Hierarchy using private data 174

4.5 Case Study: Three-Level Inheritance Hierarchy 174

4.6 Constructors and Destructors in Derived Classes 184

4.7 ”Uses A” and ”Knows A” Relationships 186

4.8 public, protected and private Inheritance 186

4.9 Software Engineering with Inheritance 186

CONTENTS 5

5 Object-Oriented Programming: Polymorphism 195
5.1 Introduction . 195
5.2 Relationships Among Objects in an Inheritance Hierarchy . . 195

5.2.1 Invoking Base-Class Functions from Derived-Class Objects196
5.2.2 Aiming Derived-Class Pointers at Base-Class Objects . 196
5.2.3 Derived-Class Member-Function Calls via Base-Class Pointers197
5.2.4 Virtual Functions . 203

5.3 Polymorphism Examples . 205
5.4 Type Fields and switch Structures 205
5.5 Abstract Classes . 205
5.6 Case Study: Inheriting Interface and Implementation 212
5.7 Polymorphism, Virtual Functions and Dynamic Binding ”Under the Hood”225
5.8 Virtual Destructors . 225
5.9 Case Study: Payroll System Using Polymorphism 225
5.10 vita . 239

6 CONTENTS

List of Tables

7

8 LIST OF TABLES

List of Figures

1.1 Survey of Programming Techniques; unstructured, procedural, modular, and object-oriented programming. 17
1.2 Creating a structure, setting its members and printing the structure (part 1 of 2). 25
1.3 Creating a structure, setting its members and printing the structure (part 2 of 2). 26
1.4 Time abstract data type implementation as a class, (part 1 of 3). 29
1.5 Time abstract data type implementation as a class, (part 2 of 3). 30
1.6 Time abstract data type implementation as a class, (part 3 of 3). 31
1.7 Demonstrating the class member access operators. and − > . 33
1.8 Time class definition . 34
1.9 Time class member-function definitions (part 1 of 2). 35
1.10 Time class member-function definitions (part 2 of 2). 36
1.11 Program to test class Time. 37
1.12 private members of a class are not accessible outside the class. 38
1.13 SalesPerson class definition 39
1.14 SalesPerson class member-function definitions (part 1 of 2) . 40
1.15 SalesPerson class member-function definitions (part 2 of 2) . 41
1.16 Utility function demonstration 42
1.17 Time class containing a constructor with default arguments. . 44
1.18 Time class member-function definitions including a constructor that takes arguments. (part 1 of 2) 45
1.19 Time class member-function definitions including a constructor that takes arguments. (part 2 of 2) 46
1.20 Constructor with default arguments. (part 1 of 2) 47
1.21 Constructor with default arguments. (part 2 of 2) 48
1.22 CreateAndDestroy class definition. 50
1.23 CreateAndDestroy class member-function definitions. . . . 51
1.24 Order in which constructors and destructors are called. (part 1 of 2) 52
1.25 Order in which constructors and destructors are called. (part 2 of 2) 53
1.26 Time class definition with set and get functions. 55
1.27 Time class member-function definitions,including set and get functions. (part 1 of 2) 56
1.28 Time class member-function definitions,including set and get functions. (part 2 of 2) 57
1.29 Set and get functions manipulating an object’s private data. (part 1 of 2) 58
1.30 Set and get functions manipulating an object’s private data. (part 2 of 2) 59
1.31 Default memberwise assignment. (part 1 of 2) 61

9

10 LIST OF FIGURES

1.32 Default memberwise assignment. (part 2 of 2) 62

2.1 Time class definition with const member functions. 66
2.2 Time class member-function definitions, including const member functions. (part 1 of 2) 67
2.3 Time class member-function definitions, including const member functions. (part 2 of 2) 68
2.4 const objects and const member functions. 69
2.5 Member initializer used to initialize a constant of a built-in data type. (part 1 of 2) 70
2.6 Member initializer used to initialize a constant of a built-in data type. (part 2 of 2) 71
2.7 Erroneous attempt to initialize a constant of a built-in data type by assignment. (part 1 of 2) 72
2.8 Erroneous attempt to initialize a constant of a built-in data type by assignment. (part 2 of 2) 73
2.9 Date class definition. 74
2.10 Date class member-function definitions. (part 1 of 2) 75
2.11 Date class member-function definitions. (part 2 of 2) 76
2.12 Employee class definition showing composition. 77
2.13 Employee class member-function definitions,including constructor with a member-initializer list. 78
2.14 Member-object initializers. 79
2.15 Friends can access private members of the class. 81
2.16 Nonfriend/nonmember functions cannot access private members. (part 1 of 2) 82
2.17 Nonfriend/nonmember functions cannot access private members. (part 2 of 2) 83
2.18 this pointer implicitly and explicitly used to access an object’s members. (part 1 of 2) 85
2.19 this pointer implicitly and explicitly used to access an object’s members. (part 2 of 2) 86
2.20 Time class definition modified to enable cascaded member-function calls. 87
2.21 Time class member-function definitions modified to enable cascaded member-function calls. (part 1 of 3) 88
2.22 Time class member-function definitions modified to enable cascaded member-function calls. (part 2 of 3) 89
2.23 Time class member-function definitions modified to enable cascaded member-function calls. (part 3 of 3) 90
2.24 Cascading member-function calls. 91
2.25 Employee class definition with a static data member to track the number Employee objects in memory. 94
2.26 Employee class member-function definitions. (part 1 of 2) . . 95
2.27 Employee class member-function definitions. (part 2 of 2) and static data member tracking the number of objects of a class. (part 1 of 2) 96
2.28 static data member tracking the number of objects of a class. (part 2 of 2) 97
2.29 Implementation class definition. 102
2.30 Interface class definition. 103
2.31 Interface class member-function definitions and Implementing a proxy class.104

3.1 Overloaded stream-insertion and stream extraction operators. (part 1 of 2)109
3.2 Overloaded stream-insertion and stream extraction operators. (part 2 of 2)110
3.3 Array class definition with overloaded operators. 113
3.4 Array class member-and friend-function definitions. (part 1 of 4)114
3.5 Array class member-and friend-function definitions. (part 2 of 4)115
3.6 Array class member-and friend-function definitions. (part 3 of 4)116
3.7 Overloaded stream-insertion and stream extraction operators. (part 4 of 2)117

LIST OF FIGURES 11

3.8 Array class test program. (part 1 of 2) 118
3.9 Array class test program. (part 2 of 2) 119
3.10 Array class test program, output. (part 1 of 2) 120
3.11 Array class test program, output. (part 2 of 2) 121
3.12 String class definition with operator overloading. (part 1 of 2) 124
3.13 String class definition with operator overloading. (part 2 of 2) 125
3.14 String class member-function and friend-function definition. (part 1 of 4)126
3.15 String class member-function and friend-function definition. (part 2 of 4)127
3.16 String class member-function and friend-function definition. (part 3 of 4)128
3.17 String class member-function and friend-function definition. (part 4 of 4)129
3.18 String class test program. (part 1 of 2) 130
3.19 String class test program. (part 2 of 2) 131
3.20 String class test program, output. (part 1 of 2) 132
3.21 String class test program, output. (part 2 of 2) 133
3.22 Date class definition with overloaded increment operator. . . 135
3.23 Date class member-and friend-function definition. (part 1 of 3)136
3.24 Date class member-and friend-function definition. (part 2 of 3)137
3.25 Date class member-and friend-function definition. (part 3 of 3)138
3.26 Date class test program. 139
3.27 Date class test program, output. 140
3.28 Standart library class string (part 1 of 2). 142
3.29 Standart library class string (part 2 of 2). 143
3.30 Standart library class string, output. 144
3.31 Standart library class vector. (part 1 of 3) 146
3.32 Standart library class vector. (part 2 of 3) 147
3.33 Standart library class vector. (part 3 of 3) 148
3.34 Standart library class vector, output. 149

4.1 Inheritance examples . 153
4.2 Inheritance hierarchy for university CommunityMembers and Inheritance hierarchy for Shapes154
4.3 Point class header file . 156
4.4 Point class represents an xy-coordinate pair. (part 1 of 2) . . 157
4.5 Point class represents an xy-coordinate pair. (part 2 of 2) . . 158
4.6 Point class test program. 159
4.7 Circle class header file. 160
4.8 Circle class contains an xy-coordinate pair and a radius. (part 1 of 2) 161
4.9 Circle class contains an xy-coordinate pair and a radius. (part 2 of 2) 162
4.10 Circle class test program. (part 1 of 2) 163
4.11 Circle class test program. (part 2 of 2) and Circle2 class header file. (part 1 of 2) 164
4.12 Circle2 class header file (part 2 of 2) and Private base-class data can not be accessed from derived class. (part 1 of 2)165
4.13 Private base-class data can not be accessed from derived class. (part 2 of 2)166

12 LIST OF FIGURES

4.14 Point2 class header file. 167
4.15 Point2 class represents an xy-coordinate pair as protected data.168
4.16 Circle3 class header file. 169
4.17 Circle3 class that inherits from class Point2. 170
4.18 Protected base-class data can be accessed from derived class. (part 1 of 2)171
4.19 Protected base-class data can be accessed from derived class. (part 2 of 2)172
4.20 Point3 class header file. Point/Circle Hierarchy Using private Data175
4.21 Point3 class uses member functions to manipulate its private data.176
4.22 Circle4 class header file. 177
4.23 Circle4 class that inherits from class Point3, which does not provide protected data. (part 1 of 2) 178
4.24 Circle4 class that inherits from class Point3, which does not provide protected data. (part 2 of 2) 179
4.25 Base class private data is accessible to a derived class via public or protected member function inherited by the derived class.180
4.26 Cylinder class header file. 181
4.27 Cylinder class inherits from class Circle4 and redefines member function getArea.182
4.28 Point/Circle/Cylinder hierarchy test program. (part 1 of 2) 183
4.29 Point/Circle/Cylinder hierarchy test program. (part 2 of 2) 184
4.30 Point4 class header file and Point4 base class contains a constructor and a destructor. (part 1 of 2)187
4.31 Point4 base class contains a constructor and a destructor. (part 2of 2)188
4.32 Circle5 class header file. 189
4.33 Circle5 class inherits from class Point4. (part 1 of 2) 190
4.34 Circle5 class inherits from class Point4. (part 2 of 2) 191
4.35 Constructor and destructor call order. 192
4.36 Summary of base–class member accessibility in a derived class. 193

5.1 Point class header file. 197
5.2 Point class represents an xy-coordinate pair. 198
5.3 Circle class header file. 199
5.4 Circle class that inherits from class Point. 200
5.5 Assigning addresses of base-class and derived-class objects to base-class and derived-class pointers. (part 1 of 2)201
5.6 Assigning addresses of base-class and derived-class objects to base-class and derived-class pointers. (part 2 of 2)202
5.7 Aiming a derived-class pointer at a base-class object. 203
5.8 Attempting to invoke derived-class-only functions via a base-class pointer. (part 1 of 2)207
5.9 Attempting to invoke derived-class-only functions via a base-class pointer. (part 2 of 2)208
5.10 Point class header file declares print function as virtual (upper) and Circle class header file declares print function as virtual. 209
5.11 Demonstrating polymorphism by invoking a derived-class virtual function via a base-class pointer to a derived-class object. (part 1 of 2)210
5.12 Demonstrating polymorphism by invoking a derived-class virtual function via a base-class pointer to a derived-class object. (part 2 of 2)211
5.13 Defining the polymorphic interface for the Shape hierarchy classes.212
5.14 Abstract base class Shape header file and Abstract base class Shape.213
5.15 Point class header file. 214
5.16 Point class implementation file. (part 1 of 2) 215
5.17 Point class implementation file. (part 2 of 2) 216

LIST OF FIGURES 13

5.18 Circle class header file and Circle class that inherits from class Point. (part 1 of 2)217
5.19 Circle class that inherits from class Point. (part 2 of 2) . . . 218
5.20 Cylinder class header file. 219
5.21 Cylinder class implementation file. (part 1 of 2) 220
5.22 Cylinder class implementation file. (part 2 of 2) 221
5.23 Demonstarting polymorphism via a hierarchy headed by an abstract base class. (part 1 of 3)222
5.24 Demonstarting polymorphism via a hierarchy headed by an abstract base class. (part 2 of 3)223
5.25 Demonstarting polymorphism via a hierarchy headed by an abstract base class. (part 3 of 3)224
5.26 Class hierarchy for the polymorphic employee-payroll application.226
5.27 Employee class header file. 227
5.28 Employee class implementation file. (part 1 of 2) 228
5.29 Employee class implementation file (part 2 of 2) and SalariedEmployee class header file.229
5.30 SalariedEmployee class implementation file. 230
5.31 HourlyEmployee class header file. 231
5.32 HourlyEmployee class implementation file. 232
5.33 CommissionEmployee class header file. 233
5.34 CommissionEmployee class implementation file. 234
5.35 BasePlusCommissionEmployee class header file. 235
5.36 BasePlusCommissionEmployee class implementation file. . 236
5.37 Employee class hierarchy driver program.(part 1 of 2) 237
5.38 Employee class hierarchy driver program.(part 2 of 2) 238

14 LIST OF FIGURES

Chapter 1

Introduction, Classes and Data
Abstraction

• Basic characteristics of O-O languages

– Everything is an object.

– Object-orientation is a natural way of thinking about the world
and of writing computer programs.

– Objects are all around us–people, animals, plants, cars, planes,
buildings, computers, etc.

– Abstractions allow us to view screen images as objects such as
people, planes, trees, etc. rather than as individual dots of color.

– Abstractions allow us to think in terms of beaches rather than
grains of sand, houses rather than bricks.

– All objects have attributes such as size, shape, color, weight, etc.

– All objects exhibit various behaviors. A baby cries, sleeps, crawls,
walks; a car accelerates, brakes, turns, etc.

– Humans learn about objects by studying their attributes and ob-
serving their behaviors.

– Different objects can have many of the same attributes and exhibit
similar behaviors.

∗ Comparisons can be made between babies and adults, and
between humans and chimpanzees.

∗ Cars, trucks, little red wagons, and roller blades have much
in common.

15

16CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

– Object-oriented programming (OOP) models real-world objects
with software counterparts.

∗ It takes advantage of class relationships where objects of a
certain class, such as a class of vehicles, have the same char-
acteristics.

∗ It takes advantage of inheritance relationships, and even mul-
tiple inheritance relationships, where newly created classes
are derived by inheriting characteristics of existing classes,
yet contain unique characteristics of their own.

– A program is a bunch of objects telling each other what to do, by
sending messages.

– Each object has its own memory, and is made up of other objects.

– Every object has a type (class).

– All objects of the same type can receive the same messages.

• Objects

– An object has an interface, determined by the class it’s an in-
stance of.

– A class is an abstract data type (or user-defined data type).

– Defining a class requires defining its interface.

– What about built-in types?

∗ Think of an int

∗ What’s its interface?

∗ How do you ”send it messages”?

∗ How do you make (construct) one?

• The interface is the critical part, but the details (implementation) are
important too

• Users use the interface (the ”public part”), the implementation is hid-
den by ”access control”.

• C libraries have always been like this, sort of:

– The library designer invents a useful struct.

– Then she provides some useful functions for the struct.

– The user creates an instance of the struct, then applies library
functions to it.

17

• C++ uses ”access specifiers”: public, protected, and private to
determine who can use the attribute or function.

• Two Ways of Reusing Classes

– Composition: One class has another as a ”part”.

– Inheritance: One class is a specialized version of another

• Polymorphism: Different subclasses respond to the same message,
possibly with different actions.

• Creating and Destroying Objects

– We usually get this for free with built-in types like int or char, we
just say

∗ int i;

∗ char c;

– With user-defined types (the ones we make), we need to be explicit
about what we want:

∗ constructor function

∗ destructor function

∗ C++ has new and delete (similar to malloc and free in C)

∗ This is a very important issue! What is a memory leak?

• A compiler typically does

– preprocessing

– first pass to make parse tree

– second pass to generate code

• The result is an object module (.obj file).

• A linker produces an .exe file by

– Resolving references between compilation units (i.e., separate source
files)

– Adding code from libraries

– Adding special startup code

– Building the final executable file

18CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

• In C++, variables and functions must be both declared and defined.
The rules:

– A declaration tells the compiler that you intend to use a vari-
able/function with a certain name.

– A variable declaration specifies the type (int, float, etc.) so the
compiler can check your usage.

– A variable declaration doesn’t allocate space for the variable.

– A function declaration specifies the function name, argument types,
and return type, so the compiler can check your usage.

– A function declaration doesn’t allocate space for the function code.

– A variable definition causes memory to be allocated to hold its
value. This can only be done (must be done) exactly once in the
entire program. Why?

– And so for functions.

• Libraries are collections of compiled function definitions.

– Library header files (.h files, or files with no extension) are collec-
tions of (uncompiled e.g., ASCII) function declarations.

– #includeing a header file is a fast and painless way of providing
the declarations the compiler insists on.

– The compiler is happy, since it has declarations from the .h file(s)

– The linker is happy, because there is exactly one definition of a
library function.

– The linker resolves references to variables/functions that are spread
across files.

• Survey of Programming Techniques (see Fig. 1.1)

– Unstructured programming.

∗ Simple sequence of command statements.

∗ Operates directly on global data.

∗ Not good for large programs.

∗ Repetitive statement segments are copied over.

∗ The repetitive sequences extracted and named so that they
can be called and values returned leads to the idea of proce-
dures.

19

Figure 1.1: Survey of Programming Techniques; unstructured, procedural,
modular, and object-oriented programming.

– Procedural programming.

∗ Combines returning sequences of statements into one func-
tion.

∗ Procedure calls are used to invoke procedures.

∗ Programs are now more structured.

∗ Errors are easier to detect.

∗ Combining procedures into modules is the next logical exten-
sion.

– Modular programming.

∗ Procedures with common functionality are grouped into mod-
ules.

∗ Main program coordinates calls to procedures within modules.

∗ Each module has its own data and isolated for other modules.

– Object-oriented programming.

∗ Data and the functions that operate on that data are com-
bined into an object.

∗ Programming is not function based but object based.

∗ Objects are base on three basic ideas: Encapsulation, Inheri-
tance and Polymorphism.

20CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

1.1 History: The Rise and Decline of Struc-

tured Programming

For many years (roughly 1970 to 1990), structured programming was the most
common way to organize a program. This is characterized by a functional-
decomposition style - breaking the algorithms in to every smaller functions.
This technique was a great improvement over the ad hoc programming which
preceded it. However, as programs became larger, structured programming
was not able control the exponential increase in complexity.

1.1.1 The Problem - Complexity

Complexity measurements grow exponentially as the size of programs grow.
One measurement is coupling, or much different elements (modules, data
structures) interact with each other. The fewer the connections, the less
complex a program is. Low coupling is highly desirable.
There have been several post-structured programming attempts to control
complexity. One of these is to use software components - preconstructed
software “parts” to avoid programming. And when you have to program,
use object-oriented programming (OOP).
Bjarne Stroustrup of Bell Labs extended the C language to be capable of
Object-Oriented Programming (OOP), and it became popular in the 1990’s
as C++. There were several enhancements, but the central change was ex-
tending struct to allow it to contain functions and use inheritance. These
extended structs were later renamed classes. A C++ standard was estab-
lished in 1999, so there are variations in the exact dialect that is accepted by
pre-standard compilers.

1.2 Object-Oriented Programming (OOP)

Object-Oriented Programming groups related data and functions together
in a class, generally making data private and only some functions public.
Restricting access decreases coupling and increases cohesion. While it is not
a panacea, it has proven to be very effective in reducing the complexity in-
crease with large programs. For small programs may be difficult to see the
advantage of OOP over, eg, structured programming because there is little
complexity regardless of how it’s written. Many of the mechanics of OPP
are easy to demonstrate; it is somewhat harder to create small, convincing
examples.

1.2. OBJECT-ORIENTED PROGRAMMING (OOP) 21

OOP is often said to incorporate three techniques: inheritance, encapsula-
tion, and polymorphism. Of these, you should first devote yourself to choos-
ing the right classes (possibly difficult) and getting the encapsulation right
(fairly easy). Inheritance and polymorphism are not even present in many
programs, so you can ignore them at that start.

1.2.1 Encapsulation

Encapsulation is grouping data and functions together and keeping their
implementation details private. Greatly restricting access to functions and
data reduces coupling, which increases the ability to create large programs.
Classes also encourage coherence, which means that a given class does one
thing. By increasing coherence, a program becomes easier to understand,
more simply organized, and this better organization is reflected in a further
reduction in coupling.

1.2.2 Inheritance

Inheritance means that a new class can be defined in terms of an existing
class. There are three common terminologies for the new class: the derived

class, the child class, or the subclass. The original class is the base class, the
parent class, or the superclass. The new child class inherits all capabilities
of the parent class and adds its own fields and methods. Altho inheritance
is very important, especially in many libraries, is often not used in an appli-
cation.

1.2.3 Polymorphism

Polymorphism is the ability of different functions to be invoked with the
same name. There are two forms.
Static polymorphism is the common case of overriding a function by providing
additional definitions with different numbers or types of parameters. The
compiler matches the parameter list to the appropriate function.
Dynamic polymorphism is much different and relies on parent classes to define
virtual functions which child classes may redefine. When this virtual member
function is called for an object of the parent class, the execution dynamically
chooses the appropriate function to call - the parent function if the object
really is the parent type, or the child function if the object really is the child
type. This explanation is too brief to be useful without an example, but that
will have to be written latter.

22CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

1.2.4 Advantages of OOP

• Re-use of code. Linking of code to objects and explicit specification
of relations between objects allows related objects to share code. En-
capsulation and weak coupling between objects means class definitions
are more likely to be re-used in other applications. Objects as well
as procedures (focus of C libraries) become likely candidates for re-
use. The enforcement of a consistent interface to objects lessens code
duplication.

• Ease of comprehension. Structure of code and data structures in it
can be set up to closely mimic the generic application concepts and
processes. High-level code could make some sense even to a non-
programmer. The analysis/design/coding phases in development be-
come more seamless since they can all deal in the same concepts.

• Ease of fabrication and maintenance (redesign and extension) facili-
tated by encapsulation, data abstraction which allow for very clean
designs. When an object is going into disallowed states, only its meth-
ods need be investigated. This narrows down search for problems.

• C++ Objectives

– extend C to allow for object-oriented programming

– other improvements - some resulting in deprecation of some C
facilities

– remain compatible and comparable (syntax, performance, porta-
bility, design philosophy - don’t pay for what you don’t use, don’t
get stuck with things you don’t need) with C

– emphasize compile-time type checking

• C++ is multi-paradigm. It provides for the object-oriented approach
but doesn’t enforce its use. This makes it a good transition language
and gives it flexibility when a particular situation doesn’t fit the object-
oriented philosophy.

• With this object-oriented approach, C++ overcomes certain shortcom-
ings of C:

– Lack of encapsulation means that if an object is getting trashed,
it’s difficult to find the code responsible. Many procedures may
have had idiosyncratic interactions with the object.

1.2. OBJECT-ORIENTED PROGRAMMING (OOP) 23

– Doesn’t recognize relationships between types. Pointer casting
necessary. In C++, pointer casting can just about always be
dispensed with. Pointer casting is a kludge. Compiler can’t check
if you are doing it correctly. No type safety (see definition below).

– Not easy to extend existing libraries; for example, make it so
printf() can handle new types.

– Except for FILEs, there are no well-developed objects (like stacks
and lists) in the standard libraries.

• C’s future is as a portable ”universal” assembler, a back end for code
generators.

• While any C++ compiler should be able to compile a C program suc-
cessfully with minor changes, several aspects of C programming are
discarded in the transition to C++: new facilities are supplied for I/O,
memory allocation and error handling; macros and pointer casts be-
come obsolete for the most part.

1.2.5 OOP Terminology

Along with each programming revolution comes a new set of terminology.
There are some new OOP concepts, but many have a simple analog in pre-
OOP practice.

24CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

OOP Term Definition

method Same as function, but the typical OO notation is used for the call,
ie, f(x,y) is written x.f(y) where x is an object of class that contains
this f method.

send a message Call a function (method).

instantiate Allocate a class/struct object (ie, instance) with new.

class A struct with both data and functions.

object Memory allocated to a class/struct. Often allocated with new.

member A field or function is a member of a class if it’s defined in that class

constructor Function-like code that initializes new objects (structs) when they
instantiated (allocated with new).

destructor Function-like code that is called when an object is deleted to free
any resources (eg, memory) that is has pointers to.

inheritance Defining a class (child) in terms of another class (parent). All of the
public members of the public class are available in the child class.

polymorphism Defining functions with the same name, but different parameters.

overload A function is overloaded if there is more than one definition. See
polymorphism.

override Redefine a function from a parent class in a child class.

subclass Same as child, derived, or inherited class.

superclass Same as parent or base class.

attribute Same as data member or member field.

1.2.6 Other Object-Oriented Languages

• Objective C

• CLOS (Common Lisp Object System)

• Ada 9X

• FORTRAN 90

• Smalltalk

• Modula-3

• Eiffel

1.3 Structure Definitions

• Structures, Aggregate data types built using elements of other types

1.4. ACCESSING STRUCTURE MEMBERS 25

struct Time{ //structure tag

int hour; //structure members

int minute; //structure members

int second; //structure members

};

• Structure member naming

– In same struct: must have unique names

– In different structs: can share name

• struct definition must end with semicolon

• Self-referential structure

– Structure member cannot be instance of enclosing struct

– Structure member can be pointer to instance of enclosing struct
(self-referential structure), Used for linked lists, queues, stacks and
trees

• struct definition

– Creates new data type used to declare variables

– Structure variables declared like variables of other types

– Examples:

Time timeObject;

Time timeArray[10];

Time *timePtr;

Time \&timeRef = timeObject;

1.4 Accessing Structure Members

• Member access operators

– Dot operator (.) for structure and class members

– Arrow operator (− >) for structure and class members via pointer
to object

– Print member hour of timeObject:

26CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

cout << timeObject.hour;

OR

timePtr = &timeObject;

cout << timePtr->hour;}

– timePtr− >hour same as (*timePtr).hour

∗ Parentheses required, * lower precedence than .

1.5 Implementing a User-Defined Type Time

with a struct

• Default: structures passed by value

– Pass structure by reference; Avoid overhead of copying structure

• C-style structures

– No interface; If implementation changes, all programs using that
struct must change accordingly

– Cannot print as unit; Must print/format member by member

– Cannot compare in entirety; Must compare member by member

1.6 Implementing a Time Abstract Data Type

with a class

• Classes

– Model objects

∗ Attributes (data members)

∗ Behaviors (member functions)

– Defined using keyword class

– Member functions

∗ Methods

∗ Invoked in response to messages

• Member access specifiers

– public: Accessible wherever object of class in scope

1.6. IMPLEMENTING A TIME ABSTRACT DATA TYPE WITH A CLASS27

Figure 1.2: Creating a structure, setting its members and printing the struc-
ture (part 1 of 2).

28CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.3: Creating a structure, setting its members and printing the struc-
ture (part 2 of 2).

– private: Accessible only to member functions of class

– protected:

• Constructor function

– Special member function

∗ Initializes data members

∗ Same name as class

– Called when object instantiated

– Several constructors; Function overloading

– No return type

1 class Time {

2

3 public:

4 Time(); // constructor

1.6. IMPLEMENTING A TIME ABSTRACT DATA TYPE WITH A CLASS29

5 void setTime(int, int, int); // set hour, minute, second

6 void printUniversal(); // print universal-time format

7 void printStandard(); // print standard-time format

8

9 private:

10 int hour; // 0 - 23 (24-hour clock format)

11 int minute; // 0 - 59

12 int second; // 0 - 59

13

14 }; // end class Time

• Objects of class

– After class definition

∗ Class name new type specifier; C++ extensible language

∗ Object, array, pointer and reference declarations

– Example:

Time sunset;

Time arrayofTimes[5];

Time *pointerToTime;

Time \&dinnerTime = sunset;

• Member functions defined outside class

– Binary scope resolution operator (::)

∗ Ties member name to class name

∗ Uniquely identify functions of particular class

∗ Different classes can have member functions with same name

– Format for defining member functions

ReturnType ClassName::MemberFunctionName(){

.

.

.

}

– Does not change whether function public or private

• Member functions defined inside class

– Do not need scope resolution operator, class name

30CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

– Compiler attempts inline; Outside class, inline explicitly with
keyword inline

• Destructor

– Same name as class; Preceded with tilde (˜)

– No arguments

– Cannot be overloaded

– Performs termination housekeeping

• Advantages of using classes

– Simplify programming

– Interfaces; Hide implementation

– Software reuse

∗ Composition (aggregation); Class objects included as mem-
bers of other classes

∗ Inheritance; New classes derived from old

1.7 Class Scope and Accessing Class Mem-

bers

• Class scope

– Data members, member functions

– Within class scope

∗ Class members; Immediately accessible by all member func-
tions, Referenced by name

– Outside class scope

∗ Referenced through handles; Object name, reference to ob-
ject, pointer to object

• File scope

– Nonmember functions

• Function scope

– Variables declared in member function

1.7. CLASS SCOPE AND ACCESSING CLASS MEMBERS 31

Figure 1.4: Time abstract data type implementation as a class, (part 1 of
3).

32CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.5: Time abstract data type implementation as a class, (part 2 of
3).

1.7. CLASS SCOPE AND ACCESSING CLASS MEMBERS 33

Figure 1.6: Time abstract data type implementation as a class, (part 3 of
3).

– Only known to function

– Variables with same name as class-scope variables

∗ Class-scope variable hidden ; Access with scope resolution
operator (::)

ClassName::classVariableName

– Variables only known to function they are defined in

– Variables are destroyed after function completion

• Operators to access class members

– Identical to those for structs

– Dot member selection operator (.)

∗ Object

∗ Reference to object

– Arrow member selection operator (− >)

34CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

∗ pointers

1.8 Separating Interface from Implementation

(see Figs 1.8-1.11)

• Separating interface from implementation

– Advantage; Easier to modify programs

– Disadvantage

∗ Header files

∗ Portions of implementation; Inline member functions

∗ Hints about other implementation; private members

∗ Can hide more with proxy class

• Header files

– Class definitions and function prototypes

– Included in each file using class; #include

– File extension .h

• Source-code files

– Member function definitions

– Same base name; Convention

– Compiled and linked

1.9 Controlling Access to Members (see Fig.

1.12)

• Access modes

– private

∗ Default access mode

∗ Accessible to member functions and friends

– public

1.9. CONTROLLING ACCESS TO MEMBERS (SEE FIG. 1.12) 35

Figure 1.7: Demonstrating the class member access operators. and − >

36CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.8: Time class definition

∗ Accessible to any function in program with handle to class
object

∗ protected ; (discuss later)

• Class member access

– Default private

– Explicitly set to private, public, protected

• struct member access

– Default public

– Explicitly set to private, public, protected

• Access to class’s private data

– Controlled with access functions (accessor methods)

∗ Get function; Read private data

∗ Set function; Modify private data

1.9. CONTROLLING ACCESS TO MEMBERS (SEE FIG. 1.12) 37

Figure 1.9: Time class member-function definitions (part 1 of 2).

38CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.10: Time class member-function definitions (part 2 of 2).

1.9. CONTROLLING ACCESS TO MEMBERS (SEE FIG. 1.12) 39

Figure 1.11: Program to test class Time.

40CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.12: private members of a class are not accessible outside the class.

1.10. ACCESS FUNCTIONS AND UTILITY FUNCTIONS 41

Figure 1.13: SalesPerson class definition

1.10 Access Functions and Utility Functions

Not all member functions need be made public to serve as part of the inter-
face of the class.

• Access functions

• public

– Read/display data

– Predicate functions

– Check conditions

– Utility functions (helper functions)

• private

– Support operation of public member functions

– Not intended for direct client use

The program of Figs. 1.13-1.16 demonstarates the notion of a utility function

(also called helper function).

42CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.14: SalesPerson class member-function definitions (part 1 of 2)

1.10. ACCESS FUNCTIONS AND UTILITY FUNCTIONS 43

Figure 1.15: SalesPerson class member-function definitions (part 2 of 2)

44CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.16: Utility function demonstration

1.11. INITIALIZING CLASS OBJECTS: CONSTRUCTORS 45

1.11 Initializing Class Objects: Constructors

• Constructors

– Initialize data members; Or can set later

– Same name as class

– No return type

• Initializers

– Passed as arguments to constructor

– In parentheses to right of class name before semicolon

Class-type ObjectName(value1,value2,...};

The programmer provides the constructor, which is then invoked each
time an object of that class is created (instantiated).

1.12 Using Default Arguments with Construc-

tors

• Constructors

– Can specify default arguments

– Default constructors

– Defaults all arguments

– OR

– Explicitly requires no arguments

– Can be invoked with no arguments

– Only one per class

The program of Figs. 1.17-1.21 enhances class Time to demonstrate how
arguments are implicitly passed to a constructor.

46CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.17: Time class containing a constructor with default arguments.

1.12. USING DEFAULT ARGUMENTS WITH CONSTRUCTORS 47

Figure 1.18: Time class member-function definitions including a constructor
that takes arguments. (part 1 of 2)

48CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.19: Time class member-function definitions including a constructor
that takes arguments. (part 2 of 2)

1.12. USING DEFAULT ARGUMENTS WITH CONSTRUCTORS 49

Figure 1.20: Constructor with default arguments. (part 1 of 2)

50CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.21: Constructor with default arguments. (part 2 of 2)

1.13 Destructors

• Special member function

• Same name as class; Preceded with tilde (˜)

• No arguments

• No return value

• Cannot be overloaded

• Performs ”termination housekeeping”

– Before system reclaims object’s memory; Reuse memory for new
objects

• No explicit destructor; Compiler creates ”empty destructor”

1.14. WHEN CONSTRUCTORS AND DESTRUCTORS ARE CALLED 51

1.14 When Constructors and Destructors Are

Called

• Constructors and destructors; Called implicitly by compiler

• Order of function calls

– Depends on order of execution; When execution enters and exits
scope of objects

– Generally, destructor calls reverse order of constructor calls

• Order of constructor, destructor function calls

– Global scope objects

∗ Constructors; Before any other function (including main)

∗ Destructors

· When main terminates (or exit function called)

· Not called if program terminates with abort

– Automatic local objects

∗ Constructors

· When objects defined; Each time execution enters scope

∗ Destructors

· When objects leave scope; Execution exits block in which
object defined

· Not called if program ends with exit or abort

– static local objects

∗ Constructors

· Exactly once

· When execution reaches point where object defined

∗ Destructors

· When main terminates or exit function called

· Not called if program ends with abort

52CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

The program of Figs. 1.22-1.25 demonstrates the order in which con-
structors and destructors are called for objects of class CreateAndDestroy of
various storage classes in several scopes.

Figure 1.22: CreateAndDestroy class definition.

1.14. WHEN CONSTRUCTORS AND DESTRUCTORS ARE CALLED 53

Figure 1.23: CreateAndDestroy class member-function definitions.

54CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.24: Order in which constructors and destructors are called. (part 1
of 2)

1.14. WHEN CONSTRUCTORS AND DESTRUCTORS ARE CALLED 55

Figure 1.25: Order in which constructors and destructors are called. (part 2
of 2)

56CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

1.15 Using Set and Get Functions

A class’s private data members can be accessed only by member functions
(and friends) of the class. Classes often provide public member functions
to allow clients of the class to set (i.e., write) or get (,.e., read) the values
of private data members. These functions need not be called set and get

specifically, but they often are.

• Set functions

– Perform validity checks before modifying private data

– Notify if invalid values

– Indicate with return values

• Get functions

– ”Query” functions

– Control format of data returned

The program of Figs. 1.26-1.30 enhances class Time to include set and get

functions for the private data members hour, minute, and second.

1.15. USING SET AND GET FUNCTIONS 57

Figure 1.26: Time class definition with set and get functions.

58CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.27: Time class member-function definitions,including set and get

functions. (part 1 of 2)

1.15. USING SET AND GET FUNCTIONS 59

Figure 1.28: Time class member-function definitions,including set and get

functions. (part 2 of 2)

60CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.29: Set and get functions manipulating an object’s private data.
(part 1 of 2)

1.15. USING SET AND GET FUNCTIONS 61

Figure 1.30: Set and get functions manipulating an object’s private data.
(part 2 of 2)

62CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

1.16 Default Memberwise Assignment

The assignment operator (=) can be used to assign an object to another
object of the same type.

• Assigning objects

– Assignment operator (=)

– Can assign one object to another of same type

– Default: memberwise assignment

– Each right member assigned individually to left member

• Passing, returning objects

– Objects passed as function arguments

– Objects returned from functions

– Default: pass-by-value

∗ Copy of object passed, returned

· Copy constructor; Copy original values into new object

Member wise assignment can cause serious problems when used with a class
whose data members contain pointers to dynamically allocated storage.

1.16. DEFAULT MEMBERWISE ASSIGNMENT 63

Figure 1.31: Default memberwise assignment. (part 1 of 2)

64CHAPTER 1. INTRODUCTION, CLASSES AND DATA ABSTRACTION

Figure 1.32: Default memberwise assignment. (part 2 of 2)

1.17 Software Reusability

• Class libraries

– Well-defined

– Carefully tested

– Well-documented

– Portable

– Widely available

• Speeds development of powerful, high-quality software

– Rapid applications development (RAD)

• Resulting problems

– Cataloging schemes

– Licensing schemes

– Protection mechanisms

Chapter 2

Classes Part II

2.1 const (Constant) Objects and const Mem-

ber Functions

Some objects need to be modifiable and some do not. The programmer may
use keyword const to specify that an object is not modifiable and that any
attempt to modify the object should result in a compiler error.

• Principle of least privilege; Only allow modification of necessary objects

• Keyword const

– Specify object not modifiable

– Compiler error if attempt to modify const object

– Example

∗ const Time noon(12, 0, 0);

∗ Declares const object noon of class Time

∗ Initializes to 12

• const member functions

– Member functions for const objects must also be const; Cannot
modify object

– Specify const in both prototype and definition

∗ Prototype; After parameter list

∗ Definition; Before beginning left brace

• Constructors and destructors

65

66 CHAPTER 2. CLASSES PART II

– Cannot be const

– Must be able to modify objects

∗ Constructor; Initializes objects

∗ Destructor; Performs termination housekeeping

The program of Figs. 2.1-2.4 modifies class Time by making its get functions
and printUniversal function const.

• Member initializer syntax

– Initializing with member initializer syntax

∗ Can be used for; All data members

∗ Must be used for

· const data members

· Data members that are references

Figs. 2.4-2.6 introduces using member initializer syntax. Figs. 2.7-2.8 illus-
trates the compiler errors for a program that attempts to initialize const
data member increment with an assignment statement in the Increment
constructor’s body rather than with a member initializer.

2.2. COMPOSITION: OBJECTS AS MEMBERS OF CLASSES 67

2.2 Composition: Objects as Members of Classes

An AlarmClock object needs to know when it is supposed to sound its
alarm, so why not include a Time object as a member of the AlarmClock
class? Such a capability is called composition.

• Composition; Class has objects of other classes as members

• Construction of objects; Member objects constructed in order declared

– Not in order of constructor’s member initializer list

– Constructed before enclosing class objects (host objects)

The program of Figs. 2.9-2.14 uses class Date and class Employee to
demonstrate objects as members of other objects. The colon (:) in the header
separates the member initializers from the parameter list. In Fig. 2.14, when
each of the Employee’s Date member object’s initialized in the Employee
constructor’s member initializer list, the default copy constructor for class
Date is called. This constructor is defined implicitly by the compiler and
does not contain any output statements.

2.3 friend Functions and friend Classes

• friend function

– Defined outside class’s scope

– Right to access non-public members

• Declaring friends

– Function; Precede function prototype with keyword friend

– All member functions of class ClassTwo as friends of class Clas-
sOne

∗ Place declaration of form; friend class ClassTwo;

∗ in ClassOne definition

• Properties of friendship

– Friendship granted, not taken

∗ Class B friend of class A; Class A must explicitly declare
class B friend

68 CHAPTER 2. CLASSES PART II

Figure 2.1: Time class definition with const member functions.

2.3. FRIEND FUNCTIONS AND FRIEND CLASSES 69

Figure 2.2: Time class member-function definitions, including const mem-
ber functions. (part 1 of 2)

70 CHAPTER 2. CLASSES PART II

Figure 2.3: Time class member-function definitions, including const mem-
ber functions. (part 2 of 2)

2.3. FRIEND FUNCTIONS AND FRIEND CLASSES 71

Figure 2.4: const objects and const member functions.

72 CHAPTER 2. CLASSES PART II

Figure 2.5: Member initializer used to initialize a constant of a built-in data
type. (part 1 of 2)

2.3. FRIEND FUNCTIONS AND FRIEND CLASSES 73

Figure 2.6: Member initializer used to initialize a constant of a built-in data
type. (part 2 of 2)

74 CHAPTER 2. CLASSES PART II

Figure 2.7: Erroneous attempt to initialize a constant of a built-in data type
by assignment. (part 1 of 2)

2.3. FRIEND FUNCTIONS AND FRIEND CLASSES 75

Figure 2.8: Erroneous attempt to initialize a constant of a built-in data type
by assignment. (part 2 of 2)

76 CHAPTER 2. CLASSES PART II

Figure 2.9: Date class definition.

2.3. FRIEND FUNCTIONS AND FRIEND CLASSES 77

Figure 2.10: Date class member-function definitions. (part 1 of 2)

78 CHAPTER 2. CLASSES PART II

Figure 2.11: Date class member-function definitions. (part 2 of 2)

2.3. FRIEND FUNCTIONS AND FRIEND CLASSES 79

Figure 2.12: Employee class definition showing composition.

80 CHAPTER 2. CLASSES PART II

Figure 2.13: Employee class member-function definitions,including con-
structor with a member-initializer list.

2.3. FRIEND FUNCTIONS AND FRIEND CLASSES 81

Figure 2.14: Member-object initializers.

82 CHAPTER 2. CLASSES PART II

• Not symmetric

– Class B friend of class A

– Class A not necessarily friend of class B

• Not transitive

– Class A friend of class B

– Class B friend of class C

– Class A not necessarily friend of Class C

The program of Figs. 2.15-2.16 (top) defines friend function setX to set the
private data member x of class Count. Friend declaration can appear any-
where in the class. The program of Figs. 2.16 (bottom) -2.17 demonstrates
the error messages produced by the compiler when nonfriend function can-
notSetX is called to modify private data member x.

2.4 Using the this Pointer

We have seen that an object’s member functions can manipulate the object’s
data. How do member functions know which object’s data members to ma-
nipulate? Every object has access to its own address through a pointer called
this (a C++ keyword).

• Allows object to access own address

• Not part of object itself; Implicit argument to non-static member func-
tion call

• Implicitly reference member data and functions

• Type of this pointer depends on

– Type of object

– Whether member function is const

– In non-const member function of Employee

∗ this has type Employee * const ; Constant pointer to non-
constant Employee object

– In const member function of Employee

∗ this has type const Employee * const ; Constant pointer
to constant Employee object

2.4. USING THE THIS POINTER 83

Figure 2.15: Friends can access private members of the class.

84 CHAPTER 2. CLASSES PART II

Figure 2.16: Nonfriend/nonmember functions cannot access private mem-
bers. (part 1 of 2)

2.4. USING THE THIS POINTER 85

Figure 2.17: Nonfriend/nonmember functions cannot access private mem-
bers. (part 2 of 2)

86 CHAPTER 2. CLASSES PART II

The program of Figs. 2.18-2.19 demonstrates the implicit and explicit
use of the this pointer to enable a member function of class Test
to print the private data x of a Test object. The program of Figs.
2.20-2.24 modifies class Time’s set functions setTime, setHour, set-
Minute and setSecond such that each returns a reference to a Time
object to enable cascaded member-function calls.

• Cascaded member function calls

– Multiple functions invoked in same statement

– Function returns reference pointer to same object; { return *this;
}

• Other functions operate on that pointer

• Functions that do not return references must be called last

2.4. USING THE THIS POINTER 87

Figure 2.18: this pointer implicitly and explicitly used to access an object’s
members. (part 1 of 2)

88 CHAPTER 2. CLASSES PART II

Figure 2.19: this pointer implicitly and explicitly used to access an object’s
members. (part 2 of 2)

2.4. USING THE THIS POINTER 89

Figure 2.20: Time class definition modified to enable cascaded member-
function calls.

90 CHAPTER 2. CLASSES PART II

Figure 2.21: Time class member-function definitions modified to enable cas-
caded member-function calls. (part 1 of 3)

2.4. USING THE THIS POINTER 91

Figure 2.22: Time class member-function definitions modified to enable cas-
caded member-function calls. (part 2 of 3)

92 CHAPTER 2. CLASSES PART II

Figure 2.23: Time class member-function definitions modified to enable cas-
caded member-function calls. (part 3 of 3)

2.4. USING THE THIS POINTER 93

Figure 2.24: Cascading member-function calls.

94 CHAPTER 2. CLASSES PART II

2.5 Dynamic Memory Management with Op-

erators new and delete

• Dynamic memory management

– Control allocation and deallocation of memory

– Operators new and delete

∗ Include standard header <new>; Access to standard version
of new

• new

– Consider

∗ Time *timePtr;

∗ timePtr = new Time;

– new operator

∗ Creates object of proper size for type Time; Error if no space
in memory for object

∗ Calls default constructor for object

∗ Returns pointer of specified type

– Providing initializers

∗ double *ptr = new double(3.14159);

∗ Time *timePtr = new Time(12, 0, 0);

– Allocating arrays; int *gradesArray = new int[10];

• delete

– Destroy dynamically allocated object and free space

– Consider; delete timePtr;

– Operator delete

∗ Calls destructor for object

∗ Deallocates memory associated with object; Memory can be
reused to allocate other objects

– Deallocating arrays

∗ delete [] gradesArray; ; Deallocates array to which grade-
sArray points

∗ If pointer to array of objects

· First calls destructor for each object in array

· Then deallocates memory

2.6. STATIC CLASS MEMBERS 95

2.6 static Class Members

Each object of a class has its own copy of all the data members of the class.
in certain cases, only one copy of a variable should be shared by all objects
of a class.

• static class variable

– ”Class-wide” data; Property of class, not specific object of class

– Efficient when single copy of data is enough; Only the static vari-
able has to be updated

– May seem like global variables, but have class scope; Only acces-
sible to objects of same class

– Initialized exactly once at file scope

– Exist even if no objects of class exist

– Can be public, private or protected

• Accessing static class variables

– Accessible through any object of class

– public static variables

∗ Can also be accessed using binary scope resolution opera-
tor(::)

∗ Employee::count

• private static variables

– When no class member objects exist

∗ Can only be accessed via public static member function

∗ To call public static member function combine class name,
binary scope resolution operator (::) and function name; Em-
ployee::getCount()

• static member functions

– Cannot access non-static data or functions

– No this pointer for static functions; static data members and
static member functions exist independent of objects

The programs of Figs. 2.25-2.28 demonstrates a private static data member
called count and a public static member function called getCount. Figure
2.28 uses function getCount to determine the number of Employee objects
currently instantiated.

96 CHAPTER 2. CLASSES PART II

Figure 2.25: Employee class definition with a static data member to track
the number Employee objects in memory.

2.6. STATIC CLASS MEMBERS 97

Figure 2.26: Employee class member-function definitions. (part 1 of 2)

98 CHAPTER 2. CLASSES PART II

Figure 2.27: Employee class member-function definitions. (part 2 of 2) and
static data member tracking the number of objects of a class. (part 1 of 2)

2.6. STATIC CLASS MEMBERS 99

Figure 2.28: static data member tracking the number of objects of a class.
(part 2 of 2)

100 CHAPTER 2. CLASSES PART II

2.7 Data Abstraction and Information Hid-

ing

• Information hiding

– Classes hide implementation details from clients

– Example: stack data structure

∗ Data elements added (pushed) onto top

∗ Data elements removed (popped) from top

∗ Last-in, first-out (LIFO) data structure

∗ Client only wants LIFO data structure; Does not care how
stack implemented

• Data abstraction; Describe functionality of class independent of im-
plementation

• Abstract data types (ADTs)

– Approximations/models of real-world concepts and behaviors; int,
float are models for a numbers

– Data representation

– Operations allowed on those data

– ADTs receive as much as attention today as structured program-
ming did over the last two decades. (ADTs do not replace struc-
tured programming. rather, they provide an additional formaliza-
tion that can further improve the program-development process.)

• C++ extensible; Standard data types cannot be changed, but new data
types can be created

The job of high-level languages is to create a view convenient for programmers
to use. There is no single accepted standard view-that is one reason why there
are so many programming languages. Object-oriented programming in C++
presents yet another view.

The primary activity in C++ is creating new types (i.e., classes) and
expressing the interactions among objects of those types.

2.7. DATA ABSTRACTION AND INFORMATION HIDING 101

2.7.1 Example: Array Abstract Data Type

An array is not much more than a pointer and some space in memory. Prim-
itive capabilities! There are many operations that would be nice to perform
with arrays, but there are not built-in C++. With C++ classes, the pro-
grammer can develop an array ADT is preferable to ’raw’ arrays. Although
the language is easy to extend with these new types, the base language itself
is not changeable.

• ADT array

– Subscript range checking

– Arbitrary range of subscripts; Instead of having to start with 0

– Array assignment

– Array comparison

– Array input/output

– Arrays that know their sizes

– Arrays that expand dynamically to accommodate more elements

2.7.2 Example: String Abstract Data Type

• Strings in C++

– C++ does not provide built-in string data type; Maximizes per-
formance

– Provides mechanisms for creating and implementing string ab-
stract data type; String ADT (Chapter 8)

– ANSI/ISO standard string class (Chapter 19)

2.7.3 Example: Queue Abstract Data Type

A waiting line is also called a queue.

• Queue

– FIFO; First in, first out

– Enqueue; Put items in queue one at a time

– Dequeue; Remove items from queue one at a time

• Queue ADT

102 CHAPTER 2. CLASSES PART II

– Implementation hidden from clients; Clients may not manipulate
data structure directly

– Only queue member functions can access internal data

– Queue ADT (Chapter 15)

– Standard library queue class (Chapter 20)

The queue ADT guarantees the integrity of its internal data structure. Clients
may not manipulate this data structure directly. Only the queue member
functions have access to its internal data.

2.8 Container Classes and Iterators

• Container classes (collection classes)

– Designed to hold collections of objects

– Common services; Insertion, deletion, searching, sorting, or test-
ing an item

– Examples; Arrays, stacks, queues, trees and linked lists

• Iterator objects (iterators)

– Returns next item of collection; Or performs some action on next
item

– Can have several iterators per container; Book with multiple book-
marks

– Each iterator maintains own ”position”

– Discussed further in Chapter 20

2.9 Proxy Classes

Sometimes, it is desirable to hide the implementation details of a class to
prevent access to proprietary information (including private data) and pro-
prietary program login in a class. Providing clients of your class with a
proxy class that knows only the public interface to your class enables the
clients to use your class’s services without giving the client access to your
class’s implementation details.

• Proxy class

2.9. PROXY CLASSES 103

– Hide implementation details of another class

– Knows only public interface of class being hidden

– Enables clients to use class’s services without giving access to
class’s implementation

• Forward class declaration

– Used when class definition only uses pointer to another class

– Prevents need for including header file

– Declares class before referencing

– Format: class ClassToLoad;

Implementation of a proxy class is demonstrated in Figs. 2.29-2.31.

104 CHAPTER 2. CLASSES PART II

Figure 2.29: Implementation class definition.

2.9. PROXY CLASSES 105

Figure 2.30: Interface class definition.

106 CHAPTER 2. CLASSES PART II

Figure 2.31: Interface class member-function definitions and Implementing
a proxy class.

Chapter 3

Operator Overloading

3.1 Introduction

Manipulations on objects were accomplished by sending messages (in the
form of member-function calls) to the object.

• Use operators with objects (operator overloading)

– Clearer than function calls for certain classes

– Operator sensitive to context

• Examples

– <<; Stream insertion, bitwise left-shift

– +; Performs arithmetic on multiple types (integers, floats, etc.)

3.2 Fundamentals of Operator Overloading

C++ programming is a type-sensitive and type-focused process. Operators
provide programmers with a concise notation for expressing manipulations
of objects of built-in types.

• Types

– Built in (int, char) or user-defined

– Can use existing operators with user-defined types; Cannot create
new operators

• Overloading operators

107

108 CHAPTER 3. OPERATOR OVERLOADING

– Create a function for the class

– Name function operator followed by symbol; Operator+ for the
addition operator +

• Using operators on a class object

– It must be overloaded for that class

∗ Exceptions:

∗ Assignment operator, =; Memberwise assignment between
objects

∗ Address operator, &; Returns address of object

∗ Both can be overloaded

• Overloading provides concise notation

– object2 = object1.add(object2);

– object2 = object2 + object1;

Overloading is especially appropriate for mathematical classes. These often
require that a substantial set of operators be overloaded to ensure consis-
tency with the way these mathematical classes are handled in the real world.
Operator overloading is not automatic, however; the programmer must write
operator-overloading functions to perform the desired operations. Sometimes
these functions are best made member functions; sometimes they are best
as friend functions; occasionally the can be made non-member, non-friend
functions.

3.3 Restrictions on Operator Overloading

Most of C++’s operators can be overloaded.

• Cannot change

– How operators act on built-in data types; i.e., cannot change in-
teger addition

– Precedence of operator (order of evaluation); Use parentheses to
force order-of-operations

– Associativity (left-to-right or right-to-left)

– Number of operands; & is unitary, only acts on one operand

3.4. OPERATOR FUNCTIONS AS CLASS MEMBERS VS. AS FRIEND FUNCTIONS109

• Cannot create new operators

• Operators must be overloaded explicitly; Overloading + does not over-
load +=

3.4 Operator Functions As Class Members

Vs. As Friend Functions

• Operator functions

– Member functions

∗ Use this keyword to implicitly get argument

∗ Gets left operand for binary operators (like +)

∗ Leftmost object must be of same class as operator

– Non member functions

∗ Need parameters for both operands

∗ Can have object of different class than operator

∗ Must be a friend to access private or protected data

– Called when

∗ Left operand of binary operator of same class

∗ Single operand of unitary operator of same class

• Overloaded << operator

– Left operand of type ostream &; Such as cout object in cout
<< classObject

– Similarly, overloaded >> needs istream &

– Thus, both must be non-member functions

• Commutative operators

– May want + to be commutative; So both ”a + b” and ”b + a”
work

– Suppose we have two different classes

– Overloaded operator can only be member function when its class
is on left

∗ HugeIntClass + Long int

110 CHAPTER 3. OPERATOR OVERLOADING

∗ Can be member function

– When other way, need a non-member overload function; Long int
+ HugeIntClass

3.5 Overloading Stream-Insertion and Stream-

Extraction Operators

• << and >>

– Already overloaded to process each built-in type

– Can also process a user-defined class

• Example program

– Class PhoneNumber; Holds a telephone number

– Print out formatted number automatically; (123) 456-7890

The program of Figs. 3.1-3.2 demonstrates overloading the stream-extraction
and stream-insertion operators to handle data of a user-defined telephone
number class called PhoneNumber.

3.6 Overloading Unary Operators

• Overloading unary operators

– Non-static member function, no arguments

– Non-member function, one argument; Argument must be class
object or reference to class object

– Remember, static functions only access static data

3.7. OVERLOADING BINARY OPERATORS 111

Figure 3.1: Overloaded stream-insertion and stream extraction operators.
(part 1 of 2)

• Upcoming example (8.10)

– Overload ! to test for empty string

– If non-static member function, needs no arguments

∗ !s becomes s.operator!()

∗ class String { public: bool operator!() const; . . . };

• If non-member function, needs one argument

– s! becomes operator!(s)

– class String { friend bool operator!(const String &) ...
}

3.7 Overloading Binary Operators

• Overloading binary operators

112 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.2: Overloaded stream-insertion and stream extraction operators.
(part 2 of 2)

3.8. CASE STUDY: ARRAY CLASS 113

– Non-static member function, one argument

– Non-member function, two arguments

– One argument must be class object or reference

• Upcoming example

– If non-static member function, needs one argument

∗ class String {

∗ public:

∗ const String &operator+=(const String &);

∗ ...

∗ };

– y += z equivalent to y.operator+=(z)

3.8 Case Study: Array class

• Arrays in C++

– No range checking

– Cannot be compared meaningfully with ==

– No array assignment (array names const pointers)

– Cannot input/output entire arrays at once; One element at a time

• Example:Implement an Array class with

– Range checking

– Array assignment

– Arrays that know their size

– Outputting/inputting entire arrays with << and >>

– Array comparisons with == and !=

• Copy constructor

– Used whenever copy of object needed

∗ Passing by value (return value or parameter)

∗ Initializing an object with a copy of another; Array newAr-
ray(oldArray);

114 CHAPTER 3. OPERATOR OVERLOADING

∗ newArray copy of oldArray

– Prototype for class Array

∗ Array(const Array &);

∗ Must take reference

· Otherwise, pass by value

· Tries to make copy by calling copy constructor . . .

· Infinite loop

The program of Figs. 3.3-3.11 demonstrates class Array and its overloaded
operators.

3.8. CASE STUDY: ARRAY CLASS 115

Figure 3.3: Array class definition with overloaded operators.

116 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.4: Array class member-and friend-function definitions. (part 1 of
4)

3.8. CASE STUDY: ARRAY CLASS 117

Figure 3.5: Array class member-and friend-function definitions. (part 2 of
4)

118 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.6: Array class member-and friend-function definitions. (part 3 of
4)

3.8. CASE STUDY: ARRAY CLASS 119

Figure 3.7: Overloaded stream-insertion and stream extraction operators.
(part 4 of 2)

120 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.8: Array class test program. (part 1 of 2)

3.8. CASE STUDY: ARRAY CLASS 121

Figure 3.9: Array class test program. (part 2 of 2)

122 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.10: Array class test program, output. (part 1 of 2)

3.8. CASE STUDY: ARRAY CLASS 123

Figure 3.11: Array class test program, output. (part 2 of 2)

124 CHAPTER 3. OPERATOR OVERLOADING

3.9 Converting between Types

Sometimes all the operations ”stay within a type”.

• Casting

– Traditionally, cast integers to floats, etc.

– May need to convert between user-defined types

• Cast operator (conversion operator)

– Convert from

∗ One class to another

∗ Class to built-in type (int, char, etc.)

– Must be non-static member function; Cannot be friend

– Do not specify return type; implicitly returns type to which you
are converting

• Example

– Prototype

∗ A::operator char *() const;

∗ Casts class A to a temporary char *

∗ (char *)s calls s.operator char*()

– Also, overloaded cast-operator functions can be defined for con-
verting objects of user-defined types into built-in types or into
objects of other user-defined types.

∗ A::operator int() const;

∗ A::operator OtherClass() const;

• Casting can prevent need for overloading

– Suppose class String can be cast to char *

– cout << s; // s is a String

∗ Compiler implicitly converts s to char *

∗ Do not have to overload <<

3.10. CASE STUDY: A STRING CLASS 125

3.10 Case Study: A String Class

• Build class String

– To handle String creation, manipulation

– Class string in standard library (more Chapter 15)

• Conversion constructor

– Single-argument constructor

– Turns objects of other types into class objects

∗ String s1(”hi”);

∗ Creates a String from a char *

– Any single-argument constructor is a conversion constructor

The programs of Figs. 3.12-3.21 demonstrates the building of our own String
class to handle the creation and manipulation of strings.

126 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.12: String class definition with operator overloading. (part 1 of 2)

3.10. CASE STUDY: A STRING CLASS 127

Figure 3.13: String class definition with operator overloading. (part 2 of 2)

128 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.14: String class member-function and friend-function definition.
(part 1 of 4)

3.10. CASE STUDY: A STRING CLASS 129

Figure 3.15: String class member-function and friend-function definition.
(part 2 of 4)

130 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.16: String class member-function and friend-function definition.
(part 3 of 4)

3.10. CASE STUDY: A STRING CLASS 131

Figure 3.17: String class member-function and friend-function definition.
(part 4 of 4)

132 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.18: String class test program. (part 1 of 2)

3.10. CASE STUDY: A STRING CLASS 133

Figure 3.19: String class test program. (part 2 of 2)

134 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.20: String class test program, output. (part 1 of 2)

3.11. OVERLOADING ++ AND – 135

Figure 3.21: String class test program, output. (part 2 of 2)

3.11 Overloading ++ and –

• Increment/decrement operators can be overloaded

– Add 1 to a Date object, d1

– Prototype (member function)

∗ Date &operator++();

∗ ++d1 same as d1.operator++()

– Prototype (non-member)

∗ Friend Date &operator++(Date &);

∗ ++d1 same as operator++(d1)

• To distinguish pre/post increment

– Post increment has a dummy parameter; int of 0

– Prototype (member function)

∗ Date operator++(int);

136 CHAPTER 3. OPERATOR OVERLOADING

∗ d1++ same as d1.operator++(0)

– Prototype (non-member)

∗ friend Date operator++(Data &, int);

∗ d1++ same as operator++(d1, 0)

– Integer parameter does not have a name; not even in function
definition

• Return values

– Preincrement

∗ Returns by reference (Date &)

∗ lvalue (can be assigned)

– Postincrement

∗ Returns by value

∗ Returns temporary object with old value

∗ rvalue (cannot be on left side of assignment)

• Decrement operator analogous

3.12 Case Study: A Date Class

• Example Date class. The class uses overloaded preincrement and postin-
crement operators to add 1 to the day in a Date object, while causing
appropriate increments to the month and year if necessary.

– Overloaded increment operator; Change day, month and year

– Overloaded += operator

– Function to test for leap years

– Function to determine if day is last of month

3.12. CASE STUDY: A DATE CLASS 137

Figure 3.22: Date class definition with overloaded increment operator.

138 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.23: Date class member-and friend-function definition. (part 1 of
3)

3.12. CASE STUDY: A DATE CLASS 139

Figure 3.24: Date class member-and friend-function definition. (part 2 of
3)

140 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.25: Date class member-and friend-function definition. (part 3 of
3)

3.12. CASE STUDY: A DATE CLASS 141

Figure 3.26: Date class test program.

142 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.27: Date class test program, output.

3.13 Standard Library Classes string and vec-

tor

We learned that we can build a String (Array) class that is better than the
C-style, char * strings (pointer-based arrays) that C++ absorbed from C.

• Classes built into C++

– Available for anyone to use

– string ; Similar to our String class

– vector; Dynamically resizable array

• Redo our String and Array examples

– Use string and vector

• Class string

– Header <string>, namespace std

3.13. STANDARD LIBRARY CLASSES STRING AND VECTOR 143

– Can initialize string s1(”hi”);

– Overloaded <<; cout << s1

– Overloaded relational operators; == != >= > <= <

– Assignment operator =

– Concatenation (overloaded +=)

– Substring function substr

∗ s1.substr(0, 14); ; Starts at location 0, gets 14 characters

∗ S1.substr(15) ; Substring beginning at location 15

– Overloaded []

∗ Access one character

∗ No range checking (if subscript invalid)

– at function

∗ s1.at(10)

∗ Character at subscript 10

∗ Has bounds checking; will end program if invalid (learn more
in Chapter 13)

The programs of Figs. 3.28-3.30 reimplements the program of Figs. 3.18-3.21,
using standart class string.

144 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.28: Standart library class string (part 1 of 2).

3.13. STANDARD LIBRARY CLASSES STRING AND VECTOR 145

Figure 3.29: Standart library class string (part 2 of 2).

146 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.30: Standart library class string, output.

3.13. STANDARD LIBRARY CLASSES STRING AND VECTOR 147

• Class vector

– Header <vector>, namespace std

– Store any type; vector< int > myArray(10)

– Function size (myArray.size())

– Overloaded []; get specific element, myArray[3]

– Overloaded !=, ==, and =; inequality, equality, assignment

The programs of Figs. 3.31-3.34 reimplements the program of Figs. 3.8-3.11,
using standart class vector.

148 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.31: Standart library class vector. (part 1 of 3)

3.13. STANDARD LIBRARY CLASSES STRING AND VECTOR 149

Figure 3.32: Standart library class vector. (part 2 of 3)

150 CHAPTER 3. OPERATOR OVERLOADING

Figure 3.33: Standart library class vector. (part 3 of 3)

3.13. STANDARD LIBRARY CLASSES STRING AND VECTOR 151

Figure 3.34: Standart library class vector, output.

152 CHAPTER 3. OPERATOR OVERLOADING

Chapter 4

Object-Oriented Programming:
Inheritance

4.1 Introduction

• Inheritance

– Software reusability

– Create new class from existing class

∗ Absorb existing class’s data and behaviors

∗ Enhance with new capabilities

– Derived class inherits from base class

∗ Derived class

· More specialized group of objects

· Behaviors inherited from base class; can customize

· Additional behaviors

• Class hierarchy

– Direct base class; inherited explicitly (one level up hierarchy)

– Indirect base class; inherited two or more levels up hierarchy

– Single inheritance; inherits from one base class

– Multiple inheritance; Inherits from multiple base classes (Base
classes possibly unrelated); Chapter 22

• Three types of inheritance

– public

153

154CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

∗ Every object of derived class also object of base class

· Base-class objects not objects of derived classes

· Example: All cars vehicles, but not all vehicles cars

∗ Can access non-private members of base class

· Derived class can effect change to private base-class mem-
bers

· Through inherited non-private member functions

– private

∗ Alternative to composition

∗ Chapter 17

– protected

∗ Rarely used

• Abstraction

– Focus on commonalities among objects in system; ”is-a” vs. ”has-
a”

– ”is-a”

∗ Inheritance

∗ Derived class object treated as base class object

∗ Example: Car is a vehicle; Vehicle properties/behaviors also
car properties/behaviors

– ”has-a”

∗ Composition

∗ Object contains one or more objects of other classes as mem-
bers

∗ Example: Car has a steering wheel

4.2 Base Classes and Derived Classes

• Base classes and derived classes

– Object of one class ”is an” object of another class

∗ Example: Rectangle is quadrilateral.

· Class Rectangle inherits from class Quadrilateral

· Quadrilateral: base class

4.2. BASE CLASSES AND DERIVED CLASSES 155

· Rectangle: derived class

– Base class typically represents larger set of objects than derived
classes

∗ Example:

· Base class: Vehicle
Cars, trucks, boats, bicycles, . . .

· Derived class: Car
Smaller, more-specific subset of vehicles

• Inheritance examples (see Fig. 4.1)

Figure 4.1: Inheritance examples

• Inheritance hierarchy (see Fig. 4.2 Top)

– Inheritance relationships: tree-like hierarchy structure

– Each class becomes

∗ Base class; supply data/behaviors to other classes

∗ OR

156CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.2: Inheritance hierarchy for university CommunityMembers and
Inheritance hierarchy for Shapes

4.3. PROTECTED MEMBERS 157

∗ Derived class; inherit data/behaviors from other classes

• public inheritance

– Specify with:

– Class TwoDimensionalShape : public Shape
Class TwoDimensionalShape inherits from class Shape (see
Fig. 4.2 Bottom)

– Base class private members

∗ Not accessible directly

∗ Still inherited; manipulate through inherited member func-
tions

– Base class public and protected members; inherited with origi-
nal member access

– friend functions; not inherited

4.3 protected Members

Protected access

• Intermediate level of protection between public and private

• protected members accessible to

– Base class members

– Base class friends

– Derived class members

– Derived class friends

• Derived-class members

– Refer to public and protected members of base class; simply use
member names

4.4 Relationship between Base Classes and

Derived Classes

• Base class and derived class relationship

158CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.3: Point class header file

• Example: Point/circle inheritance hierarchy

– Point
x-y coordinate pair

– Circle
x-y coordinate pair
Radius

• Using protected data members

– Advantages

4.4. RELATIONSHIP BETWEEN BASE CLASSES AND DERIVED CLASSES159

Figure 4.4: Point class represents an xy-coordinate pair. (part 1 of 2)

160CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.5: Point class represents an xy-coordinate pair. (part 2 of 2)

4.4. RELATIONSHIP BETWEEN BASE CLASSES AND DERIVED CLASSES161

Figure 4.6: Point class test program.

162CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

4.4.1 Creating a Circle class without using inheritance

Figure 4.7: Circle class header file.

4.4. RELATIONSHIP BETWEEN BASE CLASSES AND DERIVED CLASSES163

Figure 4.8: Circle class contains an xy-coordinate pair and a radius. (part
1 of 2)

164CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.9: Circle class contains an xy-coordinate pair and a radius. (part
2 of 2)

4.4. RELATIONSHIP BETWEEN BASE CLASSES AND DERIVED CLASSES165

Figure 4.10: Circle class test program. (part 1 of 2)

166CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

4.4.2 Point/Circle Hierarchy using Inheritance

Figure 4.11: Circle class test program. (part 2 of 2) and Circle2 class
header file. (part 1 of 2)

4.4. RELATIONSHIP BETWEEN BASE CLASSES AND DERIVED CLASSES167

Figure 4.12: Circle2 class header file (part 2 of 2) and Private base-class
data can not be accessed from derived class. (part 1 of 2)

168CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.13: Private base-class data can not be accessed from derived class.
(part 2 of 2)

4.4. RELATIONSHIP BETWEEN BASE CLASSES AND DERIVED CLASSES169

4.4.3 Point/Circle Hierarchy using protected data

Figure 4.14: Point2 class header file.

170CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.15: Point2 class represents an xy-coordinate pair as protected
data.

4.4. RELATIONSHIP BETWEEN BASE CLASSES AND DERIVED CLASSES171

Figure 4.16: Circle3 class header file.

172CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.17: Circle3 class that inherits from class Point2.

4.4. RELATIONSHIP BETWEEN BASE CLASSES AND DERIVED CLASSES173

Figure 4.18: Protected base-class data can be accessed from derived class.
(part 1 of 2)

174CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.19: Protected base-class data can be accessed from derived class.
(part 2 of 2)

4.4. RELATIONSHIP BETWEEN BASE CLASSES AND DERIVED CLASSES175

∗ Derived classes can modify values directly

∗ Slight increase in performance; avoid set/get function call
overhead

– Disadvantages

∗ No validity checking; derived class can assign illegal value

∗ Implementation dependent

· Derived class member functions more likely dependent on
base class implementation

· Base class implementation changes may result in derived
class modifications; fragile (brittle) software

176CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

4.4.4 Point/Circle Hierarchy using private data

Class Point3 (Figs. 4.20-4.21) declares data members x and y as private
and exposes member functions setX, getX, setY, getY and print for
manipulating these values.

4.5 Case Study: Three-Level Inheritance Hi-

erarchy

Three level point/circle/cylinder hierarchy

• Point

– x-y coordinate pair

• Circle

– x-y coordinate pair

– Radius

• Cylinder

– x-y coordinate pair

– Radius

– Height

Derive class Cylinder from class Circle4. Class Cylinder should redefine
member functions getArea and print member functions. Figs. 4.26-4.27
present class Cylinder, which inherits from class Circle4. We were able to
develop classes Circle4 and Cylinder much more quickly by using inheritance
than if we had developed these classes ”from scratch”. Inheritance avoids
duplicating code and the associated code-maintenance problems.

4.5. CASE STUDY: THREE-LEVEL INHERITANCE HIERARCHY 177

Figure 4.20: Point3 class header file. Point/Circle Hierarchy Using private
Data

178CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.21: Point3 class uses member functions to manipulate its private
data.

4.5. CASE STUDY: THREE-LEVEL INHERITANCE HIERARCHY 179

Figure 4.22: Circle4 class header file.

180CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.23: Circle4 class that inherits from class Point3, which does not
provide protected data. (part 1 of 2)

4.5. CASE STUDY: THREE-LEVEL INHERITANCE HIERARCHY 181

Figure 4.24: Circle4 class that inherits from class Point3, which does not
provide protected data. (part 2 of 2)

182CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.25: Base class private data is accessible to a derived class via
public or protected member function inherited by the derived class.

4.5. CASE STUDY: THREE-LEVEL INHERITANCE HIERARCHY 183

Figure 4.26: Cylinder class header file.

184CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.27: Cylinder class inherits from class Circle4 and redefines mem-
ber function getArea.

4.5. CASE STUDY: THREE-LEVEL INHERITANCE HIERARCHY 185

Figure 4.28: Point/Circle/Cylinder hierarchy test program. (part 1 of 2)

186CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.29: Point/Circle/Cylinder hierarchy test program. (part 2 of 2)

4.6 Constructors and Destructors in Derived

Classes

• Instantiating derived-class object

– Chain of constructor calls

∗ Derived-class constructor invokes base class constructor

· Implicitly or explicitly

∗ Base of inheritance hierarchy

· Last constructor called in chain

· First constructor body to finish executing

· Example: Point3/Circle4/Cylinder hierarchy
Point3 constructor called last
Point3 constructor body finishes execution first

∗ Initializing data members

· Each base-class constructor initializes data members
Inherited by derived class

4.6. CONSTRUCTORS AND DESTRUCTORS IN DERIVED CLASSES187

• Destroying derived-class object

– Chain of destructor calls

∗ Reverse order of constructor chain

∗ Destructor of derived-class called first

∗ Destructor of next base class up hierarchy next

· Continue up hierarchy until final base reached; After final
base-class destructor, object removed from memory

• Base-class constructors, destructors, assignment operators

– Not inherited by derived classes

– Derived class constructors, assignment operators can call

∗ Constructors

∗ Assignment operators

Next example revisits the point/circle hierarchy by defining class Point4
(4.30-4.31) and class Circle5 (4.32-4.34) that contain constructors and de-
structors, each of which prints a message when it is invoked.

188CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

4.7 ”Uses A” and ”Knows A” Relationships

• ”Uses a”

– Object uses another object

∗ Call non-private member function; using pointer, reference
or object name

• ”Knows a” (association)

– Object aware of another object; contain pointer handle or refer-
ence handle

– Knowledge networks

4.8 public, protected and private Inheritance

4.9 Software Engineering with Inheritance

Customizing existing software

• Inherit from existing classes

– Include additional members

– Redefine base-class members

– No direct access to base class’s source code; Link to object code

• Independent software vendors (ISVs)

– Develop proprietary code for sale/license; available in object-code
format

– Users derive new classes; without accessing ISV proprietary source
code

4.9. SOFTWARE ENGINEERING WITH INHERITANCE 189

Figure 4.30: Point4 class header file and Point4 base class contains a con-
structor and a destructor. (part 1 of 2)

190CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.31: Point4 base class contains a constructor and a destructor. (part
2of 2)

4.9. SOFTWARE ENGINEERING WITH INHERITANCE 191

Figure 4.32: Circle5 class header file.

192CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.33: Circle5 class inherits from class Point4. (part 1 of 2)

4.9. SOFTWARE ENGINEERING WITH INHERITANCE 193

Figure 4.34: Circle5 class inherits from class Point4. (part 2 of 2)

194CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Figure 4.35: Constructor and destructor call order.

4.9. SOFTWARE ENGINEERING WITH INHERITANCE 195

Figure 4.36: Summary of base–class member accessibility in a derived class.

196CHAPTER 4. OBJECT-ORIENTED PROGRAMMING: INHERITANCE

Chapter 5

Object-Oriented Programming:
Polymorphism

5.1 Introduction

• Polymorphism

– ”Program in the general”

– Treat objects in same class hierarchy as if all base class

– Virtual functions and dynamic binding; will explain how polymor-
phism works

– Makes programs extensible; new classes added easily, can still be
processed

• In our examples

– Use abstract base class Shape

∗ Defines common interface (functionality)

∗ Point, Circle and Cylinder inherit from Shape

– Class Employee for a natural example

5.2 Relationships Among Objects in an In-

heritance Hierarchy

• Previously (Section 9.4),

– Circle inherited from Point

197

198CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

– Manipulated Point and Circle objects using member functions

• Now

– Invoke functions using base-class/derived-class pointers

– Introduce virtual functions

• Key concept

– Derived-class object can be treated as base-class object

∗ ”is-a” relationship

∗ Base class is not a derived class object

5.2.1 Invoking Base-Class Functions from Derived-Class
Objects

Aim pointers (base, derived) at objects (base, derived)

• Base pointer aimed at base object

• Derived pointer aimed at derived object; both straightforward

• Base pointer aimed at derived object

– ”is a” relationship; Circle ”is a” Point

– Will invoke base class functions

• Function call depends on the class of the pointer/handle

– Does not depend on object to which it points

– With virtual functions, this can be changed (more later)

5.2.2 Aiming Derived-Class Pointers at Base-Class Ob-

jects

• Previous example

– Aimed base-class pointer at derived object; Circle ”is a” Point

• Aim a derived-class pointer at a base-class object

– Compiler error

5.2. RELATIONSHIPS AMONG OBJECTS IN AN INHERITANCE HIERARCHY199

Figure 5.1: Point class header file.

∗ No ”is a” relationship

∗ Point is not a Circle

∗ Circle has data/functions that Point does not

· setRadius (defined in Circle) not defined in Point

– Can cast base-object”s address to derived-class pointer

∗ Called downcasting (more in 10.9)

∗ Allows derived-class functionality

5.2.3 Derived-Class Member-Function Calls via Base-
Class Pointers

• Handle (pointer/reference)

– Base-pointer can aim at derived-object; but can only call base-
class functions

– Calling derived-class functions is a compiler error; functions not
defined in base-class

200CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.2: Point class represents an xy-coordinate pair.

5.2. RELATIONSHIPS AMONG OBJECTS IN AN INHERITANCE HIERARCHY201

Figure 5.3: Circle class header file.

202CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.4: Circle class that inherits from class Point.

5.2. RELATIONSHIPS AMONG OBJECTS IN AN INHERITANCE HIERARCHY203

Figure 5.5: Assigning addresses of base-class and derived-class objects to
base-class and derived-class pointers. (part 1 of 2)

204CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.6: Assigning addresses of base-class and derived-class objects to
base-class and derived-class pointers. (part 2 of 2)

5.2. RELATIONSHIPS AMONG OBJECTS IN AN INHERITANCE HIERARCHY205

Figure 5.7: Aiming a derived-class pointer at a base-class object.

• Common theme

– Data type of pointer/reference determines functions it can call

5.2.4 Virtual Functions

• Typically, pointer-class determines functions

• virtual functions; object (not pointer) determines function called

• Why useful?

– Suppose Circle, Triangle, Rectangle derived from Shape; each
has own draw function

– To draw any shape

206CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

∗ Have base class Shape pointer, call draw

∗ Program determines proper draw function at run time (dy-
namically)

∗ Treat all shapes generically

• Declare draw as virtual in base class

– Override draw in each derived class; like redefining, but new func-
tion must have same signature

– If function declared virtual, can only be overridden

∗ virtual void draw() const;

∗ Once declared virtual, virtual in all derived classes; good
practice to explicitly declare virtual

• Dynamic binding

– Choose proper function to call at run time

– Only occurs off pointer handles; if function called from object,
uses that object”s definition

• Example

– Redo Point, Circle example with virtual functions

– Base-class pointer to derived-class object; will call derived-class
function

• Polymorphism

– Same message, ”print”, given to many objects; all through a base
pointer

– Message takes on ”many forms”

• Summary

– Base-pointer to base-object, derived-pointer to derived; straight-
forward

– Base-pointer to derived object; can only call base-class functions

– Derived-pointer to base-object

∗ Compiler error

∗ Allowed if explicit cast made (more in section 10.9)

5.3. POLYMORPHISM EXAMPLES 207

5.3 Polymorphism Examples

• Suppose Rectangle derives from Quadrilateral

– Rectangle more specific Quadrilateral

– Any operation on Quadrilateral can be done on Rectangle (i.e.,
perimeter, area)

• Suppose designing video game

– Base class SpaceObject

∗ Derived Martian, SpaceShip, LaserBeam

∗ Base function draw

– To refresh screen

∗ Screen manager has vector of base-class pointers to objects

∗ Send draw message to each object

∗ Same message has ”many forms” of results

5.4 Type Fields and switch Structures

• One way to determine object’s class

– Give base class an attribute; shapeType in class Shape

– Use switch to call proper print function

• Many problems

– May forget to test for case in switch

– If add/remove a class, must update switch structures; Time con-
suming and error prone

• Better to use polymorphism

– Less branching logic, simpler programs, less debugging

5.5 Abstract Classes

• Abstract classes

– Sole purpose: to be a base class (called abstract base classes)

208CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

– Incomplete; derived classes fill in “missing pieces”

– Cannot make objects from abstract class; however, can have point-
ers and references

• Concrete classes

– Can instantiate objects

– Implement all functions they define

– Provide specifics

• Abstract classes not required, but helpful

• To make a class abstract

– Need one or more “pure” virtual functions

∗ Declare function with initializer of 0

∗ virtual void draw() const = 0;

– Regular virtual functions; have implementations, overriding is op-
tional

– Pure virtual functions; no implementation, must be overridden

– Abstract classes can have data and concrete functions; required
to have one or more pure virtual functions

• Abstract base class pointers; useful for polymorphism

• Application example

– Abstract class Shape; defines draw as pure virtual function

– Circle, Triangle, Rectangle derived from Shape; each must
implement draw

– Screen manager knows that each object can draw itself

• Iterators (more Chapter 21)

– Walk through elements in vector/array

– Use base-class pointer to send draw message to each

5.5. ABSTRACT CLASSES 209

Figure 5.8: Attempting to invoke derived-class-only functions via a base-class
pointer. (part 1 of 2)

210CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.9: Attempting to invoke derived-class-only functions via a base-class
pointer. (part 2 of 2)

5.5. ABSTRACT CLASSES 211

Figure 5.10: Point class header file declares print function as virtual (up-
per) and Circle class header file declares print function as virtual.

212CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.11: Demonstrating polymorphism by invoking a derived-class virtual
function via a base-class pointer to a derived-class object. (part 1 of 2)

5.5. ABSTRACT CLASSES 213

Figure 5.12: Demonstrating polymorphism by invoking a derived-class virtual
function via a base-class pointer to a derived-class object. (part 2 of 2)

214CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

5.6 Case Study: Inheriting Interface and Im-

plementation

Make abstract base class Shape

• Pure virtual functions (must be implemented)

– getName, print

– Default implementation does not make sense

• Virtual functions (may be redefined)

– getArea, getVolume; initially return 0.0

– If not redefined, uses base class definition

• Derive classes Point, Circle, Cylinder

Figure 5.13: Defining the polymorphic interface for the Shape hierarchy
classes.

5.6. CASE STUDY: INHERITING INTERFACE AND IMPLEMENTATION215

Figure 5.14: Abstract base class Shape header file and Abstract base class
Shape.

216CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.15: Point class header file.

5.6. CASE STUDY: INHERITING INTERFACE AND IMPLEMENTATION217

Figure 5.16: Point class implementation file. (part 1 of 2)

218CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.17: Point class implementation file. (part 2 of 2)

5.6. CASE STUDY: INHERITING INTERFACE AND IMPLEMENTATION219

Figure 5.18: Circle class header file and Circle class that inherits from class
Point. (part 1 of 2)

220CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.19: Circle class that inherits from class Point. (part 2 of 2)

5.6. CASE STUDY: INHERITING INTERFACE AND IMPLEMENTATION221

Figure 5.20: Cylinder class header file.

222CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.21: Cylinder class implementation file. (part 1 of 2)

5.6. CASE STUDY: INHERITING INTERFACE AND IMPLEMENTATION223

Figure 5.22: Cylinder class implementation file. (part 2 of 2)

224CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.23: Demonstarting polymorphism via a hierarchy headed by an
abstract base class. (part 1 of 3)

5.6. CASE STUDY: INHERITING INTERFACE AND IMPLEMENTATION225

Figure 5.24: Demonstarting polymorphism via a hierarchy headed by an
abstract base class. (part 2 of 3)

226CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.25: Demonstarting polymorphism via a hierarchy headed by an
abstract base class. (part 3 of 3)

5.7. POLYMORPHISM, VIRTUAL FUNCTIONS AND DYNAMIC BINDING ”UNDER THE HOOD”227

5.7 Polymorphism, Virtual Functions and Dy-

namic Binding ”Under the Hood”

• Polymorphism has overhead

– Not used in STL (Standard Template Library) to optimize per-
formance

• virtual function table (vtable)

– Every class with a virtual function has a vtable

– For every virtual function, vtable has pointer to the proper func-
tion

– If derived class has same function as base class; function pointer
aims at base-class function

– Detailed explanation in Fig. 10.21 (in book) (will not be covered)

5.8 Virtual Destructors

• Base class pointer to derived object; if destroyed using delete, behavior
unspecified

• Simple fix

– Declare base-class destructor virtual; makes derived-class destruc-
tors virtual

– Now, when delete used appropriate destructor called

• When derived-class object destroyed

– Derived-class destructor executes first

– Base-class destructor executes afterwards

• Constructors cannot be virtual

5.9 Case Study: Payroll System Using Poly-

morphism

• Base class Employee

228CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

– Pure virtual function earnings (returns pay)

∗ Pure virtual because need to know employee type

∗ Cannot calculate for generic employee

– Other classes derive from Employee

Figure 5.26: Class hierarchy for the polymorphic employee-payroll applica-
tion.

• Downcasting

– dynamic cast operator

∗ Determine object’s type at runtime

∗ Returns 0 if not of proper type (cannot be cast)

∗ NewClass *ptr = dynamic cast ¡ NewClass *¿ ob-
jectPtr;

• Keyword typeid

– Header ¡typeinfo¿

– Usage: typeid(object)

∗ Returns type info object

∗ Has information about type of operand, including name

∗ typeid(object).name()

5.9. CASE STUDY: PAYROLL SYSTEM USING POLYMORPHISM 229

Figure 5.27: Employee class header file.

230CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.28: Employee class implementation file. (part 1 of 2)

5.9. CASE STUDY: PAYROLL SYSTEM USING POLYMORPHISM 231

Figure 5.29: Employee class implementation file (part 2 of 2) and
SalariedEmployee class header file.

232CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.30: SalariedEmployee class implementation file.

5.9. CASE STUDY: PAYROLL SYSTEM USING POLYMORPHISM 233

Figure 5.31: HourlyEmployee class header file.

234CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.32: HourlyEmployee class implementation file.

5.9. CASE STUDY: PAYROLL SYSTEM USING POLYMORPHISM 235

Figure 5.33: CommissionEmployee class header file.

236CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.34: CommissionEmployee class implementation file.

5.9. CASE STUDY: PAYROLL SYSTEM USING POLYMORPHISM 237

Figure 5.35: BasePlusCommissionEmployee class header file.

238CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.36: BasePlusCommissionEmployee class implementation file.

5.9. CASE STUDY: PAYROLL SYSTEM USING POLYMORPHISM 239

Figure 5.37: Employee class hierarchy driver program.(part 1 of 2)

240CHAPTER 5. OBJECT-ORIENTED PROGRAMMING: POLYMORPHISM

Figure 5.38: Employee class hierarchy driver program.(part 2 of 2)

5.10. VITA 241

5.10 vita

Cem Özdoğan was born in Merzifon, Amasya on October 23, 1969. He
received his B.S. degree in Physics from the Middle East Technical University
in June 1994. He received his M.S. degree in Physics from the Middle East
Technical University in June 1996. He received his Ph.D. degree in Physics
from the Middle East Technical University in June 2002. He worked as a
research assistant from 1994 to 2001 in the department of physics, Kırıkkale
University and Middle East Technical University and as instructor in the
department of computer engineering, Çankaya University from 2001 to 2002.
He is currently employed as Assist. Prof. in the department of computer
engineering, Çankaya University. His main areas of interest are electronic
structure calculations, parallel computing and scientific computing.

	Introduction, Classes and Data Abstraction
	History: The Rise and Decline of Structured Programming
	The Problem - Complexity

	Object-Oriented Programming (OOP)
	Encapsulation
	Inheritance
	Polymorphism
	Advantages of OOP
	OOP Terminology
	Other Object-Oriented Languages

	Structure Definitions
	Accessing Structure Members
	Implementing a User-Defined Type Time with a struct
	Implementing a Time Abstract Data Type with a class
	Class Scope and Accessing Class Members
	Separating Interface from Implementation (see Figs 1.8-1.11)
	Controlling Access to Members (see Fig. 1.12)
	Access Functions and Utility Functions
	Initializing Class Objects: Constructors
	Using Default Arguments with Constructors
	Destructors
	When Constructors and Destructors Are Called
	Using Set and Get Functions
	Default Memberwise Assignment
	Software Reusability

	Classes Part II
	 const (Constant) Objects and const Member Functions
	Composition: Objects as Members of Classes
	friend Functions and friend Classes
	Using the this Pointer
	 Dynamic Memory Management with Operators new and delete
	static Class Members
	Data Abstraction and Information Hiding
	Example: Array Abstract Data Type
	Example: String Abstract Data Type
	Example: Queue Abstract Data Type

	 Container Classes and Iterators
	Proxy Classes

	Operator Overloading
	Introduction
	Fundamentals of Operator Overloading
	Restrictions on Operator Overloading
	Operator Functions As Class Members Vs. As Friend Functions
	Overloading Stream-Insertion and Stream-Extraction Operators
	Overloading Unary Operators
	Overloading Binary Operators
	Case Study: Array class
	Converting between Types
	Case Study: A String Class
	Overloading ++ and --
	Case Study: A Date Class
	Standard Library Classes string and vector

	Object-Oriented Programming: Inheritance
	Introduction
	Base Classes and Derived Classes
	 protected Members
	Relationship between Base Classes and Derived Classes
	Creating a Circle class without using inheritance
	Point/Circle Hierarchy using Inheritance
	Point/Circle Hierarchy using protected data
	Point/Circle Hierarchy using private data

	Case Study: Three-Level Inheritance Hierarchy
	Constructors and Destructors in Derived Classes
	 "Uses A" and "Knows A" Relationships
	 public, protected and private Inheritance
	Software Engineering with Inheritance

	Object-Oriented Programming: Polymorphism
	Introduction
	Relationships Among Objects in an Inheritance Hierarchy
	Invoking Base-Class Functions from Derived-Class Objects
	Aiming Derived-Class Pointers at Base-Class Objects
	Derived-Class Member-Function Calls via Base-Class Pointers
	Virtual Functions

	Polymorphism Examples
	Type Fields and switch Structures
	Abstract Classes
	Case Study: Inheriting Interface and Implementation
	Polymorphism, Virtual Functions and Dynamic Binding "Under the Hood"
	Virtual Destructors
	Case Study: Payroll System Using Polymorphism
	vita

