
Programming Shared
Memory IV

Dr. Cem Özdo ğan
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10.3

Controlling Thread and Synchronization Attributes I

• Threads and synchronization variables can have several
attributes associated with them.

• Different threads may be scheduled differently (round-robin,
prioritized, etc.),

• They may have different stack sizes, and so on.
• A synchronization variable such as a mutex-lock may be of

different types.

• An attributes object is a data-structure that describes
entity (thread, mutex, condition variable) properties.

• When creating a thread or a synchronization variable, we
can specify the attributes object that determines the
properties of the entity.

• Pthreads allows the user to change the priority of the
thread.

• Subsequent changes to attributes objects do not change
the properties of entities created using the attributes
object prior to the change.
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10.4

Controlling Thread and Synchronization Attributes II

• There are several advantages of using attributes objects.
1 It separates the issues of program semantics and

implementation.
• Thread properties are specified by the user.
• How these are implemented at the system level is

transparent to the user.
• This allows for greater portability across operating systems.

2 Using attributes objects improves
modularity and readability of the programs.

3 It allows the user to modify the program easily.
• For instance, if the user wanted to change the scheduling

from round robin to time-sliced for all threads,
• they would only need to change the specific attribute in the

attributes object.

• To create an attributes object with the desired properties,

• we must first create an object with default properties and
then modify the object as required.
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10.5

Attributes Objects for Threads I

• pthread_attr_init ;

• This function initializes the attributes object attr to the
default values.

• Upon successful completion, the function returns a 0,
otherwise it returns an error code.

• The attributes object may be destroyed.

• pthread_attr_destroy ;

• The call returns a 0 on successful removal of the attributes
object attr.
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10.6

Attributes Objects for Threads II

• Individual properties associated with the attributes object
can be changed using the following functions:

• pthread_attr_setdetachstate =⇒ to set the detach state

• pthread_attr_setguardsize_np =⇒ to set the stack
guard size

• pthread_attr_setstacksize =⇒ to set the stack size

• pthread_attr_setstackaddr =⇒ to set the stack address

• pthread_attr_setinheritsched =⇒ to set whether
scheduling policy is inherited from the creating thread

• pthread_attr_setschedpolicy =⇒ to set the scheduling
policy (in case it is not inherited)

• pthread_attr_setschedparam =⇒ to set the scheduling
parameters

• pthread_attr_setprio =⇒ to set the priority

• pthread_attr_default, pthread_attr_init
• For most parallel programs,

default thread properties are generally adequate.
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10.7

Composite Synchronization Constructs I

• While the Pthreads API provides a basic set of
synchronization constructs , often, there is a need for
higher level constructs.

• These higher level constructs can be built using basic
synchronization constructs.

• An important and often used construct in threaded (as well
as other parallel) programs is a barrier.

• A barrier call is used to hold a thread until all other threads
participating in the barrier have reached the barrier.

• Barriers can be implemented using a counter, a mutex and
a condition variable.

• A single integer is used to keep track of the number of
threads that have reached the barrier.

• If the count is less than the total number of threads, the
threads execute a condition wait.

• The last thread entering (and setting the count to the
number of threads) wakes up all the threads using a
condition broadcast.
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10.8

Composite Synchronization Constructs II

The code for accomplishing this is as follows:
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10.9

Composite Synchronization Constructs III

• In the above implementation of a barrier, threads enter the
barrier and stay until the broadcast signal releases them.

• The threads are released one by one since the mutex
count_lock is passed among them one after the other.

• The trivial lower bound on execution time of this function is
therefore O(n) for n threads.

• This implementation of a barrier can be speeded up using
multiple barrier variables.
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10.10

Tips for Designing Asynchronous Programs I

• When designing multithreaded applications, it is important
to remember that one cannot assume any order of
execution with respect to other threads.

• Any such order must be explicitly established using the
synchronization mechanisms discussed above: mutexes,
condition variables, and joins.

• In many thread libraries, threads are switched at
semi-deterministic intervals.

• Such libraries ( slightly asynchronous libraries) are more
forgiving of synchronization errors in programs.

• On the other hand, kernel threads (threads supported by
the kernel) and threads scheduled on multiple processors
are less forgiving.

• The programmer must therefore not make any
assumptions regarding the level of asynchrony in the
threads library.
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10.11

Tips for Designing Asynchronous Programs II

• The following rules of thumb which help minimize the
errors in threaded programs are recommended.

• Set up all the requirements for a thread before actually
creating the thread. This includes

• initializing the data,
• setting thread attributes,
• thread priorities,
• mutex-attributes, etc.

• Once you create a thread, it is possible that the newly
created thread actually runs to completion before the
creating thread gets scheduled again.
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Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.12

Tips for Designing Asynchronous Programs III

• When there is a producer-consumer relation between two
threads for certain data items,

• At the producer end, make sure the data is placed before it
is consumed and that intermediate buffers are guaranteed
to not overflow.

• At the consumer end, make sure that the data lasts at least
until all potential consumers have consumed the data.

• This is particularly relevant for stack variables.

• Where possible, define and use group synchronizations
and data replication.

• This can improve program performance significantly.

• While these simple tips provide guidelines for writing
error-free threaded programs, extreme caution must
be taken to avoid race conditions and parallel
overheads associated with synchronization.
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Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.13

OpenMP: a Standard for Directive Based Parallel
Programming I

• While standardization and support for these threaded APIs
has come a long way,

• their use is still predominantly restricted to system
programmers as opposed to application programmers .

• One of the reasons for this is that APIs such as Pthreads
are considered to be low-level primitives .

• Conventional wisdom indicates that a large class of
applications can be efficiently supported by higher level
constructs (or directives )

• which rid the programmer of the mechanics of
manipulating threads.

• Such directive-based languages have existed for a long
time,

• but only recently have standardization efforts succeeded in
the form of OpenMP.
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10.14

The OpenMP Programming Model I

• OpenMP is an API that can be used with FORTRAN, C,
and C++ for programming shared address space
machines.

• OpenMP directives provide support for concurrency ,
synchronization , and data handling while avoiding the
need for explicitly setting up mutexes, condition variables,
data scope, and initialization.

• OpenMP directives in C and C++ are based on the
#pragma compiler directives.

• The directive itself consists of a directive name followed by
clauses.

• OpenMP programs execute serially until they encounter
the parallel directive.

• This directive is responsible for creating a group of
threads .
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10.15

The OpenMP Programming Model II

• The exact number of threads can be specified in the
directive, set using an environment variable, or at runtime
using OpenMP functions.

• The main thread that encounters the parallel directive
becomes the master of this group of threads with id 0.

• The parallel directive has the following prototype:

• Each thread created by this directive executes the
structured block specified by the parallel directive.

• It is easy to understand the concurrency model of
OpenMP when viewed in the context of the corresponding
Pthreads translation.

• In Figure 1, one possible translation of an OpenMP
program to a Pthreads program is shown.
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10.16

The OpenMP Programming Model III

Figure: A sample OpenMP program along with its Pthreads
translation that might be performed by an OpenMP compiler.
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10.17

The OpenMP Programming Model IV

• The clause list is used to specify conditional
parallelization , number of threads , and data handling .

• Conditional Parallelization: The clause if (scalar
expression) determines whether the parallel construct
results in creation of threads.

• Only one if clause can be used with a parallel directive.

• Degree of Concurrency: The clause num_threads
(integer expression) specifies the number of threads that
are created by the parallel directive.

• Data Handling: The clause private (variable list) indicates
that the set of variables specified is local to each thread.

• i.e., each thread has its own copy of each variable in the list.
• The clause firstprivate (variable list) is similar to the private

clause, except the values of variables on entering the
threads are initialized to corresponding values before the
parallel directive.

• The clause shared (variable list) indicates that all variables
in the list are shared across all the threads,

• i.e., there is only one copy. Special care must be taken while
handling these variables by threads to ensure serializability.
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10.18

The OpenMP Programming Model V
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Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.19

The OpenMP Programming Model VI
Using the parallel directive;

• Here, if the value of the variable is_parallel equals one,
eight threads are created.

• Each of these threads gets private copies of variables a
and c, and shares a single value of variable b.

• Furthermore, the value of each copy of c is initialized to
the value of c before the parallel directive.

• The clause default (shared) implies that, by default, a
variable is shared by all the threads.

• The clause default (none) implies that the state of each
variable used in a thread must be explicitly specified.

• This is generally recommended, to guard against errors
arising from unintentional concurrent access to shared
data.
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10.20

The OpenMP Programming Model VII

• Just as firstprivate specifies how multiple local copies of a
variable are initialized inside a thread,

• the reduction clause specifies how multiple local copies of
a variable at different threads are combined into a single
copy at the master when threads exit.

• The usage of the reduction clause is reduction (operator:
variable list).

• This clause performs a reduction on the scalar variables
specified in the list using the operator.

• The variables in the list are implicitly specified as being
private to threads.

• The operator can be one of
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10.21

The OpenMP Programming Model VIII

Using the reduction clause;

• In this example, each of the eight threads gets a copy of
the variable sum.

• When the threads exit, the sum of all of these local copies
is stored in the single copy of the variable (at the master
thread).
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10.22

The OpenMP Programming Model IX

• Computing PI using OpenMP directives (presented a
Pthreads program for the same problem).

• The omp_get_num_threads() function returns the number
of threads in the parallel region

• The omp_get_thread_num() function returns the integer id
of each thread (recall that the master thread has an id 0).

• The parallel directive specifies that all variables except
npoints, the total number of random points in two
dimensions across all threads, are local.

• Furthermore, the directive specifies that there are eight
threads, and the value of sum after all threads complete
execution is the sum of local values at each thread.

• A for loop generates the required number of random points
(in two dimensions) and determines how many of them are
within the prescribed circle of unit diameter.
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10.23

The OpenMP Programming Model X

Note that this program is much easier to write in terms of
specifying creation and termination of threads compared to the
corresponding POSIX threaded program.
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