
Figure 1: Parabola aν2 + bν + c = p2(ν)

1 Muller’s Method

• Most of the root-finding methods that we have considered so far have
approximated the function in the neighborhood of the root by a straight
line.

• Muller’s method is based on approximating the function in the neigh-
borhood of the root by a quadratic polynomial.

• A second-degree polynomial is made to fit three points near a root, at
x0, x1, x2 with x0 between x1, and x2.

• The proper zero of this quadratic, using the quadratic formula, is used
as the improved estimate of the root.

• A quadratic equation that fits through three points in the vicinity of a
root, in the form aν2 + bν + c. (See Fig. 1)

• Transform axes to pass through the middle point, by letting ν = x−x0.
Let h1 = x1 − x0 and h2 = x0 − x2. We evaluate the coefficients by
evaluating p2(ν) at the three points:

ν = 0 : a(0)2 + b(0) + c = f0

ν = h1 : ah2
1 + bh1 + c = f1

ν = −h2 : ah2
2 − bh2 + c = f2

• From the first equation, c = f0. Letting h2/h1 = γ, we can solve the

1

other two equations for a, and b.

a =
γf1 − f0(1 + γ) + f2

γh2
1(1 + γ)

, b =
f1 − f0 − ah2

1

h1

After computing a, b, and c, we solve for the root of aν2 + bν + c by
the quadratic formula

ν1,2 =
2c

−b ±
√

b2 − 4ac
, ν = x − x0, root = x0 −

2c

b ±
√

b2 − 4ac

An algorithm for Muller’s method :

Given the points x2, x0, x1 in increasing value,
Evaluate the corresponding function values: f2, f0, f1.
Repeat
(Evaluate the coefficients of the parabola, ax2 + bx + c, determined by
the three points.
(x2, f2), (x0, f0), (xl, f1).)
Set hl = x1 − x0; h2 = x0 − x2; γ = h2/h1.
Set c = f0

Set a = γf1−f0(1+γ)+f2

γh2

1
(1+γ)

Set b =
f1−f0−ah2

1

h1

(Next, compute the roots of the polynomial.)
Set root = x0 − 2c

b±
√

b2−4ac

Choose root, xr, closest to x0 by making the denominator as large as
possible; i.e. if
b > 0, choose plus; otherwise, choose minus.
If xr > x0,
Then rearrange to:x0, x1, and the root
Else rearrange to: x0, x2, and the root
End If.
(In either case, reset subscripts so that x0, is in the middle.)
Until |f(xr)| < Ftol

• Muller’s method, like Newton’s, will find a complex root if given com-
plex starting values. Of course, the computations must use complex
arithmetic.

• Experience shows that Muller’s method converges at a rate that is
similar to that for Newton’s method. It does not require the evaluation
of derivatives, however, and (after we have obtained the starting values)
needs only one function evaluation per iteration.

• See Fig. 2 that an example is given

2

Figure 2: An example of the use of Muller’s method.

3

2 Fixed-point Iteration; x = g(x) Method

• we rearrange f(x) into an equivalent form x = g(x), which usually can
be done in several ways.

• Observe that if f(r) = 0, where r is a root of f(x), it follows that
r = g(r).

• Whenever we have r = g(r), r is said to be a fixed point for the function
g.

• The iterative form:

xn+1 = g(xn) n = 0, 1, 2, 3, . . .

converges to the fixed point r, a root of f(x).

• Example
f(x) = x2 − 2x − 3 = 0

Suppose we rearrange to give this equivalent form:

x = g1(x) =
√

2x + 3

• If we start with x = 4 and iterate with the fixed-point algorithm,
successive values of x are
x0 = 4

x1 =
√

11 = 3.31662

x2 =
√

9.63325 = 3.10375
x3 = 3.03439
x4 = 3.01144
x5 = 3.00381

and it appears that the values are converging on the root at x = 3.

2.1 Other Rearrangements

• Another rearrangement of f(x) is

x = g2(x) =
3

(x − 2)

Let us start the iterations again with x0 = 4. Successive values then
are:

4

x0 = 4
x1 = 1.5
x2 = −6
x3 = −0.375
x4 = −1.263158
x5 = −0.919355
x6 = −1.02762
x7 = −0.990876
x8 = −1.00305

and it seems that we now converge to the other root, at x = −1.

• Consider a third rearrangement:

x = g3(x) =
(x2 − 3)

2

starting again with x0 = 4, we get
x0 = 4
x1 = 6.5
x2 = 19.625
x3 = 191.070

and the iterates are obviously diverging.

• The fixed point of x = g(x) is the intersection of the line y = x and
the curve y = g(x) plotted against x. Figure 3 shows the three cases.

• Observe that we always get the successive iterates by this construction.
Start on the x-axis at the initial x0, go vertically to the curve, then
horizontally to the line y = x, then vertically to the curve, and again
horizontally to the line.

• Repeat this process until the points on the curve converge to a fixed
point or else diverge

Iteration algorithm with the form x = g(x)

To determine a root of f(x) = 0, given a value x1 reasonably close to
the root
Rearrange the equation to an equivalent form x = g(x)
Repeat
Set x2 = xl

Set xl = g(x1)
Until |x1 − x2| < tolerance value

The method may converge to a root different from the expected one, or it
may diverge. Different rearrangements will converge at different rates.

5

Figure 3: The fixed point of x = g(x) is the intersection of the line y = x
and the curve y = g(x) plotted against x.

2.2 Order of Convergence

• The fixed-point method converges at a linear rate; it is said to be
linearly convergent, meaning that the error at each successive iteration
is a constant fraction of the previous error. (Actually, this is true only
as the errors approach zero.)

• If we tabulate the errors after each step in getting the roots of the poly-
nomial and its ratio to the previous error, we find that the magnitudes
of the ratios to be leveling out at 0.3333. (See Fig. 1)

6

Table 1: The order of convergence for the iteration algorithm with the dif-
ferent forms of x = g(x) .

3 Multiple Roots

• A function can have more than one root of the same value. See Fig.
4left.

• The methods we have described do not work well for multiple roots.
For example, Newton’s method is only linearly convergent at a double
root. f(x) = (x − 1)(e(x−1) − 1) has a double root at x = 1, as seen in
Fig. 4right.

• Table 2left gives the errors of successive iterates and the convergence
is clearly linear.

• When Newton’s method is applied to a triple root, convergence is still
linear, as seen in Table 2right. With a triple root, the ratio of errors is
larger, about 2

3
, compared to 1

2
for the double root of Table 2left.

4 Nonlinear Systems

• A pair of equations:
x2 + y2 = 4
ex + y = 1

Graphically, the solution to this system is represented by the intersec-
tions of the circle x2 + y2 = 4 with the curve y = 1 − ex (see Fig.
5)

7

Figure 4: Left: The curve on the left has a triple root at x = −1 [the function
is (x + 1)3]. The curve on the right has a double root at x = 2 [the function
is (x − 2)2].Right: Plot of (x − 1)(e(x−1) − 1).

Table 2: Right: Errors when finding a double root. Left: Successive errors
with Newton’s method, for f(x) = (x + 1)3 = 0.

8

Figure 5: A pair of equations.

• Newton’s method can be applied to systems as well as to a single non-
linear equation. We begin with the forms

f(x, y) = O, g(x, y) = O

• Let x = r, y = s be a root, and expand both functions as a Taylor series
about the point (xi, yi) in terms of (r − xi), (s − yi), where (xi, yi) is a
point near the root:

f(r, s) = 0 = f(xi, yi) + fx(xi, yi)(r − xi) + fy(xi, yi)(s − yi) + . . .
g(r, s) = 0 = g(xi, yi) + gx(xi, yi)(r − xi) + gy(xi, yi)(s − yi) + . . .

Truncating both series gives

0 = f(xi, yi) + fx(xi, yi)(r − xi) + fy(xi, yi)(s − yi)
0 = g(xi, yi) + gx(xi, yi)(r − xi) + gy(xi, yi)(s − yi)

which we can rewrite as

fx(xi, yi)∆xi + fy(xi, yi)∆yi = −f(xi, yi)
gx(xi, yi)∆xi + gy(xi, yi)∆yi = −g(xi, yi)

where ∆xi and ∆yi are used as increments to xi and yi so that xi+1 =
xi+∆xi and yi+1 = yi+∆yi are improved estimates of the (x, y) values.
We repeat this until both f(x, y) and g(x, y) are close to zero.

9

• Example:
f(x, y) = 4 − x2 − y2 = 0

g(x, y) = 1 − ex − y = 0

The partial derivatives are

fx = −2x, fy = −2y, gx = −ex, gy = −1

Beginning with x0 = 1, y0 = −1.7, we solve

−2∆x0 + 3.4∆y0 = −0.1100

−2.7183∆x0 − 1.0∆y0 = 0.0183

• This gives ∆x0 = 0.0043, ∆y0 = −0.0298, from which x1 = 1.0043, y1 =
−1.7298. These agree with the true value within 2 in the fourth decimal
place.

• Repeating the process once more produces x2 = 1.004169, y2 = −1.729637.
The function values at this second iteration are approximately -0.000000l
and -0.00000001.

4.1 Solving a System by Iteration

• There is another way to attack a system of nonlinear equations. Con-
sider this pair of equations:

ex − y = 0

xy − ex = 0

• We know how to solve a single nonlinear equation by fixed-point itera-
tions –we rearrange it to solve for the variable in a way that successive
computations may reach a solution.

x = ln(y)

y = ex/x

To start, we guess at a value for y, say, y = 2. See Table 3. which are
precisely the correct results.

10

y-value x-value
2 0.69315

2.88539 1.05966
2.72294 1.00171
2.71829 1.00000
2.71828 1.00000

Table 3: An example for solving a system by iteration

• Here is another example for the pair of equations whose plot is Fig. 5.

x2 + y2 = 4

ex + y = 1

rearrangement;

y = −
√

(4 − x2)x = ln(1 − y)

and begin with x = 1.0, the successive values for y and x are: See Table
4. and we are converging to the solution in an oscillatory manner.

y-value x-value
-1.7291 1.0051
-1.72975 1.00398
-1.72961 1.00421
-1.72964 1.00416
-1.72963 1.00417

Table 4: Another example for solving a system by iteration

11

	Muller's Method
	Fixed-point Iteration; x=g(x) Method
	Other Rearrangements
	Order of Convergence

	Multiple Roots
	Nonlinear Systems
	Solving a System by Iteration

