Ceng 375 Numerical Computing Final Aug 8, 2005 09.00–11.00 Good Luck!

1 (20 Pts)

i A three digit, decimal machine which rounds all intermediate calculations, calculates the value of

 $f(x) = x^2 - 6x + 8$ for x = 1.99 as $\overline{f}(1.99) = 0.0600$

What are the forward error associated with this calculation?

2 (20 Pts) In Newton's method the approximation x_{n+1} to a root of f(x) = 0 is computed from the approximation x_n using the equation

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- i Derive the above formula, using a Taylor series of f(x).
- ii For $f(x) = 2x 5^{-2x}$, refine the approximation $x_0 = 0.23$ to the unique root of f(x) by carrying out one iteration of Newton's method.
- iii What are the assumptions under which the above formula for Newton's method work?

 $3~(25~\mathrm{Pts})$ Consider the matrix

$$A = \left[\begin{array}{rrrr} 3 & -1 & 2 \\ 1 & 1 & 3 \\ -3 & 0 & 5 \end{array} \right]$$

- i Use the Gaussian elimination method to triangularize this matrix and from that gets its determinant.
- ii Get the inverse of the matrix through Gaussian elimination.
- iii Get the inverse of the matrix through Gauss-Jordan method.

4 (25 Pts)

- i Find the Fourier coefficients for $f(x) = x^3$ if it is periodic and one period extends from x = -1 to x = 2. Do not evaluate the integrals.
- ii Write the Fourier series expansion for this function up to 3^{rd} term.

5 (20 Pts) Consider the difference approximation

$$f_n' = \frac{-f_{n+2} + 4f_{n+1} - 3f_n}{2h}$$

where f_n means f(x) and f_{n+1} means f(x+h)

- i Use this formula to approximate the derivative of f(x) = cos(x) at x = 0 using step sizes of h = 0.10 and 0.20.
- ii Make an error analysis. Estimate the order of error $(O(h^2))$. Hints: The ratio of errors and the difference with the exact value.