Final Jan 15, 2007 14.00–16.00 Good Luck!

- 1. (25 Pts) Consider the solution to f(x) = 0.5 where $f(x) = x^3$. Choosing initial guesses of $x_a = 0$ and $x_b = 1$,
 - i Write down an expression to show how the error en in the bisection method decreases with subsequent iterations.
 - ii Using the bisection method, determine the solution to four decimal places. Does the number of iterations this took agree with the predicted number?

- - i A function $f_{app}(x)$ is to be used as an approximation to a set of data (x_i, f_i) with $i = 0, 1, 2, \ldots, N$. Suppose further that the function $f_{app}(x)$ depends on two parameters a and b. Provide full details of how the parameters a and b can be determined by a Least Squares Method.
 - ii Using the result of the previous item, obtain the normal equations for the function $f_{app}(x) = a + b\sqrt{x}$. Do not attempt to solve these equations.

- - i Find the Fourier coefficients for $f(x) = x^2 1$ if it is periodic and one period extends from x = -1 to x = 2. Do not evaluate the integrals.
 - ii Write the Fourier series expansion for this function up to 3^{rd} term.

- - i Fill the following table within the five digit accuracy

x_i	f_i
0.00000	0.00000
1.20000	

ii Approximate $\int_0^{1.2} f(x) dx$ using the *Trapezoidal Rule* and a step size of h = 0.2.

iii Approximate $\int_0^{1.2} f(x) dx$ using the *Trapezoidal Rule* and a step size of h = 0.4.

iv Analyze and compare your results. Estimate the *error* in your answers.