
Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.1

Lecture 10
Programming Shared Memory IV
Controlling Thread, OpenMP (Open Multi-Processing)

Ceng505 Parallel Computing at December 13, 2010

Dr. Cem Özdoğan
Computer Engineering Department

Çankaya University

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.2

Contents

1 Controlling Thread Attributes and Synchronization
Attributes Objects for Threads

2 Composite Synchronization Constructs

3 Tips for Designing Asynchronous Programs

4 OpenMP: a Standard for Directive Based Parallel Programmin g
The OpenMP Programming Model

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.3

Controlling Thread and Synchronization Attributes I

• Threads and synchronization variables can have several
attributes associated with them.

• Different threads may be scheduled differently (round-robin,
prioritized, etc.),

• They may have different stack sizes, and so on.
• A synchronization variable such as a mutex-lock may be of

different types.

• An attributes object is a data-structure that describes
entity (thread, mutex, condition variable) properties.

• When creating a thread or a synchronization variable, we
can specify the attributes object that determines the
properties of the entity.

• Pthreads allows the user to change the priority of the
thread.

• Subsequent changes to attributes objects do not change
the properties of entities created using the attributes
object prior to the change.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.4

Controlling Thread and Synchronization Attributes II

• There are several advantages of using attributes objects.
1 It separates the issues of program semantics and

implementation.
• Thread properties are specified by the user.
• How these are implemented at the system level is

transparent to the user.
• This allows for greater portability across operating systems.

2 Using attributes objects improves
modularity and readability of the programs.

3 It allows the user to modify the program easily.
• For instance, if the user wanted to change the scheduling

from round robin to time-sliced for all threads,
• they would only need to change the specific attribute in the

attributes object.

• To create an attributes object with the desired properties,

• we must first create an object with default properties and
then modify the object as required.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.5

Attributes Objects for Threads I

• pthread_attr_init ;

• This function initializes the attributes object attr to the
default values.

• Upon successful completion, the function returns a 0,
otherwise it returns an error code.

• The attributes object may be destroyed.

• pthread_attr_destroy ;

• The call returns a 0 on successful removal of the attributes
object attr.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.6

Attributes Objects for Threads II

• Individual properties associated with the attributes object
can be changed using the following functions:

• pthread_attr_setdetachstate =⇒ to set the detach state

• pthread_attr_setguardsize_np =⇒ to set the stack
guard size

• pthread_attr_setstacksize =⇒ to set the stack size

• pthread_attr_setstackaddr =⇒ to set the stack address

• pthread_attr_setinheritsched =⇒ to set whether
scheduling policy is inherited from the creating thread

• pthread_attr_setschedpolicy =⇒ to set the scheduling
policy (in case it is not inherited)

• pthread_attr_setschedparam =⇒ to set the scheduling
parameters

• pthread_attr_setprio =⇒ to set the priority

• pthread_attr_default, pthread_attr_init
• For most parallel programs,

default thread properties are generally adequate.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.7

Composite Synchronization Constructs I

• While the Pthreads API provides a basic set of
synchronization constructs , often, there is a need for
higher level constructs.

• These higher level constructs can be built using basic
synchronization constructs.

• An important and often used construct in threaded (as well
as other parallel) programs is a barrier.

• A barrier call is used to hold a thread until all other threads
participating in the barrier have reached the barrier.

• Barriers can be implemented using a counter, a mutex and
a condition variable.

• A single integer is used to keep track of the number of
threads that have reached the barrier.

• If the count is less than the total number of threads, the
threads execute a condition wait.

• The last thread entering (and setting the count to the
number of threads) wakes up all the threads using a
condition broadcast.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.8

Composite Synchronization Constructs II

The code for accomplishing this is as follows:

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.9

Composite Synchronization Constructs III

• In the above implementation of a barrier, threads enter the
barrier and stay until the broadcast signal releases them.

• The threads are released one by one since the mutex
count_lock is passed among them one after the other.

• The trivial lower bound on execution time of this function is
therefore O(n) for n threads.

• This implementation of a barrier can be speeded up using
multiple barrier variables.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.10

Tips for Designing Asynchronous Programs I

• When designing multithreaded applications, it is important
to remember that one cannot assume any order of
execution with respect to other threads.

• Any such order must be explicitly established using the
synchronization mechanisms discussed above: mutexes,
condition variables, and joins.

• In many thread libraries, threads are switched at
semi-deterministic intervals.

• Such libraries (slightly asynchronous libraries) are more
forgiving of synchronization errors in programs.

• On the other hand, kernel threads (threads supported by
the kernel) and threads scheduled on multiple processors
are less forgiving.

• The programmer must therefore not make any
assumptions regarding the level of asynchrony in the
threads library.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.11

Tips for Designing Asynchronous Programs II

• The following rules of thumb which help minimize the
errors in threaded programs are recommended.

• Set up all the requirements for a thread before actually
creating the thread. This includes

• initializing the data,
• setting thread attributes,
• thread priorities,
• mutex-attributes, etc.

• Once you create a thread, it is possible that the newly
created thread actually runs to completion before the
creating thread gets scheduled again.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.12

Tips for Designing Asynchronous Programs III

• When there is a producer-consumer relation between two
threads for certain data items,

• At the producer end, make sure the data is placed before it
is consumed and that intermediate buffers are guaranteed
to not overflow.

• At the consumer end, make sure that the data lasts at least
until all potential consumers have consumed the data.

• This is particularly relevant for stack variables.

• Where possible, define and use group synchronizations
and data replication.

• This can improve program performance significantly.

• While these simple tips provide guidelines for writing
error-free threaded programs, extreme caution must
be taken to avoid race conditions and parallel
overheads associated with synchronization.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.13

OpenMP: a Standard for Directive Based Parallel
Programming I

• While standardization and support for these threaded APIs
has come a long way,

• their use is still predominantly restricted to system
programmers as opposed to application programmers .

• One of the reasons for this is that APIs such as Pthreads
are considered to be low-level primitives .

• Conventional wisdom indicates that a large class of
applications can be efficiently supported by higher level
constructs (or directives)

• which rid the programmer of the mechanics of
manipulating threads.

• Such directive-based languages have existed for a long
time,

• but only recently have standardization efforts succeeded in
the form of OpenMP.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.14

The OpenMP Programming Model I

• OpenMP is an API that can be used with FORTRAN, C,
and C++ for programming shared address space
machines.

• OpenMP directives provide support for concurrency ,
synchronization , and data handling while avoiding the
need for explicitly setting up mutexes, condition variables,
data scope, and initialization.

• OpenMP directives in C and C++ are based on the
#pragma compiler directives.

• The directive itself consists of a directive name followed by
clauses.

• OpenMP programs execute serially until they encounter
the parallel directive.

• This directive is responsible for creating a group of
threads .

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.15

The OpenMP Programming Model II

• The exact number of threads can be specified in the
directive, set using an environment variable, or at runtime
using OpenMP functions.

• The main thread that encounters the parallel directive
becomes the master of this group of threads with id 0.

• The parallel directive has the following prototype:

• Each thread created by this directive executes the
structured block specified by the parallel directive.

• It is easy to understand the concurrency model of
OpenMP when viewed in the context of the corresponding
Pthreads translation.

• In Figure 1, one possible translation of an OpenMP
program to a Pthreads program is shown.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.16

The OpenMP Programming Model III

Figure: A sample OpenMP program along with its Pthreads
translation that might be performed by an OpenMP compiler.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.17

The OpenMP Programming Model IV

• The clause list is used to specify conditional
parallelization , number of threads , and data handling .

• Conditional Parallelization: The clause if (scalar
expression) determines whether the parallel construct
results in creation of threads.

• Only one if clause can be used with a parallel directive.

• Degree of Concurrency: The clause num_threads
(integer expression) specifies the number of threads that
are created by the parallel directive.

• Data Handling: The clause private (variable list) indicates
that the set of variables specified is local to each thread.

• i.e., each thread has its own copy of each variable in the list.
• The clause firstprivate (variable list) is similar to the private

clause, except the values of variables on entering the
threads are initialized to corresponding values before the
parallel directive.

• The clause shared (variable list) indicates that all variables
in the list are shared across all the threads,

• i.e., there is only one copy. Special care must be taken while
handling these variables by threads to ensure serializability.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.18

The OpenMP Programming Model V

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.19

The OpenMP Programming Model VI
Using the parallel directive;

• Here, if the value of the variable is_parallel equals one,
eight threads are created.

• Each of these threads gets private copies of variables a
and c, and shares a single value of variable b.

• Furthermore, the value of each copy of c is initialized to
the value of c before the parallel directive.

• The clause default (shared) implies that, by default, a
variable is shared by all the threads.

• The clause default (none) implies that the state of each
variable used in a thread must be explicitly specified.

• This is generally recommended, to guard against errors
arising from unintentional concurrent access to shared
data.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.20

The OpenMP Programming Model VII

• Just as firstprivate specifies how multiple local copies of a
variable are initialized inside a thread,

• the reduction clause specifies how multiple local copies of
a variable at different threads are combined into a single
copy at the master when threads exit.

• The usage of the reduction clause is reduction (operator:
variable list).

• This clause performs a reduction on the scalar variables
specified in the list using the operator.

• The variables in the list are implicitly specified as being
private to threads.

• The operator can be one of

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.21

The OpenMP Programming Model VIII

Using the reduction clause;

• In this example, each of the eight threads gets a copy of
the variable sum.

• When the threads exit, the sum of all of these local copies
is stored in the single copy of the variable (at the master
thread).

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.22

The OpenMP Programming Model IX

• Computing PI using OpenMP directives (presented a
Pthreads program for the same problem).

• The omp_get_num_threads() function returns the number
of threads in the parallel region

• The omp_get_thread_num() function returns the integer id
of each thread (recall that the master thread has an id 0).

• The parallel directive specifies that all variables except
npoints, the total number of random points in two
dimensions across all threads, are local.

• Furthermore, the directive specifies that there are eight
threads, and the value of sum after all threads complete
execution is the sum of local values at each thread.

• A for loop generates the required number of random points
(in two dimensions) and determines how many of them are
within the prescribed circle of unit diameter.

Programming Shared
Memory IV

Dr. Cem Özdo ğan

Controlling Thread
Attributes and
Synchronization
Attributes Objects for
Threads

Composite
Synchronization
Constructs

Tips for Designing
Asynchronous
Programs

OpenMP: a Standard
for Directive Based
Parallel Programming
The OpenMP Programming
Model

10.23

The OpenMP Programming Model X

Note that this program is much easier to write in terms of
specifying creation and termination of threads compared to the
corresponding POSIX threaded program.

	Controlling Thread Attributes and Synchronization
	Attributes Objects for Threads

	Composite Synchronization Constructs
	Tips for Designing Asynchronous Programs
	OpenMP: a Standard for Directive Based Parallel Programming
	The OpenMP Programming Model

