
1 Interpolation and Curve Fitting

• Sines, logarithms, and other nonalgebraic functions from tables

• Those tables had values of the function at uniformly spaced values of
the argument.

• Most often interpolated linearly: The value for x = 0.125 was computed
as at the halfway point between x = 0.12 and x = 0.13.

• If the function does not vary too rapidly and the tabulated points are
close enough together, this linearly estimated value would be accurate
enough.

• Data can be interpolated to estimate values

– Interpolating Polynomials: Describes a straightforward but
computationally awkward way to fit a polynomial to a set of data
points so that an interpolated value can be computed. The cost
of getting the interpolant with a desired accuracy is facilitated by
a variant, Neville’s method.

– Divided Differences: These provide a more efficient way to con-
struct an interpolating polynomial, one that allows one to readily
change the degree of the polynomial. If the data are at evenly
spaced x-values, there is some simplification.

– Spline Curves: Using special polynomials, splines, one can fit
polynomials to data more accurately than with an interpolating
polynomial. At the expense of added computational effort, some
important problems that one has with interpolating polynomials
is overcome.

– Least-Squares Approximations: Are methods by which poly-
nomials and other functions can be fitted to data that are subject
to errors likely in experiments. These approximations are widely
used to analyze experimental observations.

1.1 Interpolating Polynomials

• we have a table of x and y-values. Two entries in this table might be
y = 2.36 at x = 0.41 and
y = 3.11 at x = 0.52.
If we desire an estimate for y at x = 0.43, we would use the two table
values for that estimate.

1

x f(x)
3.2 22.0
2.7 17.8
1.0 14.2
4.8 38.3
5.6 51.7

Table 1: Fitting a polynomial to data.

• Why not interpolate as if y(x) was linear between the two x-values?

• We will be most interested in techniques adapted to situations where
the data are far from linear. The basic principle is to fit a polynomial
curve to the data.

• We assume that the tabulated data are exact. Later, we will consider
the case where the data may have errors of measurement, which is true
for most experimental results.

1.1.1 Fitting a Polynomial to Data

Suppose that we have

• First, we need to select the points that determine our polynomial. (The
maximum degree of the polynomial is always one less than the number
of points.) Suppose we choose the first four points.

• If the cubic is ax3 + bx2 + cx+ d, we can write four equations involving
the unknown coefficients a, b, c, and d;

when x = 3.2 : a(3.2)3 + b(3.2)2 + c(3.2) + d = 22.0
if x = 2.7 : a(2.7)3 + b(2.7)2 + c(2.7) + d = 17.8
if x = 1.0 : a(1.0)3 + b(1.0)2 + c(1.0) + d = 14.2
if x = 4.8 : a(4.8)3 + b(4.8)2 + c(4.8) + d = 38.3

• Solving these equations gives

a = −0.5275
b = 6.4952
c = −16.1177
d = 24.3499

2

and our polynomial is

−0.5275x3 + 6.4952x2 − 16.1177x + 24.3499

At x = 3.0, the estimated value is 20.212.

• if we want a new polynomial that is also made to fit at the point
(5.6, 51.7) ?

• or if we want to see what difference it would make to use a quadratic
instead of a cubic?

1.1.2 Lagrangian Polynomials

• straightforward approach-the Lagrangian polynomial, the simplest way
to exhibit the existence of a polynomial for interpolation with unevenly
spaced data.

• Suppose we have a table of data with four pairs of x- and f(x)-values,
with xi indexed by variable i:

i x f(x)
0 x0 f0

l x1 f1

2 x2 f2

3 x3 f3

• Here we do not assume uniform spacing between the x-values, nor do
we need the x-values arranged in a particular order. The x-values must
all be distinct, however.

• Through these four data pairs we can pass a cubic. The Lagrangian
form for this is

P3(x) =
(x − x1)(x − x2)(x − x3)

(x0 − x1)(x0 − x2)(x0 − x3)
f0+

(x − x0)(x − x2)(x − x3)

(x1 − x0)(x1 − x2)(x1 − x3)
f1

+
(x − x0)(x − x1)(x − x3)

(x2 − x0)(x2 − x1)(x2 − x3)
f2 +

(x − x0)(x − x1)(x − x2)

(x3 − x0)(x3 − x1)(x3 − x2)
f3

• This equation is made up of four terms, each of which is a cubic in x;
hence the sum is a cubic.

3

• The pattern of each term is to form the numerator as a product of
linear factors of the form (x − xi), omitting one xi in each term, the
omitted value being used to form the denominator by replacing x in
each of the numerator factors.

• In each term, we multiply by the fi

• It will have n + 1 terms when the degree is n.

• Fit a cubic through the first four points of the preceding table and use it
to find the interpolated value for x = 3.0. Carrying out the arithmetic,
P3(3.0) = 20.21.

• MATLAB gets interpolating polynomials readily. The cubic fitted to
the first four points;

>> x=[3.2 2.7 1.0 4.8]; y=[22.0 17.8 14.2 38.3];

>> p=polyfit(x,y,3)

>> xval=polyval(p,3.0)

• Error of Interpolation; When we fit a polynomial Pn(x) to some
data points, it will pass exactly through those points, but between
those points Pn(x) will not be precisely the same as the function f(x)
that generated the points (unless the function is that polynomial). How
much is Pn(x) different from f(x)? How large is the error of Pn(x)?

• An algorithm for interpolation from a Lagrange polynomial:

Given a set of n + l points [(xi, fi), i = 0, . . . , n] and a value for x
at which the polynomial is to be evaluated:
Set Sum = 0.
For i=0 To n Step 1 Do
Set P = 1.
For j=0 to n step 1 Do
If (j 6= i) Then
Set P = P ∗ (x − xj)/(xi − xj)
End If.
End Do j.
Set Sum = Sum + P ∗ fi

End Do i.
Sum is the interpolated value at x.

4

• It is most important that you never fit a polynomial of a degree higher
than 4 or 5 to a set of points. If you need to fit to a set of more than
six points, be sure to break up the set into subsets and fit separate
polynomials to these.

• You cannot fit a function that is discontinuous or one whose derivative
is discontinuous with a polynomial. This is because every polynomial
is everywhere continuous and has continuous derivatives.

1.1.3 Neville’s Method

• The trouble with the standard Lagrangian polynomial technique is that
we do not know which degree of polynomial to use.

– If the degree is too low, the interpolating polynomial does not give
good estimates of f(x).

– If the degree is too high, undesirable oscillations in polynomial
values can occur.

• Neville’s method can overcome this difficulty. It computes the inter-
polated value with polynomials of successively higher degree, stopping
when the successive values are close together.

• The successive approximations are actually computed by linear inter-
polation from the previous values. The Lagrange formula for linear
interpolation to get f(x) from two data pairs, (x1, f1) and (x2, f2), is

f(x) =
(x − x2)

x1 − x2

f1 +
(x − x1)

(x2 − x1)
f2

• Neville’s method begins by arranging the given data pairs, (xi, fi), so
the successive values are in order of the closeness of the xi to x.

• Suppose we are given these data

x f(x)
10.1 0.17537
22.2 0.37784
32.0 0.52992
41.6 0.66393
50.5 0.63608

5

and we want to interpolate for x = 27.5. We first rearrange the data
pairs in order of closeness to x = 27.5:

i |x − xi| xi fi = Pi0

0 4.5 32.0 0.52992
1 5.3 22.2 0.37784
2 14.1 41.6 0.66393
3 17.4 10.1 0.17537
4 23.0 50.5 0.63608

Neville’s method begins by renaming the fi as Pi0. We build a table

i x Pi0 Pi1 Pi2 Pi3 Pi4

0 32.0 0.52992 0.46009 0.46200 0.46174 0.45754
1 22.2 0.37784 0.45600 0.46071 0.47901
2 41.6 0.66393 0.44524 0.55843
3 10.1 0.17537 0.37379
4 50.5 0.63608

The general formula for computing entries into the table is

pi,j =
(x − xi) ∗ Pi+1,j−1 + (xi+j − x) ∗ Pi,j−1

xi+j − xi

Thus, the value of P01 is computed by ’

P01 =
(27.5 − 32.0) ∗ 0.37784 + (22.2 − 27.5) ∗ 0.52992

22.2 − 32.0
= 0.46009

Once we have the column of Pi1’s, we compute the next column.

P22 =
(27.5 − 41.6) ∗ 0.37379 + (50.5 − 27.5) ∗ 0.44524

50.5 − 41.6
= 0.55843

The remaining columns are computed similarly.
The top line of the table represents Lagrangian interpolates at x = 27.5
using polynomials of degree equal to the second subscript of the P ′s.

• The preceding data are for sines of angles in degrees and the correct
value for x = 27.5 is 0.46175.

1.2 Divided Differences

• There are two disadvantages to using the Lagrangian polynomial or
Neville’s method for interpolation.

6

– First, it involves more arithmetic operations than does the divided-
difference method we now discuss.

– Second, and more importantly, if we desire to add or subtract a
point from the set used to construct the polynomial, we essentially
have to start over in the computations. Both the Lagrangian poly-
nomials and Neville’s method also must repeat all of the arithmetic
if we must interpolate at a new x-value. The divided-difference
method avoids all of this computation.

• Actually, we will not get a polynomial different from that obtained by
Lagrange’s technique.

• Every nth-degree polynomial that passes through the same n+1 points
is identical. Only the way that the polynomial is expressed is different.

• The function, f(x), is known at several values for x:

x0 f0

x1 f1

x2 f2

x3 f3

• We do not assume that the x’s are evenly spaced or even that the values
are arranged in any particular order.

• Consider the nth-degree polynomial written as:

Pn(x) = a0+(x−x0)a1+(x−x0)(x−x1)a2+(x−x0)(x−x1) . . . (x−xx−xn−1
)an

If we chose the ai so that Pn(x) = f(x) at the n+1 known points, then
Pn(x) is an interpolating polynomial. The ai’s are readily determined
by using what are called the divided differences of the tabulated values.
A special standard notation for divided differences is

f [x0, x1] =
f1 − f0

x1 − x0

called the first divided difference between x1 and x2. And, f [x0] = f0 =
f(x0). In general,

f [xs, xt] =
ft − fs

xt − xs

Second- and higher-order differences are defined in terms of lower-order
differences.

f [x0, x1, x2] =
f [x1, x2] − f [x0, x1]

x2 − x0

7

xi fi f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, xi+1, xi+2, xi+3]
x0 f0 f [x0, x1] f [x0, x1, x2] f [x0, x1, x2, x3]
x1 f1 f [x1, x2] f [x1, x2, x3] f [x1, x2, x3, x4]
x2 f2 f [x2, x3] f [x2, x3, x4]
x3 f3 f [x3, x4]

Table 2: Divided-difference table in symbolic form.

xi fi f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, . . . , xi+3] f [xi, . . . , xi+4]
3.2 22.0 8.400 2.856 -0.528 0.256
2.7 17.8 2.118 2.012 0.0865
1.0 14.2 6.342 2.263
4.8 38.3 16.750
5.6 51.7

Table 3: Divided-difference table in numerical values.

For n-terms,

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , fn] − f [x0, x1, . . . , fn−1]

xn − x0

and zero-order difference
f [xs] = fs

• Using the standard notation, a divided-difference table is shown in
symbolic form in Table 2. Table 3 shows specific numerical values.

x = x0 : Pn(x0) = a0

x = x1 : Pn(x1) = a0 + (x1 − x0)a1

x = x2 : Pn(x2) = a0 + (x2 − x0)a1 + (x2 − x0)(x2 − x1)a2
...

...
x = xn : Pn(xn) = a0 + (xn − x0)a1 + (xn − x0)(xn − x1)a2 + . . . + (xn − x0) . . . (xn − xn−1)an

If Pn(x) is to be an interpolating polynomial, it must match the table
for all n + 1 entries:

Pn(xi) = fi for i = 0, 1, 2, . . . , n.

Each Pn(xi) will equal fi if ai = f [x0, x1, . . . , xi]. We then can write:

Pn(x) = f [x0] + (x − x0)f [x0, x1] + (x − x0)(x − x1)f [x0, x1, x2]

8

+(x − x0)(x − x1)(x − x2)f [x0, . . . , x3]

+(x − x0)(x − x1) . . . (x − xn−1)f [x0, . . . , xn]

• Write interpolating polynomial of degree-3 that fits the data of Table
3 at all points x0 = 3.2 to x3 = 4.8.

P3(x) = 22.0 + 8.400(x − 3.2) + 2.856(x − 3.2)(x − 2.7)

−0.528(x − 3.2)(x − 2.7)(x − 1.0)

What is the fourth-degree polynomial that fits at all five points? We
only have to add one more term to P3(x)

P4(x) = P(3) + 0.2568(x − 3.2)(x − 2.7)(x − 1.0)(x − 4.8)

If we compute the interpolated value at x = 3.0, we get the same result:
P3(3.0) = 20.2120. This is not surprising, because all third-degree
polynomials that pass through the same four points are identical. They
may look different but they can all be reduced to the same form.

• An algorithm for constructing n divided-difference table:

9

Given a set of n + 1 points [(xi, fi), i = 0, . . . , n] and a
value x = u at which the interpolating polynomial is to be
evaluated:
We first find the coefficients of the interpolating polynomial.
These are stored in vector dd.
For i = 0 To n Step 1 Do
Set dd[i]=f[i]
End For i.
For j = 1 To n Step 1 Do
Set temp1=dd[j - 1]
For k = j To n Step 1 Do
Set temp2=dd[k].
Set dd[k]=(dd[k] - temp1)/(x[k]-x[k - j]).
temp1= temp2
End For k.
End For j.
Now we compute the value of the polynomial at u. We do
this by nested multiplication from the highest term.
Set sum=0
For i=n DownTo 1 Step 1 Do
Set sum=(sum + dd[i])*(u - x[i - 1])
Set sum=sum + dd[0]
End For i.
ddvalue =sum.
ddvalue is the value of the polynomial at u, Pn(u).

• Divided differences for a polynomial

It is of interest to look at the divided differences for f(x) = Pn(x).
Suppose that f(x) is the cubic

f(x) = 2x3 − x2 + x − 1.

Here is its divided-difference table:

xi f [xi] f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, . . . , xi+3] f [xi, . . . , xi+4] f [xi, . . . , xi+5]

0.30 −0.7360 2.4800 3.0000 2.0000 0.0000 0.0000
1.00 1.0000 3.6800 3.6000 2.0000 0.0000
0.70 −0.1040 2.2400 5.4000 2.0000
0.60 −0.3280 8.7200 8.2000
1.90 11.0080 21.0200
2.10 15.2120

10

Observe that the third divided differences are all the same. (It then
follows that all higher divided differences will be zero.)

11

	Interpolation and Curve Fitting
	Interpolating Polynomials
	Fitting a Polynomial to Data
	Lagrangian Polynomials
	Neville's Method

	Divided Differences

