
Figure 1: Fitting with different degrees of the polynomial.

1 Spline Curves

• There are times when fitting an interpolating polynomial to data points
is very difficult. Figure 1a is plot of f(x) = cos10(x) on the interval
[−2, 2]. It is a nice, smooth curve but has a pronounced maximum at
x = 0 and is near to the x-axis for |x| > 1. The curves of Figure 1b,c,
d, and e are for polynomials of degrees −2,−4,−6, and −8 that match
the function at evenly spaced points. None of the polynomials is a good
representation of the function.

• One might think that a solution to the problem would be to break up
the interval [−2, 2] into subintervals and fit separate polynomials to the
function in these smaller intervals. Figure 2 shows a much better fit if
we use a quadratic between x = −0.65 and x = 0.65, with P (x) = 0
outside that interval. That is better but there are discontinuities in the
slope where the separate polynomials join.
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Figure 2: Fitting with quadratic in subinterval.

• An answer to the dilemma is to use spline curves. Spline curves may be
of varying degrees. Suppose that we have a set of n + 1 points (which
do not have to be evenly spaced):

(xi, yi), with i = 0, 1, 2, . . . , n.

• A spline fits a set of nth-degree polynomials, gi(x), between each pair of
points, from xi to xi+1. The points at which the splines join are called
knots.

Figure 3: Linear spline.

• If the polynomials are all of degree-1, we have a linear spline and the
curve would appear as in the Fig. 3. The slopes are discontinuous
where the segments join.

1.1 The Equation for a Cubic Spline

• We will create a succession of cubic splines over successive intervals
of the data (See Fig. 4). Each spline must join with its neighboring
cubic polynomials at the knots where they join with the same slope
and curvature.
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Figure 4: Cubic spline.

• We write the equation for a cubic polynomial, gi(x), in the ith interval,
between points (xi, yi), (xi+1, yi+1). It looks like the solid curve shown
here. The dashed curves are other cubic spline polynomials. It has this
equation:

gi(x) = ai(x − xi)
3 + bi(x − xi)

2 + ci(x − xi) + di

Thus, the cubic spline function we want is of the form

g(x) = gi(x) on the interval[xi, xi+1], for i = 0, 1, . . . , n − 1

and meets these conditions:

gi(xi) = yi, i = 0, 1, . . . , n − 1 and gn−1(xn) = yn (1)

gi(xi+1) = gi+1(xi+1), i = 0, 1, . . . , n − 2 (2)

g
′

i(xi+1) = g
′

i+1(xi+1), i = 0, 1, . . . , n − 2 (3)

g
′′

i
(xi+1) = g

′′

i+1(xi+1), i = 0, 1, . . . , n − 2 (4)

• Equations say that the cubic spline fits to each of the points Eq. 1, is
continuous Eq. 2, and is continuous in slope and curvature Eq. 3 and
Eq. 4, throughout the region spanned by the points.

2 Least-Squares Approximations

• Until now, in this chapter we have assumed that the data are accurate,
but when these values are derived from an experiment, there is some
error in the measurements.
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Figure 5: Resistance vs Temperature graph for the Least-Squares Approxi-
mation.

• Some students are assigned to find the effect of temperature on the
resistance of a metal wire. They have recorded the temperature and
resistance values in a table and have plotted their findings, as seen in
Fig. 5. The graph suggest a linear relationship.

R = aT + b

values for the parameters, a and b, can be obtained from the plot.

• If someone else were given the data and asked to draw the line, it is
not likely that they would draw exactly the same line and they would
get different values for a and b.

• A way of fitting a line to experimental data that is to minimize the
deviations of the points from the line. The usual method for doing this
is called the least-squares method. The deviations are determined by
the distances between the points and the line.

• In analyzing the data, we will assume that the temperature values are
accurate and that the errors are only in the resistance numbers; we
then will use the vertical distances.

• We might first suppose we could minimize the deviations by making
their sum a minimum, but this is not an adequate criterion. Consider
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Figure 6: Minimizing the deviations by making the sum a minimum.

the case of only two points (See Fig. 6). Obviously, the best line passes
through each point, but any line that passes through the midpoint of
the segment connecting them has a sum of errors equal to zero.

• We might accept the criterion that we make the magnitude of the
maximum error a minimum (the so-called minimax criterion, but for
the problem at hand this is rarely done.

• The usual criterion is to minimize the sum of the squares of the errors,
the least-squares principle.

• In addition to giving a unique result for a given set of data, the least-
squares method is also in accord with the maximum-likelihood principle
of statistics. If the measurement errors have a so-called normal distri-
bution and if the standard deviation is constant for all the data, the
line determined by minimizing the sum of squares can be shown to
have values of slope and intercept that have maximum likelihood of
occurrence.

• Let Yi represent an experimental value, and let yi be a value from the
equation

yi = axi + b

where xi is a particular value of the variable assumed to be free of error.
We wish to determine the best values for a and b so that the y’s predict
the function values that correspond to x-values. Let ei = Yi − yi. The
least-squares criterion requires that

S = e2
1 + e2

2 + . . . + e2
n

=
∑

N

i=1 e2
i

=
∑

N

i=1(Yi − axi − b)2

be a minimum. N is the number of (x, Y )-pairs. We reach the minimum
by proper choice of the parameters a and b, so they are the variables of
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the problem. At a minimum for S, the two partial derivatives ∂S/∂u
and ∂S/∂b will both be zero. Remembering that the xi and Yi are data
points unaffected by our choice our values for a and b, we have

∂S

∂a
= 0 =

∑

N

i=1 2(Yi − axi − b)(−xi)
∂S

∂b
= 0 =

∑

N

i=1 2(Yi − axi − b)(−1)

Dividing each of these equations by −2 and expanding the summation,
we get the so-called normal equations

a
∑

x2
i
+ b

∑

xi =
∑

xiYi

a
∑

xi + bN =
∑

Yi

All the summations are from i = 1 to i = N . Solving these equations
simultaneously gives the values for slope and intercept a and b.

• For the data in Fig. 5 we find that

N = 5,
∑

Ti = 273.1,
∑

T 2

i = 18, 607.27,
∑

Ri = 4438,
∑

TiRi = 254, 932.5

Our normal equations are then

18, 607.27a + 273.1b = 254, 932.5
273.a + 5b = 4438

From these we find a = 3.395, b = 702.2, and

R = 702 + 3.39T

• MATLAB gets a least-squares polynomial with its polyfit command.
When the numbers of points (the size of x) is greater than the degree
plus one, the polynomial is the least squares fit.

>> x=[20.5 32.7 51.0 73.2 95.7 ];

>> y=[765 826 873 942 1032];

>> eq=polyfit(x,y,1)

eq= 3.3949 702.1721

2.1 Nonlinear Data

• In many cases, data from experimental tests are not linear, so we need
to fit to them some function other than a first-degree polynomial. Pop-
ular forms are the exponential form

y = axb

or
y = aebx
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• We can develop normal equations to the preceding development for a
least-squares line by setting the partial derivatives equal to zero. Such
nonlinear simultaneous equations are much more difficult to solve than
linear equations. Thus, the exponential forms are usually linearized by
taking logarithms before determining the parameters:

lny = lna + blnx

or
lny = lna + bx

We now fit the new variable z = Iny as a linear function of lnx or x as
described earlier. Here we do not minimize the sum of squares of the
deviations of Y from the curve, but rather the deviations of lnY .

– In effect, this amounts to minimizing the squares of the percentage
errors, which itself may be a desirable feature.

– An added advantage of the linearized forms is that plots of the
data on either log-log or semilog graph paper show at a glance
whether these forms are suitable, by whether a straight line rep-
resents the data when so plotted.

• In cases when such linearization of the function is not desirable, or when
no method of linearization can be discovered, graphical methods are
frequently used; one merely plots the experimental values and sketches
in a curve that seems to fit well.

• Transformation of the variables to give near linearity, such as by plot-
ting against 1/x, 1/(ax + b), 1/x2, and other polynomial forms of the
argument may give curves with gentle enough changes in slope to allow
a smooth curve to be drawn. S-shaped curves are not easy to linearize;
the relation

y = abcx

is sometimes employed. The constants a, b, and c are determined by
special procedures. Another relation that fits data to an S-shaped curve
is

1

y
= a + be−x

In awkward cases, subdividing the region of interest into subregions
with a piecewise fit in the subregions can be used.
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2.2 Least-Squares Polynomials

• Because polynomials can be readily manipulated, fitting such functions
to data that do not plot linearly is common.

• It will turn out that the normal equations are linear for this situation,
which is an added advantage.

• n as the degree of the polynomial and N as the number of data pairs.
If N = n + 1, the polynomial passes exactly through each point and
the methods discussed earlier apply, so we will always have N > n + l
in the following. We assume the functional relationship

y = a0 + a1x + a2x
2 + . . . + anxn (5)

with errors defined by

ei = Yi − yi = Yi − a0 − a1x − a2x
2 − . . . − anxn

We again use Yi to represent the observed or experimental value corre-
sponding to xi, with xi free of error. We minimize the sum of squares;

S =
N

∑

i=1

e2

i =
N

∑

i=1

(Yi − a0 − a1x − a2x
2 − . . . − anxn)2

At the minimum, all the partial derivatives ∂S/∂a0, ∂S/∂an vanish.
Writing the equations for these gives n + 1 equations:

∂S

∂a0

= 0 =
∑

N

i=1 2(Yi − a0 − a1xi − a2x
2
i
− . . . − aix

n
i
)(−1)

∂S

∂a1

= 0 =
∑

N

i=1 2(Yi − a0 − a1xi − a2x
2
i
− . . . − aix

n
i
)(−xi)

...
∂S

∂an

= 0 =
∑

N

i=1 2(Yi − a0 − a1xi − a2x
2
i
− . . . − aix

n
i
)(−xn

i
)

Dividing each by −2 and rearranging gives the n + 1 normal equations
to be solved simultaneously:

a0N + a1

∑

xi + a2

∑

x2
i
+ . . . + an

∑

xn
i

=
∑

Yi

a0

∑

xi + a1

∑

x2
i
+ a2

∑

x3
i
+ . . . + an

∑

xn+1
i =

∑

xiYi

a0

∑

x2
i + a1

∑

x3
i + a2

∑

x4
i + . . . + an

∑

xn+2

i =
∑

x2
i Yi

...
a0

∑

xn
i

+ a1

∑

xn+1
i + a2

∑

xn+2
i + . . . + an

∑

x2n
i

=
∑

xn
i
Yi

(6)
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Putting these equations in matrix form shows the coefficient matrix;


















N
∑

xi

∑

x2
i

∑

x3
i

. . .
∑

xn
i

∑

xi

∑

x2
i

∑

x3
i

∑

x4
i . . .

∑

xn+1
i

∑

x2
i

∑

x3
i

∑

x4
i

∑

x5
i

. . .
∑

xn+2
i

...
...

...
...

...
...

∑

xn
i

∑

xn+1
i

∑

xn+2
i

∑

xn+3
i . . .

∑

x2n
i



















[a] =



















∑

Yi
∑

xiYi
∑

x2
i
Yi

...
∑

xn
i
Yi



















(7)

All the summatins in Eqs. 6 and 7 run from 1 to N . We will let B
stand for the coefficient matrix.

• Equation 7 represents a linear system. However, you need to know
that this system is ill-conditioned and round-off errors can distort the
solution: the a’s of Eq. 5. Up to degree-3 or -4, the problem is not too
great. Special methods that use orthogonal polynomials are a remedy.
Degrees higher than 4 are used very infrequently. It is often better to
fit a series of lower-degree polynomials to subsets of the data.

• Matrix B of Eq. 7 is called the normal matrix for the least-squares
problem. There is another matrix that corresponds to this, called the
design matrix. It is of the form;

A =



















1 1 1 1 1
x1 x2 x3 . . . xN

x2
1 x2

2 x2
3 . . . x2

N

...
...

...
...

...
xn

1 xn
2 xn

3 . . . xn
N



















AAT is just the coefficient matrix of Eq. 7. It is easy to see that Ay,
where y is the column vector of Y -values, gives the right-hand side of
Eq. 7. We can rewrite Eq. 7 in matrix form, as

AAT a = Ba = Ay

• It is illustrated the use of Eqs. 6 to fit a quadratic to the data of
Table 1. Figure 7 shows a plot of the data. The data are actually a
perturbation of the relation y = 1 − x + 0.2x2. To set up the normal
equations, we need the sums tabulated in Table 1. The equations to
be solved are:

11a0 + 6.01a1 + 4.6545a2 = 5.905
6.01a0 + 4.6545a1 + 4.1150a2 = 2.1839

4.6545a0 + 4.1150a1 + 3.9161a2 = 1.3357
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Table 1: Data to illustrate curve fitting.

Figure 7: Figure for the data to illustrate curve fitting.
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The result is a0 = 0.998, a2 = −1.018,a3 = 0.225, so the least- squares
method gives

y = 0.998 − 1.018x + 0.225x2

which we compare to y = 1 − x + 0.2x2. Errors in the data cause the
equations to differ.

2.3 Use of Orthogonal Polynomials

• We have mentioned that the system of normal equations for a poly-
nomial fit is illconditioned when the degree is high. Even for a cubic
least-squares polynomial, the condition number of the coefficient ma-
trix can be large.

• In one experiment, a cubic polynomial was fitted to 21 data points.
When the data were put into the coefficient matrix of Eq. 7, its condi-
tion number (using 2-norms) was found to be 22,000!.

• This means that small differences in the y-values will make a large
difference in the solution. In fact, if the four right-hand-side values are
each changed by only 0.01 (about 0.1%), the solution for the parameters
of the cubic were changed significantly, by as much as 44%!

• However, if we fit the data with orthogonal polynomials (A sequence of
polynomials is said to be orthogonal with respect to the interval [a,b] if
∫

b

a
P ∗

n
(x)Pm(x)dx = 0 when n 6= m) such as the Chebyshev polynomials.

The condition number of the coefficient matrix is reduced to about 5
and the solution is not much affected by the perturbations.
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Example: The following data:
R/C: 0.73, 0.78, 0.81, 0.86, 0.875, 0.89, 0.95, 1.02, l.03, 1.055, 1.135, 1.14,
1.245, 1.32, 1.385, 1.43, 1.445, 1.535, 1.57, 1.63, 1.755;
Vθ/V∞: 0.0788, 0.0788, 0.064, 0.0788, 0.0681, 0.0703, 0.0703, 0.0681, 0.0681,
0.079, 0.0575, 0.0681, 0.0575, 0.0511, 0.0575, 0.049, 0.0532, 0.0511, 0.049,
0.0532,0.0426:
Let x = R/C and y = Vθ/V∞, We would like our curve to be of the form

g(x) =
A

x
(1 − e−λx2

)

and our least-squares equation becomes

S =
21
∑

i=1

(Yi −
A

xi

(1 − e−λx2

i ))2

Setting Sλ = SA = 0 gives the following equations:

∑

21

i=1(
1

xi

)(1 − e−λx2

i )(Yi −
A

xi

(1 − e−λx2

i )) = 0
∑

21

i=1 xi(e
−λx2

i )(Yi −
A

xi

(1 − e−λx2

i )) = 0

When this system of nonlinear equations is solved, we get

g(x) =
0.07618

x
(1 − e−2.30574x2

)

For these values of A and λ, S = 0.00016. The graph of this function is
presented in Figure 8.

Figure 8: The graph of Vθ/V∞ vs R/C.
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An algorithm for obtaining a least-squares polynomial:

Given N data pairs, (xi, Yi), i = 1, . . . , N , obtain an nth-
degree least-squares polynomial by the following:
Form the coefficient matrix, M , with n+1 rows (r) and n+1
columns (c), by
Set Mrc =

∑

N

i
xr+c−2

i

Form the right-hand-side vector b, with n + 1 rows (r), by:
Set br =

∑

N

i xr−1
i Yi

Solve the linear system Ma = b to get the coefficients in
y = a0 + a1x + a2x

2 + . . . + anxn

which is the desired polynomial that fits the data.
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