
Programming
Version 7

MATLAB®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Programming
© COPYRIGHT 1984 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History:

June 2004 First printing New for MATLAB 7.0 (Release 14).
Formerly part of Using MATLAB.

October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)

i

Contents

1
Data Structures

Creating and Concatenating Matrices 1-3
Constructing a Simple Matrix . 1-4
Specialized Matrix Functions . 1-4
Concatenating Matrices . 1-7
Matrix Concatenation Functions . 1-8
Generating a Numeric Sequence . 1-10
Combining Unlike Data Types . 1-11

Matrix Indexing . 1-17
Accessing Single Elements . 1-17
Linear Indexing . 1-18
Functions That Control Indexing Style 1-19
Accessing Multiple Elements . 1-19
Logical Indexing . 1-21
Indexing on Assignment . 1-22

Getting Information About a Matrix 1-23
Dimensions of the Matrix . 1-23
Data Types Used in the Matrix . 1-24
Data Structures Used in the Matrix . 1-25

Resizing and Reshaping Matrices . 1-26
Expanding the Size of a Matrix . 1-26
Diminishing the Size of a Matrix . 1-30
Reshaping a Matrix . 1-31
Preallocating Memory . 1-33

Shifting and Sorting Matrices . 1-35
Shift and Sort Functions . 1-35
Shifting the Location of Matrix Elements 1-35
Sorting the Data in Each Column . 1-37
Sorting the Data in Each Row . 1-37
Sorting Row Vectors . 1-38

ii Contents

Operating on Diagonal Matrices . 1-39
Constructing a Matrix from a Diagonal Vector 1-39
Returning a Triangular Portion of a Matrix 1-40
Concatenating Matrices Diagonally . 1-40

Empty Matrices, Scalars, and Vectors 1-41
The Empty Matrix . 1-41
Scalars . 1-44
Vectors . 1-44

Full and Sparse Matrices . 1-46
Sparse Matrix Functions . 1-46

Multidimensional Arrays . 1-48
Overview . 1-48
Creating Multidimensional Arrays . 1-50
Accessing Multidimensional Array Properties 1-54
Indexing Multidimensional Arrays . 1-54
Reshaping Multidimensional Arrays . 1-58
Permuting Array Dimensions . 1-60
Computing with Multidimensional Arrays 1-62
Organizing Data in Multidimensional Arrays 1-64
Multidimensional Cell Arrays . 1-66
Multidimensional Structure Arrays . 1-67

Summary of Matrix and Array Functions 1-69

2
Data Types

Overview of MATLAB Data Types . 2-2

Numeric Types . 2-4
Integers . 2-4
Floating-Point Numbers . 2-6
Complex Numbers . 2-11
Infinity and NaN . 2-12

iii

Identifying Numeric Types . 2-14
Display Format for Numeric Values . 2-14
Function Summary . 2-16

Logical Types . 2-20
Creating a Logical Array . 2-20
How Logical Arrays Are Used . 2-22
Identifying Logical Arrays . 2-24

Characters and Strings . 2-25
Creating Character Arrays . 2-25
Cell Arrays of Strings . 2-27
String Comparisons . 2-30
Searching and Replacing . 2-33
Converting from Numeric to String . 2-34
Converting from String to Numeric . 2-36
Function Summary . 2-38

Dates and Times . 2-41
Types of Date Formats . 2-41
Conversions Between Date Formats . 2-43
Date String Formats . 2-44
Output Formats . 2-44
Current Date and Time . 2-46
Function Summary . 2-47

Structures . 2-49
Building Structure Arrays . 2-50
Accessing Data in Structure Arrays . 2-53
Using Dynamic Field Names . 2-54
Finding the Size of Structure Arrays . 2-55
Adding Fields to Structures . 2-56
Deleting Fields from Structures . 2-56
Applying Functions and Operators . 2-56
Writing Functions to Operate on Structures 2-57
Organizing Data in Structure Arrays . 2-59
Nesting Structures . 2-63
Function Summary . 2-65

iv Contents

Cell Arrays . 2-66
Creating Cell Arrays . 2-67
Obtaining Data from Cell Arrays . 2-70
Deleting Cells . 2-72
Reshaping Cell Arrays . 2-72
Replacing Lists of Variables with Cell Arrays 2-72
Applying Functions and Operators . 2-74
Organizing Data in Cell Arrays . 2-75
Nesting Cell Arrays . 2-76
Converting Between Cell and Numeric Arrays 2-78
Cell Arrays of Structures . 2-78
Function Summary . 2-79

Function Handles . 2-80
Constructing and Invoking a Function Handle 2-80
Calling a Function Using Its Handle . 2-80
Simple Function Handle Example . 2-81

MATLAB Classes . 2-82

Java Classes . 2-83

3
Basic Program Components

Variables . 3-2
Types of Variables . 3-2
Naming Variables . 3-6
Guidelines to Using Variables . 3-7
Scope of a Variable . 3-7
Lifetime of a Variable . 3-8

Keywords . 3-9

Special Values . 3-10

v

Operators . 3-12
Arithmetic Operators . 3-12
Relational Operators . 3-13
Logical Operators . 3-15
Operator Precedence . 3-20

MATLAB Expressions . 3-22
String Evaluation . 3-22
Shell Escape Functions . 3-23

Regular Expressions . 3-25
MATLAB Regular Expression Functions 3-25
Elements of an Expression . 3-26
Character Classes . 3-26
Character Representation . 3-29
Logical Operators . 3-30
Lookaround Operators . 3-33
Quantifiers . 3-36
Tokens . 3-40
Handling Multiple Strings . 3-46
Operator Summary . 3-50

Comma-Separated Lists . 3-54
Generating a List from a Cell Array . 3-54
Generating a List from a Structure . 3-55
How to Use the Comma-Separated List 3-56
Fast Fourier Transform Example . 3-58

Program Control Statements . 3-60
Conditional Control — if, switch . 3-60
Loop Control — for, while, continue, break 3-64
Error Control — try, catch . 3-67
Program Termination — return . 3-68

Symbol Reference . 3-69
Asterisk — * . 3-70
At — @ . 3-70
Colon — : . 3-71
Comma — , . 3-72

vi Contents

Curly Braces — { } . 3-73
Dot — . . 3-73
Dot-Dot — .. . 3-74
Dot-Dot-Dot (Ellipsis) — 3-74
Dot-Parentheses — .() . 3-75
Exclamation Point — ! . 3-75
Parentheses — () . 3-76
Percent — % . 3-76
Percent-Brace — %{ %} . 3-77
Semicolon — ; . 3-77
Single Quotes — ' ' . 3-78
Space Character . 3-78
Slash and Backslash — / \ . 3-79
Square Brackets — [] . 3-79

MATLAB Functions . 3-81
M-File Functions . 3-81
Built-In Functions . 3-82
Overloaded MATLAB Functions . 3-83

4
M-File Programming

Program Development . 4-2
Creating a Program . 4-2
Getting the Bugs Out . 4-3
Cleaning Up the Program . 4-4
Improving Performance . 4-5
Checking It In . 4-6

Working with M-Files . 4-7
Types of M-Files . 4-7
Basic Parts of an M-File . 4-8
Creating a Simple M-File . 4-13
Providing Help for Your Program . 4-15
Creating P-Code Files . 4-15

vii

M-File Scripts and Functions . 4-16
M-File Scripts . 4-16
M-File Functions . 4-17
Types of Functions . 4-18
Identifying Dependencies . 4-19

Function Arguments . 4-21
Checking the Number of Input Arguments 4-21
Passing Variable Numbers of Arguments 4-23
Returning Output Arguments . 4-25

Function Handles . 4-27
Constructing a Function Handle . 4-27
Calling a Function Using Its Handle . 4-28
Functions That Operate on Function Handles 4-29
Additional Information on Function Handles 4-29

Calling Functions . 4-31
What Happens When You Call a Function 4-31
Determining Which Function Is Called 4-31
MATLAB Calling Syntax . 4-34
Passing Certain Argument Types . 4-37
Passing Arguments in Structures or Cell Arrays 4-39
Calling External Functions . 4-40

5
Types of Functions

Overview of MATLAB Function Types 5-2

Anonymous Functions . 5-3
Constructing an Anonymous Function . 5-3
Arrays of Anonymous Functions . 5-5
Outputs from Anonymous Functions . 5-6
Variables Used in the Expression . 5-8
Examples of Anonymous Functions . 5-11

viii Contents

Primary M-File Functions . 5-14

Nested Functions . 5-15
Writing Nested Functions . 5-15
Calling Nested Functions . 5-17
Variable Scope in Nested Functions . 5-18
Using Function Handles with Nested Functions 5-20
Examples of Nested Functions . 5-25

Subfunctions . 5-31
Calling Subfunctions . 5-32
Accessing Help for a Subfunction . 5-32

Private Functions . 5-33
Private Directories . 5-33
Accessing Help for a Private Function 5-33

Overloaded Functions . 5-34
Class Directories . 5-34

6
Data Import and Export

Overview . 6-3
Text Data . 6-3
Graphics Files . 6-4
Audio and Audio/Video Data . 6-4
Spreadsheets . 6-4
Scientific Formats . 6-4
The Internet . 6-5
Low-Level File I/O . 6-5
Large Data Sets . 6-5
Toolboxes for Importing Data . 6-6

Using the Import Wizard . 6-7
Using the Import Wizard with Text Data 6-7
Using the Import Wizard with Binary Data 6-13

ix

Supported File Formats . 6-16

Saving and Loading MAT-Files . 6-18
Exporting Data to MAT-Files . 6-18
Importing Data from MAT-Files . 6-24

Importing Text Data . 6-28
The MATLAB Import Wizard . 6-28
Using Import Functions with Text Data 6-28
Importing Numeric Text Data . 6-31
Importing Delimited ASCII Data Files 6-32
Importing Numeric Data with Text Headers 6-32
Importing Mixed Alphabetic and Numeric Data 6-33
Importing from XML Documents . 6-35

Exporting Text Data . 6-36
Exporting Delimited ASCII Data Files 6-37
Using the diary Function to Export Data 6-39
Exporting to XML Documents . 6-40

Working with Graphics Files . 6-41
Getting Information About Graphics Files 6-41
Importing Graphics Data . 6-42
Exporting Graphics Data . 6-42

Working with Audio and Video Data 6-44
Getting Information About Audio/Video Files 6-44
Importing Audio/Video Data . 6-45
Exporting Audio/Video Data . 6-46

Working with Spreadsheets . 6-48
Microsoft Excel Spreadsheets . 6-48
Lotus 123 Spreadsheets . 6-51

Working with Scientific Data Formats 6-54
Working with Common Data Format (CDF) Files 6-54
Working with Flexible Image Transport System (FITS) Files 6-57
Working with Hierarchical Data Format (HDF5) Files 6-59

x Contents

Importing HDF4 and HDF-EOS Data 6-69
Using the HDF Import Tool . 6-69
Using the HDF4 Import Tool Subsetting Options 6-74
Using the MATLAB hdfread Function 6-84
Using the HDF4 Command-Line Interface 6-88

Exporting MATLAB Data to an HDF4 File 6-96
Example: Exporting Data to an HDF4 File 6-96
Using the MATLAB HDF Utility API 6-103

Using Low-Level File I/O Functions 6-105
Opening Files . 6-106
Reading Binary Data . 6-108
Writing Binary Data . 6-110
Controlling Position in a File . 6-110
Reading Strings Line by Line from Text Files 6-112
Reading Formatted ASCII Data . 6-114
Writing Formatted Text Files . 6-115
Closing a File . 6-117

Exchanging Files over the Internet 6-118
Downloading Web Content and Files 6-118
Creating and Uncompressing Zip Archives 6-120
Sending E-Mail . 6-121
Performing FTP File Operations . 6-123

7
Error Handling

Checking for Errors with try-catch . 7-2
Nested try-catch Blocks . 7-3

Handling and Recovering from an Error 7-4
Reporting an Error . 7-4
Identifying the Cause . 7-5
Regenerating an Error . 7-7

xi

Message Identifiers . 7-8
Identifier Format . 7-8
Using Message Identifiers with lasterr 7-9

Warnings . 7-12
Reporting a Warning . 7-12
Identifying the Cause . 7-13

Warning Control . 7-14
Warning Statements . 7-14
Warning Control Statements . 7-15
Output from Control Statements . 7-17
Saving and Restoring State . 7-20
Debug, Backtrace, and Verbose Modes 7-21

Debugging Errors and Warnings . 7-23

8
Classes and Objects

Classes and Objects: An Overview . 8-2
Features of Object-Oriented Programming 8-2
MATLAB Data Class Hierarchy . 8-3
Creating Objects . 8-4
Invoking Methods on Objects . 8-4
Private Methods . 8-5
Helper Functions . 8-5
Debugging Class Methods . 8-5
Setting Up Class Directories . 8-6
Data Structure . 8-7
Tips for C++ and Java Programmers . 8-7

Designing User Classes in MATLAB . 8-9
The MATLAB Canonical Class . 8-9
The Class Constructor Method . 8-10
Examples of Constructor Methods . 8-11
Identifying Objects Outside the Class Directory 8-11

xii Contents

The display Method . 8-12
Accessing Object Data . 8-13
The set and get Methods . 8-13
Indexed Reference Using subsref and subsasgn 8-14
Handling Subscripted Reference . 8-15
Handling Subscripted Assignment . 8-17
Object Indexing Within Methods . 8-18
Defining end Indexing for an Object . 8-19
Indexing an Object with Another Object 8-19
Converter Methods . 8-20

Overloading Operators and Functions 8-21
Overloading Operators . 8-21
Overloading Functions . 8-23

Example — A Polynomial Class . 8-24
Polynom Data Structure . 8-24
Polynom Methods . 8-24
The Polynom Constructor Method . 8-24
Converter Methods for the Polynom Class 8-25
The Polynom display Method . 8-28
The Polynom subsref Method . 8-29
Overloading Arithmetic Operators for polynom 8-29
Overloading Functions for the Polynom Class 8-31
Listing Class Methods . 8-33

Building on Other Classes . 8-35
Simple Inheritance . 8-35
Multiple Inheritance . 8-37
Aggregation . 8-37

Example — Assets and Asset Subclasses 8-38
Inheritance Model for the Asset Class 8-38
Asset Class Design . 8-39
Other Asset Methods . 8-39
The Asset Constructor Method . 8-39
The Asset get Method . 8-41
The Asset set Method . 8-41
The Asset subsref Method . 8-42
The Asset subsasgn Method . 8-43

xiii

The Asset display Method . 8-44
The Asset fieldcount Method . 8-45
Designing the Stock Class . 8-45
The Stock Constructor Method . 8-46
The Stock get Method . 8-48
The Stock set Method . 8-49
The Stock subsref Method . 8-50
The Stock subsasgn Method . 8-51
The Stock display Method . 8-53

Example — The Portfolio Container 8-54
Designing the Portfolio Class . 8-54
The Portfolio Constructor Method . 8-55
The Portfolio display Method . 8-56
The Portfolio pie3 Method . 8-57
Creating a Portfolio . 8-58

Saving and Loading Objects . 8-60
Modifying Objects During Save or Load 8-60

Example — Defining saveobj and loadobj for Portfolio . . 8-61
Summary of Code Changes . 8-61
The saveobj Method . 8-62
The loadobj Method . 8-62
Changing the Portfolio Constructor . 8-63
The Portfolio subsref Method . 8-64

Object Precedence . 8-65
Specifying Precedence of User-Defined Classes 8-66

How MATLAB Determines Which Method to Call 8-67
Selecting a Method . 8-67
Querying Which Method MATLAB Will Call 8-70

xiv Contents

9
Scheduling Program Execution with Timers

Using a MATLAB Timer Object . 9-2
Example: Displaying a Message . 9-3

Creating Timer Objects . 9-4
Timer Object Naming . 9-5

Working with Timer Object Properties 9-6
Retrieving the Value of Timer Object Properties 9-6
Setting the Value of Timer Object Properties 9-7

Starting and Stopping Timers . 9-9
Starting a Timer . 9-9
Starting a Timer at a Specified Time . 9-10
Stopping Timer Objects . 9-10
Blocking the MATLAB Command Line 9-11

Creating and Executing Callback Functions 9-13
Associating Commands with Timer Object Events 9-13
Creating Callback Functions . 9-14
Specifying the Value of Callback Function Properties 9-16

Timer Object Execution Modes . 9-18
Executing a Timer Callback Function Once 9-18
Executing a Timer Callback Function Multiple Times 9-19
Handling Callback Function Queuing Conflicts 9-20

Deleting Timer Objects from Memory 9-22
Testing the Validity of a Timer Object 9-22
Deleting All Existing Timer Objects . 9-22

Finding All Timer Objects in Memory 9-23
Finding Invisible Timer Objects . 9-23

xv

10
Improving Performance and Memory Usage

Analyzing Your Program’s Performance 10-2
The M-File Profiler Utility . 10-2
Stopwatch Timer Functions . 10-2

Techniques for Improving Performance 10-4
Vectorizing Loops . 10-4
Preallocating Arrays . 10-7
Coding Loops in a MEX-File . 10-9
Assigning to Variables . 10-9
Operating on Real Data . 10-10
Using Appropriate Logical Operators 10-10
Overloading Built-In Functions . 10-11
Functions Are Generally Faster Than Scripts 10-11
Load and Save Are Faster Than File I/O Functions 10-11
Avoid Large Background Processes . 10-11

Making Efficient Use of Memory . 10-12
Memory Management Functions . 10-12
Preallocating Arrays to Reduce Fragmentation 10-13
Enlarging Arrays with repmat . 10-13
Working with Variables . 10-13
Converting Full Matrices into Sparse 10-15
Structure of Arrays vs. Array of Structures 10-15
Working with Large Amounts of Data 10-15

Resolving “Out of Memory” Errors . 10-16
General Suggestions For Reclaiming Memory 10-16
Compressing Data in Memory . 10-16
Increasing System Swap Space . 10-17
Freeing Up System Resources on Windows Systems 10-18
Reloading Variables on UNIX Systems 10-18

xvi Contents

11
Programming Tips

Command and Function Syntax . 11-3
Syntax Help . 11-3
Command and Function Syntaxes . 11-3
Command Line Continuation . 11-3
Completing Commands Using the Tab Key 11-4
Recalling Commands . 11-4
Clearing Commands . 11-5
Suppressing Output to the Screen . 11-5

Help . 11-6
Using the Help Browser . 11-6
Help on Functions from the Help Browser 11-7
Help on Functions from the Command Window 11-7
Topical Help . 11-7
Paged Output . 11-8
Writing Your Own Help . 11-8
Help for Subfunctions and Private Functions 11-9
Help for Methods and Overloaded Functions 11-9

Development Environment . 11-10
Workspace Browser . 11-10
Using the Find and Replace Utility . 11-10
Commenting Out a Block of Code . 11-11
Creating M-Files from Command History 11-11
Editing M-Files in EMACS . 11-11

M-File Functions . 11-12
M-File Structure . 11-12
Using Lowercase for Function Names 11-12
Getting a Function’s Name and Path 11-13
What M-Files Does a Function Use? . 11-13
Dependent Functions, Built-Ins, Classes 11-13

Function Arguments . 11-14
Getting the Input and Output Arguments 11-14
Variable Numbers of Arguments . 11-14
String or Numeric Arguments . 11-15

xvii

Passing Arguments in a Structure . 11-15
Passing Arguments in a Cell Array . 11-15

Program Development . 11-16
Planning the Program . 11-16
Using Pseudo-Code . 11-16
Selecting the Right Data Structures . 11-16
General Coding Practices . 11-17
Naming a Function Uniquely . 11-17
The Importance of Comments . 11-17
Coding in Steps . 11-18
Making Modifications in Steps . 11-18
Functions with One Calling Function 11-18
Testing the Final Program . 11-18

Debugging . 11-19
The MATLAB Debug Functions . 11-19
More Debug Functions . 11-19
The MATLAB Graphical Debugger . 11-20
A Quick Way to Examine Variables . 11-20
Setting Breakpoints from the Command Line 11-21
Finding Line Numbers to Set Breakpoints 11-21
Stopping Execution on an Error or Warning 11-21
Locating an Error from the Error Message 11-21
Using Warnings to Help Debug . 11-22
Making Code Execution Visible . 11-22
Debugging Scripts . 11-22

Variables . 11-23
Rules for Variable Names . 11-23
Making Sure Variable Names Are Valid 11-23
Don’t Use Function Names for Variables 11-24
Checking for Reserved Keywords . 11-24
Avoid Using i and j for Variables . 11-24
Avoid Overwriting Variables in Scripts 11-25
Persistent Variables . 11-25
Protecting Persistent Variables . 11-25
Global Variables . 11-26

xviii Contents

Strings . 11-27
Creating Strings with Concatenation 11-27
Comparing Methods of Concatenation 11-27
Store Arrays of Strings in a Cell Array 11-28
Converting Between Strings and Cell Arrays 11-28
Search and Replace Using Regular Expressions 11-29

Evaluating Expressions . 11-30
Find Alternatives to Using eval . 11-30
Assigning to a Series of Variables . 11-30
Short-Circuit Logical Operators . 11-31
Changing the Counter Variable within a for Loop 11-31

MATLAB Path . 11-32
Precedence Rules . 11-32
File Precedence . 11-33
Adding a Directory to the Search Path 11-33
Handles to Functions Not on the Path 11-33
Making Toolbox File Changes Visible to MATLAB 11-34
Making Nontoolbox File Changes Visible to MATLAB 11-35
Change Notification on Windows . 11-35

Program Control . 11-36
Using break, continue, and return . 11-36
Using switch Versus if . 11-37
MATLAB case Evaluates Strings . 11-37
Multiple Conditions in a case Statement 11-37
Implicit Break in switch-case . 11-38
Variable Scope in a switch . 11-38
Catching Errors with try-catch . 11-38
Nested try-catch Blocks . 11-39
Forcing an Early Return from a Function 11-39

Save and Load . 11-40
Saving Data from the Workspace . 11-40
Loading Data into the Workspace . 11-40
Viewing Variables in a MAT-File . 11-41
Appending to a MAT-File . 11-41
Save and Load on Startup or Quit . 11-42
Saving to an ASCII File . 11-42

xix

Files and Filenames . 11-43
Naming M-files . 11-43
Naming Other Files . 11-43
Passing Filenames as Arguments . 11-44
Passing Filenames to ASCII Files . 11-44
Determining Filenames at Run-Time 11-44
Returning the Size of a File . 11-45

Input/Output . 11-46
File I/O Function Overview . 11-46
Common I/O Functions . 11-46
Readable File Formats . 11-46
Using the Import Wizard . 11-47
Loading Mixed Format Data . 11-47
Reading Files with Different Formats 11-47
Reading ASCII Data into a Cell Array 11-48
Interactive Input into Your Program 11-48

Starting MATLAB . 11-49
Getting MATLAB to Start Up Faster 11-49

Operating System Compatibility . 11-50
Executing O/S Commands from MATLAB 11-50
Searching Text with grep . 11-50
Constructing Paths and Filenames . 11-50
Finding the MATLAB Root Directory 11-51
Temporary Directories and Filenames 11-51

Demos . 11-52
Demos Available with MATLAB . 11-52

For More Information . 11-53

xx Contents

A
External Interfaces

Finding the Documentation in Online Help A-2

Reference Documentation . A-5

Index

1

Data Structures

The most basic data structure in MATLAB® is the matrix: a two-dimensional, rectangularly shaped
data structure capable of storing multiple elements of data in an easily accessible format. These data
elements can be numbers, characters, logical states of true or false, or even other MATLAB
structure types. MATLAB uses these two-dimensional matrices to store single numbers and linear
series of numbers as well. In these cases, the dimensions are 1-by-1 and 1-by-n respectively, where n
is the length of the numeric series. MATLAB also supports data structures that have more than two
dimensions. These data structures are referred to as arrays in the MATLAB documentation.

Creating and Concatenating
Matrices (p. 1-3)

Create a matrix or construct one from other matrices.

Matrix Indexing (p. 1-17) Access or assign to elements of a matrix using methods of row
and column indexing.

Getting Information About a
Matrix (p. 1-23)

Retrieve information about the structure or contents of a
matrix.

Resizing and Reshaping Matrices
(p. 1-26)

Change the size, shape, or arrangement of elements in an
existing matrix.

Shifting and Sorting Matrices
(p. 1-35)

Shift matrix elements along one or more dimensions, or sort
them into an ascending or descending order.

Operating on Diagonal Matrices
(p. 1-39)

Construct and manipulate matrices along a diagonal of the
rectangular shape.

Empty Matrices, Scalars, and
Vectors (p. 1-41)

Work with matrices that have one or more dimensions equal to
zero or one.

Full and Sparse Matrices (p. 1-46) Conserve memory and get optimal performance with more
efficient storage of matrices that contain a large number of zero
values.

1 Data Structures

1-2

Multidimensional Arrays (p. 1-48) Create and work with arrays that have more than two
dimensions.

Summary of Matrix and Array
Functions (p. 1-69)

Quick reference to the functions commonly used in working
with matrices.

Creating and Concatenating Matrices

1-3

Creating and Concatenating Matrices
MATLAB is a matrix-based computing environment. All of the data that you
enter into MATLAB is stored in the form of a matrix or a multidimensional
array. Even a single numeric value like 100 is stored as a matrix (in this case,
a matrix having dimensions 1-by-1):

A = 100;

whos A
 Name Size Bytes Class

 A 1x1 8 double array

Regardless of the data type being used, whether it is numeric, character, or
logical true or false data, MATLAB stores this data in matrix (or array) form.
For example, the string 'Hello World' is a 1-by-11 matrix of individual
character elements in MATLAB. You can also build matrices composed of more
complex data types, such as MATLAB structures and cell arrays.

To create a matrix of basic data elements such as numbers or characters, see

• “Constructing a Simple Matrix” on page 1-4

• “Specialized Matrix Functions” on page 1-4

To build a matrix composed of other matrices, see

• “Concatenating Matrices” on page 1-7

• “Matrix Concatenation Functions” on page 1-8

This section also describes

• “Generating a Numeric Sequence” on page 1-10

• “Combining Unlike Data Types” on page 1-11

1 Data Structures

1-4

Constructing a Simple Matrix
The simplest way to create a matrix in MATLAB is to use the matrix
constructor operator, []. Create a row in the matrix by entering elements
(shown as E below) within the brackets. Separate each element with a comma
or space:

row = [E1, E2, ..., Em] row = [E1 E2 ... Em]

For example, to create a one row matrix of five elements, type

A = [12 62 93 -8 22];

To start a new row, terminate the current row with a semicolon:

A = [row1; row2; ...; rown]

This example constructs a 3 row, 5 column (or 3-by-5) matrix of numbers. Note
that all rows must have the same number of elements:

A = [12 62 93 -8 22; 16 2 87 43 91; -4 17 -72 95 6]
A =
 12 62 93 -8 22
 16 2 87 43 91
 -4 17 -72 95 6

The square brackets operator constructs two-dimensional matrices only,
(including 0-by-0, 1-by-1, and 1-by-n matrices). To construct arrays of more
than two dimensions, see “Creating Multidimensional Arrays” on page 1-50.

For instructions on how to read or overwrite any matrix element, see “Matrix
Indexing” on page 1-17.

Specialized Matrix Functions
MATLAB has a number of functions that create different kinds of matrices.
Some create specialized matrices like the Hankel or Vandermonde matrix. The
functions shown in the table below create a matrices for more general use.

Function Description

ones Create a matrix or array of all ones.

zeros Create a matrix or array of all zeros.

Creating and Concatenating Matrices

1-5

Most of these functions return matrices of type double (double-precision
floating point). However, you can easily build basic arrays of any numeric type
using the ones, zeros, and eye functions.

To do this, specify the MATLAB class name as the last argument:

A = zeros(4, 6, 'uint32')
A =
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

Examples
Here are some examples of how you can use these functions.

Creating a Magic Square Matrix. A magic square is a matrix in which the sum of
the elements in each column, or each row, or each main diagonal is the same.
To create a 5-by-5 magic square matrix, use the magic function as shown.

eye Create a matrix with ones on the diagonal and zeros
elsewhere.

accumarray Distribute elements of an input matrix to specified locations
in an output matrix, also allowing for accumulation.

diag Create a diagonal matrix from a vector.

magic Create a square matrix with rows, columns, and diagonals
that add up to the same number.

rand Create a matrix or array of uniformly distributed random
numbers.

randn Create a matrix or array of normally distributed random
numbers and arrays.

randperm Create a vector (1-by-n matrix) containing a random
permutation of the specified integers.

Function Description

1 Data Structures

1-6

A = magic(5)
A =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Note that the elements of each row, each column, and each main diagonal add
up to the same value: 65.

Creating a Random Matrix. The rand function creates a matrix or array with
elements uniformly distributed between zero and one. This example multiplies
each element by 20:

A = rand(5) * 20
A =
 3.8686 13.9580 9.9310 13.2046 14.5423
 13.6445 7.5675 17.9954 6.8394 6.1858
 6.0553 17.2002 16.4326 5.7945 16.7699
 10.8335 17.0731 12.8982 6.8239 11.3614
 3.0175 11.8713 16.3595 10.6816 7.4083

Creating a Diagonal Matrix. Use diag to create a diagonal matrix from a vector.
You can place the vector along the main diagonal of the matrix, or on a diagonal
that is above or below the main one, as shown here. The -1 input places the
vector one row below the main diagonal:

A = [12 62 93 -8 22];

B = diag(A, -1)
B =
 0 0 0 0 0 0
 12 0 0 0 0 0
 0 62 0 0 0 0
 0 0 93 0 0 0
 0 0 0 -8 0 0
 0 0 0 0 22 0

Creating and Concatenating Matrices

1-7

Concatenating Matrices
Matrix concatenation is the process of joining one or more matrices to make a
new matrix. The brackets [] operator discussed earlier in this section serves
not only as a matrix constructor, but also as the MATLAB concatenation
operator. The expression C = [A B] horizontally concatenates matrices A and
B. The expression C = [A; B] vertically concatenates them.

This example constructs a new matrix C by concatenating matrices A and B in
a vertical direction:

A = ones(2, 5) * 6; % 2-by-5 matrix of 6's
B = rand(3, 5); % 3-by-5 matrix of random values

C = [A; B] % Vertically concatenate A and B
C =
 6.0000 6.0000 6.0000 6.0000 6.0000
 6.0000 6.0000 6.0000 6.0000 6.0000
 0.6154 0.7382 0.9355 0.8936 0.8132
 0.7919 0.1763 0.9169 0.0579 0.0099
 0.9218 0.4057 0.4103 0.3529 0.1389

Keeping Matrices Rectangular
You can construct matrices, or even multidimensional arrays, using
concatenation as long as the resulting matrix does not have an irregular shape
(as in the second illustration shown below). If you are building a matrix
horizontally, then each component matrix must have the same number of rows.
When building vertically, each component must have the same number of
columns.

This diagram shows two matrices of the same height (i.e., same number of
rows) being combined horizontally to form a new matrix.

4
3

3-by-4

4
3

3-by-63-by-2

7 23

1141

90-1

46 0 13 -4

9844 62 31

3 51 -9 25

7 23 46 0 13 -4

41 11 44 9862 31

-1 90 3 51 -9 25

1 Data Structures

1-8

The next diagram illustrates an attempt to horizontally combine two matrices
of unequal height. MATLAB does not allow this.

Matrix Concatenation Functions
The following functions combine existing matrices to form a new matrix.

Examples
Here are some examples of how you can use these functions.

Concatenating Matrices and Arrays. An alternative to using the [] operator for
concatenation are the three functions cat, horzcat, and vertcat. With these
functions, you can construct matrices (or multidimensional arrays) along a
specified dimension. Either of the following commands accomplish the same
task as the command C = [A; B] used in the section on “Concatenating
Matrices” on page 1-7:

C = cat(1, A, B); % Concatenate along the first dimension
C = vertcat(A, B); % Concatenate vertically

Function Description

cat Concatenate matrices along the specified dimension

horzcat Horizontally concatenate matrices

vertcat Vertically concatenate matrices

repmat Create a new matrix by replicating and tiling existing
matrices

blkdiag Create a block diagonal matrix from existing matrices

3
2-by-4

3-by-2

7 23

41 11

-1 90

46 0 13 -4

44 62 31 98

7 23 46 0 13 -4

41 44 62 31 98

-1 90

11

Creating and Concatenating Matrices

1-9

Replicating a Matrix. Use the repmat function to create a matrix composed of
copies of an existing matrix. When you enter

repmat(M, v, h)

MATLAB replicates input matrix M v times vertically and h times horizontally.
For example, to replicate existing matrix A into a new matrix B, use

A = [8 1 6; 3 5 7; 4 9 2]
A =
 8 1 6
 3 5 7
 4 9 2

B = repmat(A, 2, 4)
B =
 8 1 6 8 1 6 8 1 6 8 1 6
 3 5 7 3 5 7 3 5 7 3 5 7
 4 9 2 4 9 2 4 9 2 4 9 2
 8 1 6 8 1 6 8 1 6 8 1 6
 3 5 7 3 5 7 3 5 7 3 5 7
 4 9 2 4 9 2 4 9 2 4 9 2

Creating a Block Diagonal Matrix. The blkdiag function combines matrices in a
diagonal direction, creating what is called a block diagonal matrix. All other
elements of the newly created matrix are set to zero:

A = magic(3);
B = [-5 -6 -9; -4 -4 -2];
C = eye(2) * 8;

D = blkdiag(A, B, C)
D =
 8 1 6 0 0 0 0 0
 3 5 7 0 0 0 0 0
 4 9 2 0 0 0 0 0
 0 0 0 -5 -6 -9 0 0
 0 0 0 -4 -4 -2 0 0
 0 0 0 0 0 0 8 0
 0 0 0 0 0 0 0 8

1 Data Structures

1-10

Generating a Numeric Sequence
Because numeric sequences can often be useful in constructing and indexing
into matrices and arrays, MATLAB provides a special operator to assist in
creating them.

This section covers

• “The Colon Operator”

• “Using the Colon Operator with a Step Value”

The Colon Operator
The colon operator (first:last) generates a 1-by-n matrix (or vector) of
sequential numbers from the first value to the last. The default sequence is
made up of incremental values, each 1 greater than the previous one:

A = 10:15
A =
 10 11 12 13 14 15

The numeric sequence does not have to be made up of positive integers. It can
include negative numbers and fractional numbers as well:

A = -2.5:2.5
A =
 -2.5000 -1.5000 -0.5000 0.5000 1.5000 2.5000

By default, MATLAB always increments by exactly 1 when creating the
sequence, even if the ending value is not an integral distance from the start:

A = 1:6.3
A =
 1 2 3 4 5 6

Also, the default series generated by the colon operator always increments
rather than decrementing. The operation shown in this example attempts to
increment from 9 to 1 and thus MATLAB returns an empty matrix:

A = 9:1
A =
 Empty matrix: 1-by-0

The next section explains how to generate a nondefault numeric series.

Creating and Concatenating Matrices

1-11

Using the Colon Operator with a Step Value
To generate a series that does not use the default of incrementing by 1, specify
an additional value with the colon operator (first:step:last). In between the
starting and ending value is a step value that tells MATLAB how much to
increment (or decrement, if step is negative) between each number it
generates.

To generate a series of numbers from 10 to 50, incrementing by 5, use

A = 10:5:50
A =
 10 15 20 25 30 35 40 45 50

You can increment by noninteger values. This example increments by 0.2:

A = 3:0.2:3.8
A =
 3.0000 3.2000 3.4000 3.6000 3.8000

To create a sequence with a decrementing interval, specify a negative step
value:

A = 9:-1:1
A =
 9 8 7 6 5 4 3 2 1

Combining Unlike Data Types
Matrices and arrays can be composed of elements of most any MATLAB data
type as long as all elements in the matrix are of the same type. If you do include
elements of unlike data types when constructing a matrix, MATLAB converts
some elements so that all elements of the resulting matrix are of the same type.
(See “Data Types” on page 2-1 for information on any of the MATLAB data
types discussed here.)

1 Data Structures

1-12

Data type conversion is done with respect to a preset precedence of data types.
The following table shows the five data types you can concatenate with an
unlike type without generating an error.

For example, concatenating a double and single matrix always yields a
matrix of type single. MATLAB converts the double element to single to
accomplish this.

Combining Unlike Integer Types
If you combine different integer types in a matrix (e.g., signed with unsigned,
or 8-bit integers with 16-bit integers), MATLAB returns a matrix in which all
elements are of one common type. MATLAB sets all elements of the resulting
matrix to the data type of the left-most element in the input matrix. For
example, the result of the following concatenation is a vector of three 16-bit
signed integers:

A = [int16(450) uint8(250) int32(1000000)]

MATLAB also displays a warning to inform you that the result may not be
what you had expected:

A = [int16(450) uint8(250) int32(1000000)];
Warning: Concatenation with dominant (left-most) integer class
may overflow other operands on conversion to return class.

TYPE character integer single double logical

character character character character character invalid

integer character integer integer integer integer

single character integer single single single

double character integer single double double

logical invalid integer single double logical

Creating and Concatenating Matrices

1-13

You can disable this warning by entering the following two commands directly
after the operation that caused the warning. The first command gets the
message identifier associated with the most recent warning issued by
MATLAB. The second command uses this identifier to disable any further
warnings of that type from being issued:

[msg, intcat_msgid] = lastwarn;
warning('off', intcat_msgid);

To reenable the warning so that it will now be displayed, use

warning('on', intcat_msgid);

You can use these commands to disable or enable the display of any MATLAB
warning.

Example of Combining Unlike Integer Sizes. After disabling the integer
concatenation warnings as shown above, concatenate the following two
numbers once, and then switch their order. The return value depends on the
order in which the integers are concatenated. The left-most type determines
the data type for all elements in the vector:

A = [int16(5000) int8(50)]
A =
 5000 50

B = [int8(50) int16(5000)]
B =
 50 127

The first operation returns a vector of 16-bit integers. The second returns a
vector of 8-bit integers. The element int16(5000) is set to 127, the maximum
value for an 8-bit signed integer.

The same rules apply to vertical concatenation:

C = [int8(50); int16(5000)]
C =
 50
 127

1 Data Structures

1-14

Note You can find the maximum or minimum values for any MATLAB
integer type using the intmax and intmin functions. For floating-point types,
use realmax and realmin.

Example of Combining Signed with Unsigned. Now do the same exercise with signed
and unsigned integers. Again, the left-most element determines the data type
for all elements in the resulting matrix:

A = [int8(-100) uint8(100)]
A =
 -100 100

B = [uint8(100) int8(-100)]
B =
 100 0

The element int8(-100) is set to zero because it is no longer signed:

Combining Integer and Noninteger Data
If you combine integers with double, single, or logical data types, all
elements of the resulting matrix are given the data type of the left-most
integer. For example, all elements of the following vector are set to int32:

A = [true pi int32(1000000) single(17.32) uint8(250)]

Empty Matrices
If you construct a matrix using empty matrix elements, the empty matrices are
ignored in the resulting matrix:

A = [5.36; 7.01; []; 9.44]
A =
 5.3600
 7.0100
 9.4400

Creating and Concatenating Matrices

1-15

Concatenation Examples
Here are some examples of data type conversion during matrix construction.

Combining Single and Double Types. Combining single values with double values
yields a single matrix. Note that 5.73*10^300 is too big to be stored as a
single, thus the conversion from double to single sets it to infinity. (The
class function used in this example returns the data type for the input value):

x = [single(4.5) single(-2.8) pi 5.73*10^300]
x =
 4.5000 -2.8000 3.1416 Inf

class(x) % Display the data type of x
ans =
 single

Combining Integer and Double Types. Combining integer values with double values
yields an integer matrix. Note that the fractional part of pi is rounded to the
nearest integer. (The int8 function used in this example converts its numeric
argument to an 8-bit integer):

x = [int8(21) int8(-22) int8(23) pi 45/6]
x =
 21 -22 23 3 7

class(x)
ans =
 int8

Combining Character and Double Types. Combining character values with double
values yields a character matrix. MATLAB converts the double elements in
this example to their character equivalents:

x = ['A' 'B' 'C' 68 69 70]
x =
 ABCDEF

class(x)
ans =
 char

1 Data Structures

1-16

Combining Logical and Double Types. Combining logical values with double
values yields a double matrix. MATLAB converts the logical true and false
elements in this example to double:

x = [true false false pi sqrt(7)]
x =
 1.0000 0 0 3.1416 2.6458

class(x)
ans =
 double

Matrix Indexing

1-17

Matrix Indexing
This section explains how to use subscripting and indexing to access and assign
values to the elements of a MATLAB matrix. It covers the following:

• “Accessing Single Elements” on page 1-17

• “Linear Indexing” on page 1-18

• “Functions That Control Indexing Style” on page 1-19

• “Accessing Multiple Elements” on page 1-19

• “Logical Indexing” on page 1-21

• “Indexing on Assignment” on page 1-22

Accessing Single Elements
To reference a particular element in a matrix, specify its row and column
number using the following syntax, where A is the matrix variable. Always
specify the row first and column second:

A(row, column)

For example, for a 4-by-4 magic square A,

A = magic(4)
A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

you would access the element at row 4, column 2 with

A(4, 2)
ans =
 14

For arrays with more than two dimensions, specify additional indices following
the row and column indices. See the section on “Multidimensional Arrays” on
page 1-48.

1 Data Structures

1-18

Linear Indexing
With MATLAB, you can refer to the elements of a matrix with a single
subscript, A(k). MATLAB stores matrices and arrays not in the shape that
they appear when displayed in the MATLAB Command Window, but as a
single column of elements. This single column is composed of all of the columns
from the matrix, each appended to the last.

So, matrix A

A = [2 6 9; 4 2 8; 3 0 1]
A =
 2 6 9
 4 2 8
 3 5 1

is actually stored in memory as the sequence

2, 4, 3, 6, 2, 5, 9, 8, 1

The element at row 3, column 2 of matrix A (value = 5) can also be identified as
element 6 in the actual storage sequence. To access this element, you have a
choice of using the standard A(3,2) syntax, or you can use A(6), which is
referred to as linear indexing.

If you supply more subscripts, MATLAB calculates an index into the storage
column based on the dimensions you assigned to the array. For example,
assume a two-dimensional array like A has size [d1 d2], where d1 is the
number of rows in the array and d2 is the number of columns. If you supply two
subscripts (i, j) representing row-column indices, the offset is

(j-1) * d1 + i

Given the expression A(3,2), MATLAB calculates the offset into A’s storage
column as (2-1) * 3 + 3, or 6. Counting down six elements in the column
accesses the value 5.

Matrix Indexing

1-19

Functions That Control Indexing Style
If you have row-column subscripts but want to use linear indexing instead, you
can convert to the latter using the sub2ind function. In the 3-by-3 matrix A
used in the previous section, sub2ind changes a standard row-column index of
(3, 2) to a linear index of 6:

A = [2 6 9; 4 2 8; 3 0 1];

linearindex = sub2ind(size(A), 3, 2)
linearindex =
 6

To get the row-column equivalent of a linear index, use the ind2sub function:

[row col] = ind2sub(size(A), 6)
row =
 3
col =
 2

Accessing Multiple Elements
For the 4-by-4 matrix A shown below, it is possible to compute the sum of the
elements in the fourth column of A by typing

A = magic(4);
A(1,4) + A(2,4) + A(3,4) + A(4,4)

You can reduce the size of this expression using the colon operator. Subscript
expressions involving colons refer to portions of a matrix. The expression

A(1:m, n)

refers to the elements in rows 1 through m of column n of matrix A. Using this
notation, you can compute the sum of the fourth column of A more succinctly:

sum(A(1:4, 4))

1 Data Structures

1-20

Nonconsecutive Elements
To refer to nonconsecutive elements in a matrix, use the colon operator with a
step value. The m:3:n in this expression means to make the assignment to
every third element in the matrix. Note that this example uses linear indexing:

B = A;

B(1:3:16) = -10
B =
 -10 2 3 -10
 5 11 -10 8
 9 -10 6 12
 -10 14 15 -10

The end Keyword
MATLAB provides a keyword called end that designates the last element in the
dimension in which it appears. This keyword can be useful in instances where
your program doesn’t know how many rows or columns there are in a matrix.
You can replace the expression in the previous example with

B(1:3:end) = -10

Note The keyword end has two meanings in MATLAB. It can be used as
explained above, or to terminate a certain block of code (e.g., if and for
blocks).

Specifying All Elements of a Row or Column
The colon by itself refers to all the elements in a row or column of a matrix.
Using the following syntax, you can compute the sum of all elements in the
second column of a 4-by-4 magic square A:

sum(A(:, 2))
ans =
 34

Matrix Indexing

1-21

By using the colon with linear indexing, you can refer to all elements in the
entire matrix. This example displays all the elements of matrix A, returning
them in a column-wise order:

A(:)
ans =
 16
 5
 9
 4
 .
 .
 .
 12
 1

Using a Matrix As an Index
You can repeatedly access an array element using the ones function. To create
a new 2-by-6 matrix out of the ninth element of a 4-by-4 magic square A,

B = A(9 * ones(2, 6))
B =
 3 3 3 3 3 3
 3 3 3 3 3 3

Logical Indexing
A logical matrix provides a different type of array indexing in MATLAB. While
most indices are numeric, indicating a certain row or column number, logical
indices are positional. That is, it is the position of each 1 in the logical matrix
that determines which array element is being referred to.

See “Using Logicals in Array Indexing” on page 2-22 for more information on
this subject.

1 Data Structures

1-22

Indexing on Assignment
When assigning values from one matrix to another matrix, you can use any of
the styles of indexing covered in this section. Matrix assignment statements
also have the following requirement.

In the assignment A(J,K,...) = B(M,N,...), subscripts J, K, M, N, etc. may be
scalar, vector, or array, provided that all of the following are true:

• The number of subscripts specified for B, not including trailing subscripts
equal to 1, does not exceed ndims(B).

• The number of nonscalar subscripts specified for A equals the number of
nonscalar subscripts specified for B. For example, A(5, 1:4, 1, 2) = B(5:8)
is valid because both sides of the equation use one nonscalar subscript.

• The order and length of all nonscalar subscripts specified for A matches the
order and length of nonscalar subscripts specified for B. For example, A(1:4,
3, 3:9) = B(5:8, 1:7) is valid because both sides of the equation (ignoring
the one scalar subscript 3) use a 4-element subscript followed by a 7-element
subscript.

Getting Information About a Matrix

1-23

Getting Information About a Matrix
This section explains how to get the following information about an existing
matrix:

• “Dimensions of the Matrix” on page 1-23

• “Data Types Used in the Matrix” on page 1-24

• “Data Structures Used in the Matrix” on page 1-25

Dimensions of the Matrix
These functions return information about the shape and size of a matrix.

The following examples show some simple ways to use these functions. Both
use the 3-by-5 matrix A shown here:

A = rand(5) * 10;
A(4:5, :) = []
A =
 9.5013 7.6210 6.1543 4.0571 0.5789
 2.3114 4.5647 7.9194 9.3547 3.5287
 6.0684 0.1850 9.2181 9.1690 8.1317

Example Using numel
Using the numel function, find the average of all values in matrix A:

sum(A(:))/numel(A)
ans =
 5.8909

Function Description

length Return the length of the longest dimension. (The length of a
matrix or array with any zero dimension is zero.)

ndims Return the number of dimensions.

numel Return the number of elements.

size Return the length of each dimension.

1 Data Structures

1-24

Example Using ndims, numel, and size
Using ndims and size, go through the matrix and find those values that are
between 5 and 7, inclusive:

if ndims(A) ~= 2
 return
end

[rows cols] = size(A);
for m = 1:rows
 for n = 1:cols
 x = A(m, n);
 if x >= 5 && x <= 7
 disp(sprintf('A(%d, %d) = %5.2f', m, n, A(m,n)))
 end
 end
end

The code returns the following:

A(1, 3) = 6.15
A(3, 1) = 6.07

Data Types Used in the Matrix
These functions test elements of a matrix for a specific data type.

Function Description

isa Detect if input is of a given data type.

iscell Determine if input is a cell array.

iscellstr Determine if input is a cell array of strings.

ischar Determine if input is a character array.

isfloat Determine if input is a floating-point array.

isinteger Determine if input is an integer array.

islogical Determine if input is a logical array.

Getting Information About a Matrix

1-25

Example Using isnumeric and isreal
Pick out the real numeric elements from this vector:

A = [5+7i 8/7 4.23 39j pi 9-2i];

for m = 1:numel(A)
 if isnumeric(A(m)) && isreal(A(m))
 disp(A(m))
 end
end

The values returned are

 1.1429
 4.2300
 3.1416

Data Structures Used in the Matrix
These functions test elements of a matrix for a specific data structure.

isnumeric Determine if input is a numeric array.

isreal Determine if input is an array of real numbers.

isstruct Determine if input is a MATLAB structure array.

Function Description

isempty Determine if input has any dimension with size zero.

isscalar Determine if input is a 1-by-1 matrix.

issparse Determine if input is a sparse matrix.

isvector Determine if input is a 1-by-n or n-by-1 matrix.

Function Description

1 Data Structures

1-26

Resizing and Reshaping Matrices
You can easily enlarge or shrink the size of a matrix, modify its shape, or rotate
it about various axes. This section covers

• “Expanding the Size of a Matrix” on page 1-26

• “Diminishing the Size of a Matrix” on page 1-30

• “Reshaping a Matrix” on page 1-31

• “Preallocating Memory” on page 1-33

Expanding the Size of a Matrix
You can expand the size of any existing matrix as long as doing so does not give
the resulting matrix an irregular shape. (See “Keeping Matrices Rectangular”
on page 1-7). For example, you can vertically combine a 4-by-3 matrix and
7-by-3 matrix because all rows of the resulting matrix have the same number
of columns (3).

Two ways of expanding the size of an existing matrix are

• Concatenating new elements onto the matrix

• Storing to a location outside the bounds of the matrix

Note If you intend to expand the size of a matrix repeatedly over time as it
requires more room (usually done in a programming loop), it is advisable to
preallocate space for the matrix when you initially create it. See
“Preallocating Memory” on page 1-33.

Concatenating Onto the Matrix
Concatenation is most useful when you want to expand a matrix by adding new
elements or blocks that are compatible in size with the original matrix. This
means that the size of all matrices being joined along a specific dimension must
be equal along that dimension. See “Concatenating Matrices” on page 1-7.

Resizing and Reshaping Matrices

1-27

This example runs a user-defined function compareResults on the data in
matrices stats04 and stats03. Each time through the loop, it concatenates the
results of this function onto the end of the data stored in comp04:

col = 10;
comp04 = [];

for k = 1:50
 t = compareResults(stats04(k,1:col), stats03(k,1:col));
 comp04 = [comp04; t];
end

Concatenating to a Structure or Cell Array. You can add on to arrays of structures or
cells in the same way as you do with ordinary matrices. This example creates
a 3-by-8 matrix of structures S, each having 3 fields: x, y, and z, and then
concatenates a second structure matrix S2 onto the original:

Create a 3-by-8 structure array S:

for k = 1:24
 S(k) = struct('x', 10*k, 'y', 10*k+1, 'z', 10*k+2);
end
S = reshape(S, 3, 8);

Create a second array that is 3-by-2 and uses the same field names:

for k = 25:30
 S2(k-24) = struct('x', 10*k, 'y', 10*k+1, 'z', 10*k+2);
end
S2= reshape(S2, 3, 2);

Concatenate S2 onto S along the horizontal dimension:

S = [S S2]
S =
3x10 struct array with fields:
 x
 y
 z

1 Data Structures

1-28

Adding Smaller Blocks to a Matrix
To add one or more elements to a matrix where the sizes are not compatible,
you can often just store the new elements outside the boundaries of the original
matrix. MATLAB automatically pads the matrix with zeros to keep it
rectangular.

Construct a 3-by-5 matrix, and attempt to add a new element to it using
concatenation. The operation fails because you are attempting to join a
one-column matrix with one that has five columns:

A = [10 20 30 40 50; ...
 60 70 80 90 100; ...
 110 120 130 140 150];

A = [A; 160]
??? Error using ==> vertcat
All rows in the bracketed expression must have the same
number of columns.

Try this again, but this time do it in such a way that enables MATLAB to make
adjustments to the size of the matrix. Store the new element in row 4, a row
that does not yet exist in this matrix. MATLAB expands matrix A by an entire
new row by padding columns 2 through 5 with zeros:

A(4,1) = 160
A =
 10 20 30 40 50
 60 70 80 90 100
 110 120 130 140 150
 160 0 0 0 0

Note Attempting to read from nonexistent matrix locations generates an
error. You can only write to these locations.

Resizing and Reshaping Matrices

1-29

You can also expand the matrix by adding a matrix instead of just a single
element:

A(4:6,1:3) = magic(3)+100
A =
 10 20 30 40 50
 60 70 80 90 100
 110 120 130 140 150
 108 101 106 0 0
 103 105 107 0 0
 104 109 102 0 0

You do not have to add new elements sequentially. Wherever you store the new
elements, MATLAB pads with zeros to make the resulting matrix rectangular
in shape:

A(4,8) = 300
A =
 10 20 30 40 50 0 0 0
 60 70 80 90 100 0 0 0
 110 120 130 140 150 0 0 0
 0 0 0 0 0 0 0 300

Expanding a Structure or Cell Array. You can expand a structure or cell array in the
same way that you can a matrix. This example adds an additional cell to a cell
array by storing it beyond the bounds of the original array. MATLAB pads the
data structure with empty cells ([]) to keep it rectangular.

The original array is 2-by-3:

C = {'Madison', 'G', [5 28 1967]; ...
 46, '325 Maple Dr', 3015.28}

Add a cell to C{3,1} and MATLAB appends an entire row:

C{3, 1} = ...
struct('Fund_A', .45, 'Fund_E', .35, 'Fund_G', 20);
C =
 'Madison' 'G' [1x3 double]
 [46] '325 Maple Dr' [3.0153e+003]
 [1x1 struct] [] []

1 Data Structures

1-30

Diminishing the Size of a Matrix
You can delete rows and columns from a matrix by assigning the empty array
[] to those rows or columns. Start with

A = magic(4)
A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Then, delete the second column of A using

A(:, 2) = []

This changes matrix A to

A =
 16 3 13
 5 10 8
 9 6 12
 4 15 1

If you delete a single element from a matrix, the result isn’t a matrix anymore.
So expressions like

A(1,2) = []

result in an error. However, you can use linear indexing to delete a single
element, or a sequence of elements. This reshapes the remaining elements into
a row vector:

A(2:2:10) = []

results in

A =
 16 9 3 6 13 12 1

Resizing and Reshaping Matrices

1-31

Reshaping a Matrix
The following functions change the shape of a matrix.

Examples
Here are a few examples to illustrate some of the ways you can reshape
matrices.

Reshaping a Matrix. Reshape 3-by-4 matrix A to have dimensions 2-by-6:

A = [1 4 7 10; 2 5 8 11; 3 6 9 12]
A =
 1 4 7 10
 2 5 8 11
 3 6 9 12

B = reshape(A, 2, 6)
B =
 1 3 5 7 9 11
 2 4 6 8 10 12

Function Description

reshape Modify the shape of a matrix.

rot90 Rotate the matrix by 90 degrees.

fliplr Flip the matrix about a vertical axis.

flipud Flip the matrix about a horizontal axis.

flipdim Flip the matrix along the specified direction.

transpose Flip a matrix about its main diagonal, turning row vectors
into column vectors and vice versa.

ctranspose Transpose a matrix and replace each element with its
complex conjugate.

1 Data Structures

1-32

Transposing a Matrix. Transpose A so that the row elements become columns. You
can use either the transpose function or the transpose operator (.') to do this:

B = A.'
B =
 1 2 3
 4 5 6
 7 8 9
 10 11 12

There is a separate function called ctranspose that performs a complex
conjugate transpose of a matrix. The equivalent operator for ctranpose on a
matrix A is A':

A = [1+9i 2-8i 3+7i; 4-6i 5+5i 6-4i]
A =
 1.0000 + 9.0000i 2.0000 -8.0000i 3.0000 + 7.0000i
 4.0000 -6.0000i 5.0000 + 5.0000i 6.0000 -4.0000i

B = A'
B =
 1.0000 -9.0000i 4.0000 + 6.0000i
 2.0000 + 8.0000i 5.0000 -5.0000i
 3.0000 -7.0000i 6.0000 + 4.0000i

Rotating a Matrix. Rotate the matrix by 90 degrees:

B = rot90(A)
B =
 10 11 12
 7 8 9
 4 5 6
 1 2 3

Flipping a Matrix. Flip A in a left-to-right direction:

B = fliplr(A)
B =
 10 7 4 1
 11 8 5 2
 12 9 6 3

Resizing and Reshaping Matrices

1-33

Preallocating Memory
Repeatedly expanding the size of an array over time, (for example, adding more
elements to it each time through a programming loop), can adversely affect the
performance of your program. This is because

• MATLAB has to spend time allocating more memory each time you increase
the size of the array.

• This newly allocated memory is likely to be noncontiguous, thus slowing
down any operations that MATLAB needs to perform on the array.

The preferred method for sizing an array that is expected to grow over time is
to estimate the maximum possible size for the array, and preallocate this
amount of memory for it at the time the array is created. In this way, your
program performs one memory allocation that reserves one contiguous block.

The following command preallocates enough space for a 25,000 by 10,000
matrix, and initializes each element to zero:

A = zeros(25000, 10000);

Building a Preallocated Array
Once memory has been preallocated for the maximum estimated size of the
array, you can store your data in the array as you need it, each time appending
to the existing data. This example preallocates a large array, and then reads
blocks of data from a file into the array until it gets to the end of the file:

blocksize = 5000;
maxrows = 2500000; cols = 20;
rp = 1; % row pointer

% Preallocate A to its maximum possible size
A = zeros(maxrows, cols);

% Open the data file, saving the file pointer.
fid = fopen('statfile.dat', 'r');

while true
 % Read from file into a cell array. Stop at EOF.
 block = textscan(fid, '%n', blocksize*cols);
 if isempty(block{1}) break, end;

1 Data Structures

1-34

 % Convert cell array to matrix, reshape, place into A.
 A(rp:rp+blocksize-1, 1:cols) = ...
 reshape(cell2mat(block), blocksize, cols);

 % Process the data in A.
 evaluate_stats(A); % User-defined function

 % Update row pointer
 rp = rp + blocksize;
end

Note If you eventually need more room in a matrix than you had
preallocated, you can preallocate additional storage in the same manner, and
concatenate this additional storage onto the original array.

Shifting and Sorting Matrices

1-35

Shifting and Sorting Matrices
You can sort matrices, multidimensional arrays, and cell arrays of strings
along any dimension and in ascending or descending order of the elements. The
sort functions also return an optional array of indices showing the order in
which elements were rearranged during the sorting operation.

This section covers

• “Shift and Sort Functions” on page 1-35

• “Shifting the Location of Matrix Elements” on page 1-35

• “Sorting the Data in Each Column” on page 1-37

• “Sorting the Data in Each Row” on page 1-37

• “Sorting Row Vectors” on page 1-38

Shift and Sort Functions
Use these functions to shift or sort the elements of a matrix.

Shifting the Location of Matrix Elements
The circshift function shifts the elements of a matrix in a circular manner
along one or more dimensions. Rows or columns that are shifted out of the
matrix circulate back into the opposite end. For example, shifting a 4-by-7
matrix one place to the left moves the elements in columns 2 through 7 to
columns 1 through 6, and moves column 1 to column 7.

Function Description

circshift Circularly shift matrix contents.

sort Sort array elements in ascending or descending order.

sortrows Sort rows in ascending order.

issorted Determine if matrix elements are in sorted order.

1 Data Structures

1-36

Create a 5-by-8 matrix named A and shift it to the right along the second
(horizontal) dimension by three places. (You would use [0, -3] to shift to the
left by three places):

A = [1:8; 11:18; 21:28; 31:38; 41:48]
A =
 1 2 3 4 5 6 7 8
 11 12 13 14 15 16 17 18
 21 22 23 24 25 26 27 28
 31 32 33 34 35 36 37 38
 41 42 43 44 45 46 47 48

B = circshift(A, [0, 3])
B =
 6 7 8 1 2 3 4 5
 16 17 18 11 12 13 14 15
 26 27 28 21 22 23 24 25
 36 37 38 31 32 33 34 35
 46 47 48 41 42 43 44 45

Now take A and shift it along both dimensions: three columns to the right and
two rows up:

A = [1:8; 11:18; 21:28; 31:38; 41:48];

B = circshift(A, [-2, 3])
B =
 26 27 28 21 22 23 24 25
 36 37 38 31 32 33 34 35
 46 47 48 41 42 43 44 45
 6 7 8 1 2 3 4 5
 16 17 18 11 12 13 14 15

Since circshift circulates shifted rows and columns around to the other end
of a matrix, shifting by the exact size of A returns all rows and columns to their
original location:

B = circshift(A, size(A));

all(B(:) == A(:)) % Do all elements of B equal A?
ans =
 1 % Yes

Shifting and Sorting Matrices

1-37

Sorting the Data in Each Column
The sort function sorts matrix elements along a specified dimension. The
syntax for the function is

sort(matrix, dimension)

To sort the columns of a matrix, specify 1 as the dimension argument. To sort
along rows, specify dimension as 2.

This example first constructs a 3-by-5 matrix:

A = rand(3,5) * 10
A =
 9.5013 7.6210 6.1543 4.0571 0.5789
 2.3114 4.5647 7.9194 9.3547 3.5287
 6.0684 0.1850 9.2181 9.1690 8.1317

Sort each column of A in ascending order:

c = sort(A, 1)
c =
 2.3114 0.1850 6.1543 4.0571 0.5789
 6.0684 4.5647 7.9194 9.1690 3.5287
 9.5013 7.6210 9.2181 9.3547 8.1317

issorted(c(:, 1))
ans =
 1

Sorting the Data in Each Row
Sort each row of A in descending order. Note that issorted tests for an
ascending sequence. You can flip the vector to test for a sorted descending
sequence:

r = sort(A, 2, 'descend')
r =
 9.5013 7.6210 6.1543 4.0571 0.5789
 9.3547 7.9194 4.5647 3.5287 2.3114
 9.2181 9.1690 8.1317 6.0684 0.1850

1 Data Structures

1-38

issorted(fliplr(r(1, :)))
ans =
 1

When you specify a second output, sort returns the indices of the original
matrix A positioned in the order they appear in the output matrix. In the
following example, the second row of index contains the sequence 4 3 2 5 1,
which means that the sorted elements in output matrix r were taken from
A(2,4), A(2,3), A(2,2), A(2,5), and A(2,1):

[r index] = sort(A, 2, 'descend');
index
index =
 1 2 3 4 5
 4 3 2 5 1
 3 4 5 1 2

Sorting Row Vectors
The sortrows function keeps the elements of each row in their original order
but sorts the entire row vectors according to the order of the elements in the
first column:

rowsort = sortrows(A)
rowsort =
 2.3114 4.5647 7.9194 9.3547 3.5287
 6.0684 0.1850 9.2181 9.1690 8.1317
 9.5013 7.6210 6.1543 4.0571 0.5789

To run the sort based on a different column, include a second input argument
that indicates which column to use. This example sorts the row vectors so that
the elements in the third column are in ascending order:

rowsort = sortrows(A, 3)
rowsort =
 9.5013 7.6210 6.1543 4.0571 0.5789
 2.3114 4.5647 7.9194 9.3547 3.5287
 6.0684 0.1850 9.2181 9.1690 8.1317

issorted(rowsort(:, 3))
ans =
 1

Operating on Diagonal Matrices

1-39

Operating on Diagonal Matrices
There are several MATLAB functions that work specifically on diagonal
matrices.

Constructing a Matrix from a Diagonal Vector
The diag function has two operations that it can perform. You can use it to
generate a diagonal matrix:

A = diag([12:4:32])
A =
 12 0 0 0 0 0
 0 16 0 0 0 0
 0 0 20 0 0 0
 0 0 0 24 0 0
 0 0 0 0 28 0
 0 0 0 0 0 32

You can also use the diag function to scan an existing matrix and return the
values found along one of the diagonals:

A = magic(5)
A =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Function Description

blkdiag Construct a block diagonal matrix from input arguments.

diag Return a diagonal matrix or the diagonals of a matrix.

trace Compute the sum of the elements on the main diagonal.

tril Return the lower triangular part of a matrix.

triu Return the upper triangular part of a matrix.

1 Data Structures

1-40

diag(A, 2) % Return contents of second diagonal of A
ans =
 1
 14
 22

Returning a Triangular Portion of a Matrix
The tril and triu functions return a triangular portion of a matrix, the former
returning the piece from the lower left and the latter from the upper right. By
default, the main diagonal of the matrix divides these two segments. You can
use an alternate diagonal by specifying an offset from the main diagonal as a
second input argument:

A = magic(6);

B = tril(A, -1)
B =
 0 0 0 0 0 0
 3 0 0 0 0 0
 31 9 0 0 0 0
 8 28 33 0 0 0
 30 5 34 12 0 0
 4 36 29 13 18 0

Concatenating Matrices Diagonally
You can diagonally concatenate matrices to form a composite matrix using the
blkdiag function. See “Creating a Block Diagonal Matrix” on page 1-9 for more
information on how this works.

Empty Matrices, Scalars, and Vectors

1-41

Empty Matrices, Scalars, and Vectors
Although matrices are two dimensional, they do not always appear to have a
rectangular shape. A 1-by-8 matrix, for example, has two dimensions yet is
linear. These matrices are described in the following sections:

• “The Empty Matrix” on page 1-41

An empty matrix has one of more dimensions that are equal to zero. A
two-dimensional matrix with both dimensions equal to zero appears in
MATLAB as []. The expression A = [] assigns a 0-by-0 empty matrix to A.

• “Scalars” on page 1-44

A scalar is 1-by-1 and appears in MATLAB as a single real or complex
number (e.g., 7, 583.62, -3.51, 5.46097e-14, 83+4i).

• “Vectors” on page 1-44

A vector is 1-by-n or n-by-1, and appears in MATLAB as a row or column of
real or complex numbers:

 Column Vector Row Vector

 53.2 53.2 87.39 4-12i 43.9
 87.39
 4-12i
 43.9

The Empty Matrix
A matrix having at least one dimension equal to zero is called an empty matrix.
The simplest empty matrix is 0-by-0 in size. Examples of more complex
matrices are those of dimension 0-by-5 or 10-by-0.

To create a 0-by-0 matrix, use the square bracket operators with no value
specified:

A = [];

whos A
 Name Size Bytes Class

 A 0x0 0 double array

1 Data Structures

1-42

You can create empty matrices (and arrays) of other sizes using the zeros,
ones, rand, or eye functions. To create a 0-by-5 matrix, for example, use

A = zeros(0,5)

Operating on an Empty Matrix
The basic model for empty matrices is that any operation that is defined for
m-by-n matrices, and that produces a result whose dimension is some function
of m and n, should still be allowed when m or n is zero. The size of the result of
this operation is consistent with the size of the result generated when working
with nonempty values, but instead is evaluated at zero.

For example, horizontal concatenation

C = [A B]

requires that A and B have the same number of rows. So if A is m-by-n and B is
m-by-p, then C is m-by-(n+p). This is still true if m or n or p is zero.

As with all matrices in MATLAB, you must follow the rules concerning
compatible dimensions. In the following example, an attempt to add a 1-by-3
matrix to a 0-by-3 empty matrix results in an error:

[1 2 3] + ones(0,3)

??? Error using ==> +
Matrix dimensions must agree.

Using Empty Matrices in Relational Operations
You can use empty matrices in relational operations such as “equal to” (==) or
“greater than” (>) as long as both operands have the same dimensions, or the
nonempty operand is scalar. The result of any relational operation involving an
empty matrix is the empty matrix. Even comparing an empty matrix for
equality to itself does not return true, but instead yields an empty matrix:

x = ones(0,3);
y = x;

y == x
ans =
 Empty matrix: 0-by-3

Empty Matrices, Scalars, and Vectors

1-43

Using Empty Matrices in Logical Operations
MATLAB has two distinct types of logical operators:

• Short-circuit (&&, ||) — Used in testing multiple logical conditions (e.g., x >=
50 && x < 100) where each condition evaluates to a scalar true or false.

• Element-wise (&, |) — Performs a logical AND, OR, or NOT on each element
of a matrix or array.

Short-circuit Operations. The rule for operands used in short-circuit operations is
that each operand must be convertible to a logical scalar value. Because of this
rule, empty matrices cannot be used in short-circuit logical operations. Such
operations return an error.

The only exception is in the case where MATLAB can determine the result of a
logical statement without having to evaluate the entire expression. This is true
for the following two statements because the result of the entire statements are
known by considering just the first term:

true || []
ans =
 1

false && []
ans =
 0

Element-wise Operations. Unlike the short-circuit operators, all element-wise
operations on empty matrices are considered valid as long as the dimensions of
the operands agree, or the nonempty operand is scalar. Element-wise
operations on empty matrices always return an empty matrix:

true | []
ans =
 []

Note This behavior is consistent with the way MATLAB does scalar
expansion with binary operators, wherein the nonscalar operand determines
the size of the result.

1 Data Structures

1-44

Scalars
Any individual real or complex number is represented in MATLAB as a 1-by-1
matrix called a scalar value:

A = 5;

ndims(A) % Check number of dimensions in A
ans =
 2

size(A) % Check value of row and column dimensions
ans =
 1 1

Use the isscalar function to tell if a variable holds a scalar value:

isscalar(A)
ans =
 1

Vectors
Matrices with one dimension equal to one and the other greater than one are
called vectors. Here is an example of a numeric vector:

A = [5.73 2-4i 9/7 25e3 .046 sqrt(32) 8j];

size(A) % Check value of row and column dimensions
ans =
 1 7

You can construct a vector out of other vectors, as long as the critical
dimensions agree. All components of a row vector must be scalars or other row
vectors. Similarly, all components of a column vector must be scalars or other
column vectors:

A = [29 43 77 9 21];
B = [0 46 11];

C = [A 5 ones(1,3) B]
C =
 29 43 77 9 21 5 1 1 1 0 46 11

Empty Matrices, Scalars, and Vectors

1-45

Concatenating an empty matrix to a vector has no effect on the resulting
vector. The empty matrix is ignored in this case:

A = [5.36; 7.01; []; 9.44]
A =
 5.3600
 7.0100
 9.4400

Use the isvector function to tell if a variable holds a vector:

isvector(A)
ans =
 1

1 Data Structures

1-46

Full and Sparse Matrices
It is not uncommon to have matrices with a large number of zero-valued
elements and, because MATLAB stores zeros in the same way it stores any
other numeric value, these elements can use memory space unnecessarily and
can sometimes require extra computing time.

Sparse matrices provide a way to store data that has a large percentage of zero
elements more efficiently. While full matrices internally store every element in
memory regardless of value, sparse matrices store only the nonzero elements
and their row indices. Using sparse matrices can significantly reduce the
amount of memory required for data storage.

You can create sparse matrices for the double and logical data types. All
MATLAB built-in arithmetic, logical, and indexing operations can be applied
to sparse matrices, or to mixtures of sparse and full matrices. Operations on
sparse matrices return sparse matrices and operations on full matrices return
full matrices.

See the section on “Sparse Matrices” in the MATLAB Mathematics
documentation for more information on working with sparse matrices.

Sparse Matrix Functions
This table shows some of the functions most commonly used when working
with sparse matrices.

Function Description

full Convert a sparse matrix to a full matrix.

issparse Determine if a matrix is sparse.

nnz Return the number of nonzero matrix elements.

nonzeros Return the nonzero elements of a matrix.

nzmax Return the amount of storage allocated for nonzero
elements.

spalloc Allocate space for a sparse matrix.

sparse Create a sparse matrix or convert full to sparse.

Full and Sparse Matrices

1-47

speye Create a sparse identity matrix.

sprand Create a sparse uniformly distributed random matrix.

Function Description

1 Data Structures

1-48

Multidimensional Arrays
An array having more than two dimensions is called a multidimensional array
in MATLAB. Most of the operations that you can perform on matrices (i.e.,
two-dimensional arrays) can also be done on multidimensional arrays. This
section shows how to create and manipulate these arrays. It covers

• “Overview” on page 1-48

• “Creating Multidimensional Arrays” on page 1-50

• “Accessing Multidimensional Array Properties” on page 1-54

• “Indexing Multidimensional Arrays” on page 1-54

• “Reshaping Multidimensional Arrays” on page 1-58

• “Permuting Array Dimensions” on page 1-60

• “Computing with Multidimensional Arrays” on page 1-62

• “Organizing Data in Multidimensional Arrays” on page 1-64

• “Multidimensional Cell Arrays” on page 1-66

• “Multidimensional Structure Arrays” on page 1-67

Overview
Multidimensional arrays in MATLAB are an extension of the normal
two-dimensional matrix. Matrices have two dimensions: the row dimension
and the column dimension.

You can access a two-dimensional matrix element with two subscripts: the first
representing the row index, and the second representing the column index.

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

column

row

Multidimensional Arrays

1-49

Multidimensional arrays use additional subscripts for indexing. A
three-dimensional array, for example, uses three subscripts:

• The first references array dimension 1, the row.

• The second references dimension 2, the column.

• The third references dimension 3. This illustration uses the concept of a page
to represent dimensions 3 and higher.

To access the element in the second row, third column of page 2, for example,
you use the subscripts (2,3,2).

row

(1,1,3) (1,2,3) (1,3,3) (1,4,3)

(2,1,3) (2,2,3) (2,3,3) (2,4,3)

(3,1,3) (3,2,3) (3,3,3) (3,4,3)

(4,1,3) (4,2,3) (4,3,3) (4,4,3)
(1,1,2) (1,2,2) (1,3,2) (1,4,2)

(2,1,2) (2,2,2) (2,3,2) (2,4,2)

(3,1,2) (3,2,2) (3,3,2) (3,4,2)

(4,1,2) (4,2,2) (4,3,2) (4,4,2)
(1,1,1) (1,2,1) (1,3,1) (1,4,1)

(2,1,1) (2,2,1) (2,3,1) (2,4,1)

(3,1,1) (3,2,1) (3,3,1) (3,4,1)

(4,1,1) (4,2,1) (4,3,1) (4,4,1)

page

column

A(:,:,1) =

 1 0 3
 4 -1 2
 8 2 1

A(:,:,2) =

 6 8 3
 4 3 6
 5 9 2

6 8 3
4 3 6
5 9 2

1 0 3
4 -1 2
8 2 1

A(2,3,2)

1 Data Structures

1-50

As you add dimensions to an array, you also add subscripts. A four-dimensional
array, for example, has four subscripts. The first two reference a row-column
pair; the second two access the third and fourth dimensions of data.

Note The general multidimensional array functions reside in the datatypes
directory.

Creating Multidimensional Arrays
You can use the same techniques to create multidimensional arrays that you
use for two-dimensional matrices. In addition, MATLAB provides a special
concatenation function that is useful for building multidimensional arrays.

This section discusses

• “Generating Arrays Using Indexing” on page 1-50

• “Extending Multidimensional Arrays” on page 1-51

• “Generating Arrays Using MATLAB Functions” on page 1-52

• “Building Multidimensional Arrays with the cat Function” on page 1-52

Generating Arrays Using Indexing
One way to create a multidimensional array is to create a two-dimensional
array and extend it. For example, begin with a simple two-dimensional array A.

A = [5 7 8; 0 1 9; 4 3 6];

A is a 3-by-3 array, that is, its row dimension is 3 and its column dimension is
3. To add a third dimension to A,

A(:,:,2) = [1 0 4; 3 5 6; 9 8 7]

MATLAB responds with

A(:,:,1) =
 5 7 8
 0 1 9
 4 3 6

Multidimensional Arrays

1-51

A(:,:,2) =
 1 0 4
 3 5 6
 9 8 7

You can continue to add rows, columns, or pages to the array using similar
assignment statements.

Extending Multidimensional Arrays
To extend A in any dimension:

• Increment or add the appropriate subscript and assign the desired values.

• Assign the same number of elements to corresponding array dimensions. For
numeric arrays, all rows must have the same number of elements, all pages
must have the same number of rows and columns, and so on.

You can take advantage of the MATLAB scalar expansion capabilities,
together with the colon operator, to fill an entire dimension with a single value:

A(:,:,3) = 5;

A(:,:,3)
ans =
 5 5 5
 5 5 5
 5 5 5

To turn A into a 3-by-3-by-3-by-2, four-dimensional array, enter

A(:,:,1,2) = [1 2 3; 4 5 6; 7 8 9];
A(:,:,2,2) = [9 8 7; 6 5 4; 3 2 1];
A(:,:,3,2) = [1 0 1; 1 1 0; 0 1 1];

Note that after the first two assignments MATLAB pads A with zeros, as
needed, to maintain the corresponding sizes of dimensions.

1 Data Structures

1-52

Generating Arrays Using MATLAB Functions
You can use MATLAB functions such as randn, ones, and zeros to generate
multidimensional arrays in the same way you use them for two-dimensional
arrays. Each argument you supply represents the size of the corresponding
dimension in the resulting array. For example, to create a 4-by-3-by-2 array of
normally distributed random numbers:

B = randn(4,3,2)

To generate an array filled with a single constant value, use the repmat
function. repmat replicates an array (in this case, a 1-by-1 array) through a
vector of array dimensions.

B = repmat(5, [3 4 2])

B(:,:,1) =
 5 5 5 5
 5 5 5 5
 5 5 5 5

B(:,:,2) =
 5 5 5 5
 5 5 5 5
 5 5 5 5

Note Any dimension of an array can have size zero, making it a form of
empty array. For example, 10-by-0-by-20 is a valid size for a multidimensional
array.

Building Multidimensional Arrays with the cat Function
The cat function is a simple way to build multidimensional arrays; it
concatenates a list of arrays along a specified dimension:

B = cat(dim, A1, A2...)

where A1, A2, and so on are the arrays to concatenate, and dim is the dimension
along which to concatenate the arrays.

Multidimensional Arrays

1-53

For example, to create a new array with cat:

B = cat(3, [2 8; 0 5], [1 3; 7 9])

B(:,:,1) =
 2 8
 0 5

B(:,:,2) =
 1 3
 7 9

The cat function accepts any combination of existing and new data. In
addition, you can nest calls to cat. The lines below, for example, create a
four-dimensional array.

A = cat(3, [9 2; 6 5], [7 1; 8 4])
B = cat(3, [3 5; 0 1], [5 6; 2 1])
D = cat(4, A, B, cat(3, [1 2; 3 4], [4 3;2 1]))

cat automatically adds subscripts of 1 between dimensions, if necessary. For
example, to create a 2-by-2-by-1-by-2 array, enter

C = cat(4, [1 2; 4 5], [7 8; 3 2])

In the previous case, cat inserts as many singleton dimensions as needed to
create a four-dimensional array whose last dimension is not a singleton
dimension. If the dim argument had been 5, the previous statement would have
produced a 2-by-2-by-1-by-1-by-2 array. This adds additional 1s to indexing
expressions for the array. To access the value 8 in the four-dimensional case,
use

C(1,2,1,2)

Singleton dimension
index

1 Data Structures

1-54

Accessing Multidimensional Array Properties
You can use the following MATLAB functions to get information about
multidimensional arrays you have created.

Indexing Multidimensional Arrays
Many of the concepts that apply to two-dimensional matrices extend to
multidimensional arrays as well.

To access a single element of a multidimensional array, use integer subscripts.
Each subscript indexes a dimension—the first indexes the row dimension, the
second indexes the column dimension, the third indexes the first page
dimension, and so on.

Array
Property

Function Example

Size size size(C)
ans =
 2 2 1 2
 rows columns dim3 dim4

Dimensions ndims ndims(C)
ans =
 4

Storage and
format

whos whos
Name Size Bytes Class

A 2x2x2 64 double array
B 2x2x2 64 double array
C 4-D 64 double array
D 4-D 192 double array

Grand total is 48 elements using 384 bytes

Multidimensional Arrays

1-55

Consider a 10-by-5-by-3 array nddata of random integers:

nddata = fix(8 * randn(10,5,3));

To access element (3,2) on page 2 of nddata, for example, use nddata(3,2,2).

You can use vectors as array subscripts. In this case, each vector element must
be a valid subscript, that is, within the bounds defined by the dimensions of the
array. To access elements (2,1), (2,3), and (2,4) on page 3 of nddata, use

nddata(2,[1 3 4],3);

The Colon and Multidimensional Array Indexing
The MATLAB colon indexing extends to multidimensional arrays. For
example, to access the entire third column on page 2 of nddata, use
nddata(:,3,2).

The colon operator is also useful for accessing other subsets of data. For
example, nddata(2:3,2:3,1) results in a 2-by-2 array, a subset of the data on
page 1 of nddata. This matrix consists of the data in rows 2 and 3, columns 2
and 3, on the first page of the array.

The colon operator can appear as an array subscript on both sides of an
assignment statement. For example, to create a 4-by-4 array of zeros:

C = zeros(4, 4)

Now assign a 2-by-2 subset of array nddata to the four elements in the center
of C.

C(2:3,2:3) = nddata(2:3,1:2,2)

Linear Indexing with Multidimensional Arrays
MATLAB linear indexing also extends to multidimensional arrays. In this
case, MATLAB operates on a page-by-page basis to create the storage column,
again appending elements columnwise. See “Linear Indexing” on page 1-18 for
for an introduction to this topic.

1 Data Structures

1-56

For example, consider a 5-by-4-by-3-by-2 array C.

page(1,1) =

 1 4 3 5
 2 1 7 9
 5 6 3 2
 0 1 5 9
 3 2 7 5

page(2,1) =

 6 2 4 2
 7 1 4 9
 0 0 1 5
 9 4 4 2
 1 8 2 5

page(3,1) =

 2 2 8 3
 2 5 1 8
 5 1 5 2
 0 9 0 9
 9 4 5 3

page(1,2) =

 9 8 2 3
 0 0 3 3
 6 4 9 6
 1 9 2 3
 0 2 8 7

page(2,2) =

 7 0 1 3
 2 4 8 1
 7 5 8 6
 6 8 8 4
 9 4 1 2

page(3,2) =

 1 6 6 5
 2 9 1 3
 7 1 1 1
 8 0 1 5
 3 2 7 6

M displays C asATLAB M stores C asATLAB

 1
 2
 5
 0
 3
 4
 1
 6
 1
 2
 3
 7
 3
 5
 7
 5
 9
 2
 9
 5
 6
 7
 0
 9
 1
 2
 1
 0
 4
 8
 4
 4
 1
 4
 2
 2
 9
 5
 2
 5
 2
 2
 5
 0
 9
 2
 5
 1
 9
 4

...

Multidimensional Arrays

1-57

Again, a single subscript indexes directly into this column. For example, C(4)
produces the result

ans =
0

If you specify two subscripts (i,j) indicating row-column indices, MATLAB
calculates the offset as described above. Two subscripts always access the first
page of a multidimensional array, provided they are within the range of the
original array dimensions.

If more than one subscript is present, all subscripts must conform to the
original array dimensions. For example, C(6,2) is invalid because all pages of
C have only five rows.

If you specify more than two subscripts, MATLAB extends its indexing scheme
accordingly. For example, consider four subscripts (i,j,k,l) into a
four-dimensional array with size [d1 d2 d3 d4]. MATLAB calculates the offset
into the storage column by

(l-1)(d3)(d2)(d1)+(k-1)(d2)(d1)+(j-1)(d1)+i

For example, if you index the array C using subscripts (3, 4, 2, 1), MATLAB
returns the value 5 (index 38 in the storage column).

In general, the offset formula for an array with dimensions [d1 d2 d3 ... dn]
using any subscripts (s1 s2 s3 ... sn) is

(sn–1)(dn–1)(dn–2)...(d1)+(sn–1–1)(dn–2)...(d1)+...+(s2–1)(d1)+s1

Because of this scheme, you can index an array using any number of subscripts.
You can append any number of 1s to the subscript list because these terms
become zero. For example,

C(3,2,1,1,1,1,1,1)

is equivalent to

C(3,2)

1 Data Structures

1-58

Avoiding Ambiguity in Multidimensional Indexing
Some assignment statements, such as

A(:,:,2) = 1:10

are ambiguous because they do not provide enough information about the
shape of the dimension to receive the data. In the case above, the statement
tries to assign a one-dimensional vector to a two-dimensional destination.
MATLAB produces an error for such cases. To resolve the ambiguity, be sure
you provide enough information about the destination for the assigned data,
and that both data and destination have the same shape. For example:

A(1,:,2) = 1:10;

Reshaping Multidimensional Arrays
Unless you change its shape or size, a MATLAB array retains the dimensions
specified at its creation. You change array size by adding or deleting elements.
You change array shape by respecifying the array’s row, column, or page
dimensions while retaining the same elements. The reshape function performs
the latter operation. For multidimensional arrays, its form is

B = reshape(A,[s1 s2 s3 ...])

s1, s2, and so on represent the desired size for each dimension of the reshaped
matrix. Note that a reshaped array must have the same number of elements as
the original array (that is, the product of the dimension sizes is constant).

M reshape(M, [6 5])

9 7 8 5 2
3 5 8 5 1
6 9 4 3 3

1 2 3 4 5
9 0 6 3 7
8 1 5 0 2

1 3 5 7 5
9 6 7 5 5
8 5 2 9 3
2 4 9 8 2
0 3 3 8 1
1 0 6 4 3

Multidimensional Arrays

1-59

The reshape function operates in a columnwise manner. It creates the
reshaped matrix by taking consecutive elements down each column of the
original data construct.

Here are several new arrays from reshaping nddata:

B = reshape(nddata, [6 25])
C = reshape(nddata, [5 3 10])
D = reshape(nddata, [5 3 2 5])

Removing Singleton Dimensions
MATLAB creates singleton dimensions if you explicitly specify them when you
create or reshape an array, or if you perform a calculation that results in an
array dimension of one:

B = repmat(5, [2 3 1 4]);

size(B)
ans =
 2 3 1 4

The squeeze function removes singleton dimensions from an array:

C = squeeze(B);

size(C)
ans =
 2 3 4

C reshape(C, [6 2])

 9 10
11 12

5 6
7 8

1 2
3 4

1 6
3 8
2 9
4 11
5 10
7 12

1 Data Structures

1-60

The squeeze function does not affect two-dimensional arrays; row vectors
remain rows.

Permuting Array Dimensions
The permute function reorders the dimensions of an array:

B = permute(A, dims);

dims is a vector specifying the new order for the dimensions of A, where 1
corresponds to the first dimension (rows), 2 corresponds to the second
dimension (columns), 3 corresponds to pages, and so on.

For a more detailed look at the permute function, consider a four-dimensional
array A of size 5-by-4-by-3-by-2. Rearrange the dimensions, placing the column
dimension first, followed by the second page dimension, the first page
dimension, then the row dimension. The result is a 4-by-2-by-3-by-5 array.

A B = permute(A, [2 1 3]) C = permute(A, [3 2 1])

A(:,:,1) =

 1 2 3
 4 5 6
 7 8 9

A(:,:,2) =

 0 5 4
 2 7 6
 9 3 1

B(:,:,1) =

 1 4 7
 2 5 8
 3 6 9

B(:,:,2) =

 0 2 9
 5 7 3
 4 6 1

C(:,:,1) =

 1 2 3
 0 5 4

C(:,:,2) =

 4 5 6
 2 7 6

C(:,:,3) =

 7 8 9
 9 3 1

Row and column
subscripts are
reversed
(page-by-page
transposition).

Row and page
subscripts are
reversed.

Multidimensional Arrays

1-61

You can think of permute’s operation as an extension of the transpose
function, which switches the row and column dimensions of a matrix. For
permute, the order of the input dimension list determines the reordering of the
subscripts. In the example above, element (4,2,1,2) of A becomes element
(2,2,1,4) of B, element (5,4,3,2) of A becomes element (4,2,3,5) of B, and
so on.

Inverse Permutation
The ipermute function is the inverse of permute. Given an input array A and a
vector of dimensions v, ipermute produces an array B such that permute(B,v)
returns A.

For example, these statements create an array E that is equal to the input
array C:

D = ipermute(C, [1 4 2 3]);
E = permute(D, [1 4 2 3])

You can obtain the original array after permuting it by calling ipermute with
the same vector of dimensions.

B = permute(A,[2 4 3 1])

Input
array A

Output
array B

Move dimension 2 of A to
first subscript position of B,
dimension 4 to second sub-
script position, and so on.

1 2 3 4Dimension

Size 5 4 3 2

1 2 3 4

4 2 3 5

Dimension

Size

The order of dimensions in
permute’s argument list deter-
mines the size and shape of the
output array. In this example, the
second dimension moves to the
first position. Because the second
dimension of the original array had
size 4, the output array’s first
dimension also has size 4.

1 Data Structures

1-62

Computing with Multidimensional Arrays
Many of the MATLAB computational and mathematical functions accept
multidimensional arrays as arguments. These functions operate on specific
dimensions of multidimensional arrays; that is, they operate on individual
elements, on vectors, or on matrices.

Operating on Vectors
Functions that operate on vectors, like sum, mean, and so on, by default typically
work on the first nonsingleton dimension of a multidimensional array. Most of
these functions optionally let you specify a particular dimension on which to
operate. There are exceptions, however. For example, the cross function,
which finds the cross product of two vectors, works on the first nonsingleton
dimension having length 3.

Note In many cases, these functions have other restrictions on the input
arguments—for example, some functions that accept multiple arrays require
that the arrays be the same size. Refer to the online help for details on
function arguments.

Operating Element-by-Element
MATLAB functions that operate element-by-element on two-dimensional
arrays, like the trigonometric and exponential functions in the elfun directory,
work in exactly the same way for multidimensional cases. For example, the sin
function returns an array the same size as the function’s input argument. Each
element of the output array is the sine of the corresponding element of the
input array.

Similarly, the arithmetic, logical, and relational operators all work with
corresponding elements of multidimensional arrays that are the same size in
every dimension. If one operand is a scalar and one an array, the operator
applies the scalar to each element of the array.

Multidimensional Arrays

1-63

Operating on Planes and Matrices
Functions that operate on planes or matrices, such as the linear algebra and
matrix functions in the matfun directory, do not accept multidimensional
arrays as arguments. That is, you cannot use the functions in the matfun
directory, or the array operators ∗, ̂ , \, or /, with multidimensional arguments.
Supplying multidimensional arguments or operands in these cases results in
an error.

You can use indexing to apply a matrix function or operator to matrices within
a multidimensional array. For example, create a three-dimensional array A:

A = cat(3, [1 2 3; 9 8 7; 4 6 5], [0 3 2; 8 8 4; 5 3 5], ...
 [6 4 7; 6 8 5; 5 4 3]);

Applying the eig function to the entire multidimensional array results in an
error:

eig(A)
??? Error using ==> eig
Input arguments must be 2-D.

You can, however, apply eig to planes within the array. For example, use colon
notation to index just one page (in this case, the second) of the array:

eig(A(:,:,2))
ans =
 12.9129
 -2.6260
 2.7131

Note In the first case, subscripts are not colons; you must use squeeze to
avoid an error. For example, eig(A(2,:,:)) results in an error because the
size of the input is [1 3 3]. The expression eig(squeeze(A(2,:,:))),
however, passes a valid two-dimensional matrix to eig.

1 Data Structures

1-64

Organizing Data in Multidimensional Arrays
You can use multidimensional arrays to represent data in two ways:

• As planes or pages of two-dimensional data. You can then treat these pages
as matrices.

• As multivariate or multidimensional data. For example, you might have a
four-dimensional array where each element corresponds to either a
temperature or air pressure measurement taken at one of a set of equally
spaced points in a room.

For example, consider an RGB image. For a single image, a multidimensional
array is probably the easiest way to store and access data.

0.689 0.706 0.118 0.884 ...
0.535 0.532 0.653 0.925 ...
0.314 0.265 0.159 0.101 ...
0.553 0.633 0.528 0.493 ...
0.441 0.465 0.512 0.512 ...
0.398 0.401 0.421 0.398 ...
0.320 0.988 0.912 0.713 ...
0.119 0.182 0.219 0.328 ...
0.125 0.495 0.128 0.133 ...
 .
 .
 .

0.342 0.647 0.515 0.816 ...
0.111 0.300 0.205 0.526 ...
0.523 0.428 0.712 0.929 ...
0.214 0.604 0.918 0.344 ...
0.100 0.121 0.113 0.126 ...
0.288 0.187 0.204 0.175 ...
0.208 0.576 0.760 0.531 ...
0.109 0.995 0.997 0.910 ...
0.426 0.727 0.995 0.726 ...
 .
 .
 .

0.112 0.986 0.234 0.432 ...
0.765 0.128 0.863 0.521 ...
1.000 0.985 0.761 0.698 ...
0.455 0.783 0.224 0.395 ...
0.021 0.500 0.311 0.123 ...
1.000 1.000 0.867 0.051 ...
1.000 0.945 0.998 0.893 ...
0.990 0.941 1.000 0.876 ...
0.902 0.867 0.834 0.798 ...
 .
 .
 .

Page 1–
red
intensity
values

Array RGB

Page 2 –
green
intensity
values

Page 3 –
blue
intensity
values

Multidimensional Arrays

1-65

To access an entire plane of the image, use

redPlane = RGB(:,:,1);

To access a subimage, use

subimage = RGB(20:40,50:85,:);

The RGB image is a good example of data that needs to be accessed in planes
for operations like display or filtering. In other instances, however, the data
itself might be multidimensional. For example, consider a set of temperature
measurements taken at equally spaced points in a room. Here the location of
each value is an integral part of the data set—the physical placement in
three-space of each element is an aspect of the information. Such data also
lends itself to representation as a multidimensional array.

Now to find the average of all the measurements, use

mean(mean(mean(TEMP)));

To obtain a vector of the “middle” values (element (2,2)) in the room on each
page, use

B = TEMP(2,2,:);

67.9° 68.0° 67.9°

67.9°

67.7°67.5°

67.8°67.8°

67.6°67.9° 68.0° 68.0°

67.7°

67.5°67.5°

67.8°67.7°

67.7°68.0° 68.0° 67.8°

67.6°

67.6°67.6°

67.8°67.9°

67.8°

Array TEMP

1 Data Structures

1-66

Multidimensional Cell Arrays
Like numeric arrays, the framework for multidimensional cell arrays in
MATLAB is an extension of the two-dimensional cell array model. You can use
the cat function to build multidimensional cell arrays, just as you use it for
numeric arrays.

For example, create a simple three-dimensional cell array C:

A{1,1} = [1 2;4 5];
A{1,2} = 'Name';
A{2,1} = 2-4i;
A{2,2} = 7;
B{1,1} = 'Name2';
B{1,2} = 3;
B{2,1} = 0:1:3;
B{2,2} = [4 5]';
C = cat(3, A, B);

The subscripts for the cells of C look like

'Name2'

[0 1 2 3]

cell 2,1,2

4
5

cell 1,2,2cell 1,1,2

3

cell 2,2,2

'Name'1 2
4 5

2-4i

cell 2,1,1

7

cell 1,2,1

cell 2,2,1

cell 1,1,1

cell 1,1,2

Multidimensional Arrays

1-67

Multidimensional Structure Arrays
Multidimensional structure arrays are extensions of rectangular structure
arrays. Like other types of multidimensional arrays, you can build them using
direct assignment or the cat function:

patient(1,1,1).name = 'John Doe';patient(1,1,1).billing = 127.00;
patient(1,1,1).test = [79 75 73; 180 178 177.5; 220 210 205];
patient(1,2,1).name = 'Ann Lane';patient(1,2,1).billing = 28.50;
patient(1,2,1).test = [68 70 68; 118 118 119; 172 170 169];
patient(1,1,2).name = 'Al Smith';patient(1,1,2).billing = 504.70;
patient(1,1,2).test = [80 80 80; 153 153 154; 181 190 182];
patient(1,2,2).name = 'Dora Jones';patient(1,2,2).billing =
1173.90;
patient(1,2,2).test = [73 73 75; 103 103 102; 201 198 200];

'Al Smith'

504.70

 80 80 80
153 153 154
181 190 182

patient(1,1

.test

.billing

.name 'Dora Jones'

1173.90

 73 75 75
103 103 102
201 198 200

patient(1,2

.test

.billing

.name

'John Doe'

127.00

 79 75 73
180 178 177.5
220 210 205

patient(1,1,1)

.test

.billing

.name

 68 70 68
118 118 119
172 170 169

patient(1,2

'Ann Lane'

28.50

.test

.billing

.name

1 Data Structures

1-68

Applying Functions to Multidimensional Structure Arrays
To apply functions to multidimensional structure arrays, operate on fields and
field elements using indexing. For example, find the sum of the columns of the
test array in patient(1,1,2):

sum((patient(1,1,2).test));

Similarly, add all the billing fields in the patient array:

total = sum([patient.billing]);

Summary of Matrix and Array Functions

1-69

Summary of Matrix and Array Functions
This section summarizes the principal functions used in creating and handling
matrices. Most of these functions work on multidimensional arrays as well.

Functions to Create a Matrix

Function Description

[a,b] or [a;b] Create a matrix from specified elements, or concatenate
matrices together.

accumarray Construct a matrix using accumulation.

blkdiag Construct a block diagonal matrix.

cat Concatenate matrices along the specified dimension.

diag Create a diagonal matrix from a vector.

horzcat Concatenate matrices horizontally.

magic Create a square matrix with rows, columns, and
diagonals that add up to the same number.

ones Create a matrix of all ones.

rand Create a matrix of uniformly distributed random
numbers.

repmat Create a new matrix by replicating or tiling another.

vertcat Concatenate two or more matrices vertically.

zeros Create a matrix of all zeros.

Functions to Modify the Shape of a Matrix

Function Description

ctranspose Flip a matrix about the main diagonal and replace each
element with its complex conjugate.

flipdim Flip a matrix along the specified dimension.

1 Data Structures

1-70

fliplr Flip a matrix about a vertical axis.

flipud Flip a matrix about a horizontal axis.

reshape Change the dimensions of a matrix.

rot90 Rotate a matrix by 90 degrees.

transpose Flip a matrix about the main diagonal.

Functions to Find the Structure or Shape of a Matrix

Function Description

isempty Return true for 0-by-0 or 0-by-n matrices.

isscalar Return true for 1-by-1 matrices.

issparse Return true for sparse matrices.

isvector Return true for 1-by-n matrices.

length Return the length of a vector.

ndims Return the number of dimensions in a matrix.

numel Return the number of elements in a matrix.

size Return the size of each dimension.

Functions to Determine Data Type

Function Description

iscell Return true if the matrix is a cell array.

ischar Return true if matrix elements are characters or
strings.

isfloat Determine if input is a floating point array.

isinteger Determine if input is an integer array.

Functions to Modify the Shape of a Matrix

Function Description

Summary of Matrix and Array Functions

1-71

islogical Return true if matrix elements are logicals.

isnumeric Return true if matrix elements are numeric.

isreal Return true if matrix elements are real numbers.

isstruct Return true if matrix elements are MATLAB
structures.

Functions to Sort and Shift Matrix Elements

Function Description

circshift Circularly shift matrix contents.

issorted Return true if the matrix elements are sorted.

sort Sort elements in ascending or descending order.

sortrows Sort rows in ascending order.

Functions That Work on Diagonals of a Matrix

Function Description

blkdiag Construct a block diagonal matrix.

diag Return the diagonals of a matrix.

trace Compute the sum of the elements on the main diagonal.

tril Return the lower triangular part of a matrix.

triu Return the upper triangular part of a matrix.

Functions to Determine Data Type

Function Description

1 Data Structures

1-72

Functions to Change the Indexing Style

Function Description

ind2sub Convert a linear index to a row-column index.

sub2ind Convert a row-column index to a linear index.

Functions for Working with Multidimensional Arrays

Function Description

cat Concatenate arrays.

circshift Shift array circularly.

ipermute Inverse permute array dimensions.

ndgrid Generate arrays for n-dimensional functions and
interpolation.

ndims Return the number of array dimensions.

permute Permute array dimensions.

shiftdim Shift array dimensions.

squeeze Remove singleton dimensions.

2

Data Types

There are many different types of data that you can work with in MATLAB. You can build matrices
and arrays of floating-point and integer data, characters and strings, logical true and false states,
etc. You can also develop your own data types using MATLAB classes. Two of the MATLAB data
types, structures and cell arrays, provide a way to store dissimilar types of data in the same array.
This chapter describes each of these data types and how to use them in your MATLAB programming.

Overview of MATLAB Data Types
(p. 2-2)

Brief description of all MATLAB data types

Numeric Types (p. 2-4) Integer and floating-point data types, complex numbers, NaN,
infinity, and numeric display format

Logical Types (p. 2-20) States of true and false, use of logicals in conditional
statements and logical indexing, logical/numeric conversion

Characters and Strings (p. 2-25) Characters, strings, cell arrays of strings, string comparison,
search and replace, character/numeric conversion

Dates and Times (p. 2-41) Date strings, serial date numbers, date vectors, date type
conversion, output display format

Structures (p. 2-49) C-like structures with named fields, dynamic field names,
adding and removing fields

Cell Arrays (p. 2-66) Arrays of cells containing different data types and shapes,
using cell arrays in argument lists, numeric/cell conversion

Function Handles (p. 2-80) Passing function access data to other functions, extending
function scope, extending the lifetime of variables

MATLAB Classes (p. 2-82) Object-oriented classes and methods using MATLAB classes,
creating your own MATLAB data types

Java Classes (p. 2-83) Working with Java classes within MATLAB using the
MATLAB interface to the Java programming language

2 Data Types

2-2

Overview of MATLAB Data Types
There are 15 fundamental data types in MATLAB. Each of these data types is
in the form of a matrix or array. This matrix or array is a minimum of 0-by-0
in size and can grow to an n-dimensional array of any size.

All of the fundamental data types are shown in lowercase text in the diagram
below. Additional data types are user-defined, object-oriented user classes
and Java classes. You can use the latter with the MATLAB interface to Java
(see “Calling Java from MATLAB” in the MATLAB External Interfaces
documentation).

You can create two-dimensional double and logical matrices using one of two
storage formats: full or sparse. For matrices with mostly zero-valued
elements, a sparse matrix requires a fraction of the storage space required for
an equivalent full matrix. Sparse matrices invoke methods especially tailored
to solve sparse problems.

 ARRAY

char NUMERIC cell structure

double

 int8, uint8,
int16, uint16,
int32, uint32,
int64, uint64

user classes Java classes

function
handle

single

[full or sparse]

logical

Overview of MATLAB Data Types

2-3

The following table describes these data types in more detail.

Data Type Example Description

int8, uint8,
int16, uint16,
int32, uint32,
int64, uint64

uint16(65000) Array of signed and unsigned integers. Requires
less storage space than single or double. All
integer types except for int64 and uint64 can be
used in mathematical operations.

single 3 * 10^38 Array of single-precision numbers. Requires less
storage space than double, but has less precision
and a smaller range.

double 3 * 10^300
5 + 6i

Array of double-precision numbers. Two-
dimensional arrays can be sparse. The default
numeric type in MATLAB.

logical magic(4) > 10 Array of logical values of 1 or 0 to represent true
and false respectively. Two-dimensional arrays
can be sparse.

char 'Hello' Array of characters. Strings are represented as
vectors of characters. For arrays containing more
than one string, it is best to use cell arrays.

cell array a{1,1} = 12;
a{1,2} = 'Red';
a{1,3} = magic(4);

Array of indexed cells, each capable of storing an
array of a different dimension and data type.

structure a.day = 12;
a.color = 'Red';
a.mat = magic(3);

Array of C-like structures, each structure having
named fields capable of storing an array of a
different dimension and data type.

function handle @sin Pointer to a function. You can pass function
handles to other functions.

user class polynom([0 -2 -5]) Objects constructed from a user-defined class.
See “MATLAB Classes” on page 2-82

Java class java.awt.Frame Objects constructed from a Java class. See “Java
Classes” on page 2-83.

2 Data Types

2-4

Numeric Types
Numeric data types in MATLAB include signed and unsigned integers, and
single- and double-precision floating-point numbers. Integer and single-
precision arrays offer more memory efficient storage than double precision.

All numeric types support basic array operations, such as subscripting and
reshaping. All numeric types except for int64 and uint64 can be used in
mathematical operations.

This section covers the following topics:

• “Integers” on page 2-4

• “Floating-Point Numbers” on page 2-6

• “Complex Numbers” on page 2-11

• “Infinity and NaN” on page 2-12

• “Identifying Numeric Types” on page 2-14

• “Display Format for Numeric Values” on page 2-14

• “Function Summary” on page 2-16

Integers
MATLAB has four signed and four unsigned integer data types. Signed types
enable you to work with negative integers as well as positive, but cannot
represent as wide a range of numbers as the unsigned types because one bit is
used to designate a positive or negative sign for the number. Unsigned types
give you a wider range of numbers, but these numbers can only be zero or
positive.

MATLAB supports 1-, 2-, 4-, and 8-byte storage for integer data. You can save
memory and execution time for you programs if you use the smallest integer
type that accommodates your data. For example, you don’t need a 32-bit
integer to store the value 100.

Numeric Types

2-5

Here are the eight integer data types, the range of values you can store with
each type, and the MATLAB conversion function required to create that type:

Creating Integer Data
MATLAB stores numeric data as double-precision floating point by default. To
store data as an integer, use one of the conversion functions shown in the table
above:

x = int16(32501);

You can use the whos function to show the dimensions, byte count, and data
type of an array represented by a variable:

whos x
 Name Size Bytes Class

 x 1x1 2 int16 array

Data Type Range of Values Conversion
Function

Signed 8-bit integer -27 to 27-1 int8

Signed 16-bit integer -215 to 215-1 int16

Signed 32-bit integer -231 to 231-1 int32

Signed 64-bit integer -263 to 263-1 int64

Unsigned 8-bit integer 0 to 28-1 uint8

Unsigned 16-bit integer 0 to 216-1 uint16

Unsigned 32-bit integer 0 to 232-1 uint32

Unsigned 64-bit integer 0 to 264-1 uint64

2 Data Types

2-6

Or you can use the class function if you want to assign the output as shown
here:

xType = class(x)
xType =
 int16

Use the isinteger function if you just want to verify that x is an integer:

isinteger(x)
ans =
 1

The conversion functions are also useful when converting other data types,
such as strings, to integers:

str = 'Hello World';

int8(str)
ans =
 72 101 108 108 111 32 87 111 114 108 100

Integer Functions
See “Integer Functions” on page 2-16 for a list of functions most commonly used
with integers in MATLAB.

Floating-Point Numbers
MATLAB represents floating-point numbers in either double-precision or
single-precision format. The default is double precision, but you can make any
number single precision with a simple conversion function.

This section covers

• “Double-Precision Floating Point” on page 2-7

• “Single-Precision Floating Point” on page 2-9

• “Floating-Point Functions” on page 2-10

Numeric Types

2-7

Double-Precision Floating Point
MATLAB constructs the double data type according to IEEE Standard 754 for
double precision. Any value stored as a double requires 64 bits, formatted as
shown in the table below:

Maximum and Minimum Double-Precision Values. The MATLAB functions realmax
and realmin return the maximum and minimum values that you can represent
with the double data type:

str = 'The range for double is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax, -realmin, realmin, realmax)

ans =
The range for double is:
 -1.79769e+308 to -2.22507e-308 and
 2.22507e-308 to 1.79769e+308

Numbers larger than realmax or smaller than -realmax are assigned the
values of positive and negative infinity respectively:

realmax + .0001e+308
ans =
 Inf

-realmax - .0001e+308
ans =
 -Inf

Bits Usage

63 Sign (0 = positive, 1 = negative)

62 to 52 Exponent, biased by 1023

51 to 0 Fraction f of the number 1.f

2 Data Types

2-8

Creating Double-Precision Data. Since the default numeric type for MATLAB is
double, you can create a double with a simple assignment statement:

x = 25.783;

The whos function shows that MATLAB has created a 1-by-1 array of type
double for the value you just stored in x:

whos x
 Name Size Bytes Class

 x 1x1 8 double array

Use the isfloat function if you just want to verify that x is a floating-point
number:

isfloat(x)
ans =
 1

The next statement creates a much larger value. This value requires a double;
you could not store this using the single-precision data type:

x = 5.73 * 10^300;

Converting to Double Precision. You can convert other numeric data, characters or
strings, and logical data to double precision using the MATLAB function,
double. This example converts a signed integer to double-precision floating
point:

y = int64(-589324077574); % Create a 64-bit integer

x = double(y) % Convert to double
x =
 -5.8932e+011

whos x
 Name Size Bytes Class

 x 1x1 8 double array

Numeric Types

2-9

Single-Precision Floating Point
MATLAB constructs the single data type according to IEEE Standard 754 for
single precision. Any value stored as a single requires 32 bits, formatted as
shown in the table below:

Maximum and Minimum Single-Precision Values. The MATLAB functions realmax
and realmin, when called with the argument 'single', return the maximum
and minimum values that you can represent with the single data type:

str = 'The range for single is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax('single'), -realmin('single'), ...
 realmin('single'), realmax('single'))

ans =
The range for single is:
 -3.40282e+038 to -1.17549e-038 and
 1.17549e-038 to 3.40282e+038

Numbers larger than realmax('single') or smaller than
-realmax('single') are assigned the values of positive and negative infinity
respectively:

realmax('single') + .0001e+038
ans =
 Inf

-realmax('single') - .0001e+038
ans =
 -Inf

Bits Usage

31 Sign (0 = positive, 1 = negative)

30 to 23 Exponent, biased by 127

22 to 0 Fraction f of the number 1.f

2 Data Types

2-10

Creating Single-Precision Data. Because MATLAB stores numeric data as a double
by default, you need to use the single conversion function to create a
single-precision number:

x = single(25.783);

The whos function shows that MATLAB has created a 1-by-1 array of type
single. This value requires only 4 bytes compared with the 8 bytes used to
store a double:

whos x
 Name Size Bytes Class

 x 1x1 4 single array

Use the isfloat function if you just want to verify that x is a floating-point
number:

isfloat(x)
ans =
 1

Converting to Single Precision. You can convert other numeric data, characters or
strings, and logical data to single precision using the MATLAB function,
single. This example converts a signed integer to single-precision floating
point:

y = int64(-589324077574); % Create a 64-bit integer

x = single(y) % Convert to single
x =
 -5.8932e+011

whos x
 Name Size Bytes Class

 x 1x1 4 single array

Floating-Point Functions
See “Floating-Point Functions” on page 2-17 for a list of functions most
commonly used with floating-point numbers in MATLAB.

Numeric Types

2-11

Complex Numbers
Complex numbers consist of two separate parts: a real part and an imaginary
part. The basic imaginary unit is equal to the square root of -1. This is
represented in MATLAB by either of two letters: i or j.

Creating Complex Numbers
The following statement shows one way of creating a complex value in
MATLAB. The variable x is assigned a complex number with a real part of 2
and an imaginary part of 3:

x = 2 + 3i;

Another way to create a complex number is using the complex function. This
function combines two numeric inputs into a complex output, making the first
input real and the second imaginary:

x = rand(3) * 5;
y = rand(3) * -8;

z = complex(x, y)
z =
 4.7842 -1.0921i 0.8648 -1.5931i 1.2616 -2.2753i
 2.6130 -0.0941i 4.8987 -2.3898i 4.3787 -3.7538i
 4.4007 -7.1512i 1.3572 -5.2915i 3.6865 -0.5182i

You can separate a complex number into its real and imaginary parts using the
real and imag functions:

zr = real(z)
zr =
 4.7842 0.8648 1.2616
 2.6130 4.8987 4.3787
 4.4007 1.3572 3.6865

zi = imag(z)
zi =
 -1.0921 -1.5931 -2.2753
 -0.0941 -2.3898 -3.7538
 -7.1512 -5.2915 -0.5182

2 Data Types

2-12

Complex Number Functions
See “Complex Number Functions” on page 2-18 for a list of functions most
commonly used with MATLAB complex numbers in MATLAB.

Infinity and NaN
MATLAB uses the special values inf, -inf, and NaN to represent values that
are positive and negative infinity, and not a number respectively.

Infinity
MATLAB represents infinity by the special value inf. Infinity results from
operations like division by zero and overflow, which lead to results too large to
represent as conventional floating-point values. MATLAB also provides a
function called inf that returns the IEEE arithmetic representation for
positive infinity as a double scalar value.

Several examples of statements that return positive or negative infinity in
MATLAB are shown here.

Use the isinf function to verify that x is positive or negative infinity:

x = log(0);

isinf(x)
ans =
 1

NaN
MATLAB represents values that are not real or complex numbers with a
special value called NaN, which stands for Not a Number. Expressions like 0/0
and inf/inf result in NaN, as do any arithmetic operations involving a NaN.

x = 1/0
x =

Inf

x = 1.e1000
x =

Inf

x = exp(1000)
x =

Inf

x = log(0)
x =

-Inf

Numeric Types

2-13

For example, the statement n/0, where n is complex, returns NaN:

x = 7i/0
x =
 NaN + Infi

Use the isnan function to verify that x is NaN:

x = log(0);

isnan(x)
ans =
 1

MATLAB also provides a function called NaN that returns the IEEE arithmetic
representation for NaN as a double scalar value:

x = NaN;

whos x
 Name Size Bytes Class

 x 1x1 8 double array

Logical Operations on NaN. Because two NaNs are not equal to each other, logical
operations involving NaN always return false, except for a test for inequality,
(NaN ~= NaN):

NaN > NaN
ans =
 0

NaN ~= NaN
ans =
 1

Infinity and NaN Functions
See “Infinity and NaN Functions” on page 2-18 for a list of functions most
commonly used with inf and NaN in MATLAB.

2 Data Types

2-14

Identifying Numeric Types
You can check the data type of a variable x using any of these commands.

Display Format for Numeric Values
By default, MATLAB displays numeric output as 5-digit scaled, fixed-point
values. You can change the way numeric values are displayed to any of the
following:

• 5-digit scaled fixed point, floating point, or the best of the two

• 15-digit scaled fixed point, floating point, or the best of the two

• A ratio of small integers

• Hexadecimal (base 16)

• Bank notation

All available formats are listed on the format reference page.

To change the numeric display setting, use either the format function or the
Preferences dialog box (accessible from the MATLAB File menu). The format
function changes the display of numeric values for the duration of a single

Command Operation

whos x Display the data type of x.

xType = class(x); Assign the data type of x to a variable.

isnumeric(x) Determine if x is a numeric type.

isa(x, 'integer')
isa(x, 'uint64')
isa(x, 'float')
isa(x, 'double')
isa(x, 'single')

Determine if x is the specified numeric type.
(Examples for any integer, unsigned 64-bit
integer, any floating point, double precision, and
single precision are shown here).

isreal(x) Determine if x is real or complex.

isnan(x) Determine if x is Not a Number (NaN).

isinf(x) Determine if x is infinite.

isfinite(x) Determine if x is finite.

Numeric Types

2-15

MATLAB session, while your Preferences settings remain active from one
session to the next. These settings affect only how numbers are displayed, not
how MATLAB computes or saves them.

Display Format Examples
Here are a few examples of the various formats and the output produced from
the following two-element vector x, with components of different magnitudes.

Check the current format setting:

get(0, 'format')
ans =
 short

Set the value for x and display in 5-digit scaled fixed point:

x = [4/3 1.2345e-6]
x =
 1.3333 0.0000

Set the format to 5-digit floating point:

format short e
x
x =
 1.3333e+000 1.2345e-006

Set the format to 15-digit scaled fixed point:

format long
x
x =
 1.33333333333333 0.00000123450000

Set the format to 'rational' for small integer ratio output:

format rational
x
x =
 4/3 1/810045

2 Data Types

2-16

Set an integer value for x and display it in hexadecimal (base 16) format:

format hex
x = uint32(876543210)
x =
 343efcea

Setting Numeric Format in a Program
To temporarily change the numeric format inside a program, get the original
format using the get function and save it in a variable. When you finish
working with the new format, you can restore the original format setting using
the set function as shown here:

origFormat = get(0, 'format');
format('rational');

 -- Work in rational format --

set(0,'format', origFormat);

Function Summary
MATLAB provides these functions for working with numeric data types:

• “Integer Functions” on page 2-16

• “Floating-Point Functions” on page 2-17

• “Complex Number Functions” on page 2-18

• “Infinity and NaN Functions” on page 2-18

• “Type Identification Functions” on page 2-18

• “Output Formatting Functions” on page 2-19

Integer Functions

Function Description

int8, int16,
int32, int64

Convert to signed 1-, 2-, 4-, or 8-byte integer.

uint8, uint16,
uint32, uint64

Convert to unsigned 1-, 2-, 4-, or 8-byte integer.

Numeric Types

2-17

class Return the data type of an object.

isa Determine if input value has the specified data type.

isinteger Determine if input value is an integer array.

isnumeric Determine if input value is a numeric array.

Floating-Point Functions

Function Description

double Convert to double precision.

single Convert to single precision.

class Return the data type of an object.

isa Determine if input value has the specified data type.

isfloat Determine if input value is a floating-point array.

isnumeric Determine if input value is a numeric array.

eps Return the floating-point relative accuracy. This value is
the tolerance MATLAB uses in its calculations.

realmax Return the largest floating-point number your computer
can represent.

realmin Return the smallest floating-point number your
computer can represent.

Integer Functions (Continued)

Function Description

2 Data Types

2-18

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary
components.

i or j Return the imaginary unit used in constructing complex
data.

real Return the real part of a complex number.

imag Return the imaginary part of a complex number.

isreal Determine if a number is real or imaginary.

Infinity and NaN Functions

Function Description

inf Return the IEEE value for infinity.

isnan Detect NaN elements of an array.

isinf Detect infinite elements of an array.

isfinite Detect finite elements of an array.

nan Return the IEEE value for Not a Number.

Type Identification Functions

Function Description

class Return data type (or class).

isa Determine if input value is of the specified data type.

isfloat Determine if input value is a floating-point array.

isinteger Determine if input value is an integer array.

isnumeric Determine if input value is a numeric array.

Numeric Types

2-19

isreal Determine if input value is real.

whos Display the data type of input.

Output Formatting Functions

Function Description

format Control display format for output.

Type Identification Functions (Continued)

Function Description

2 Data Types

2-20

Logical Types
The logical data type represents a logical true or false state using the
numbers 1 and 0, respectively. Certain MATLAB functions and operators
return logical true or false to indicate whether a certain condition was found
to be true or not. For example, the statement (5 * 10) > 40 returns a logical
true value.

Logical data does not have to be scalar; MATLAB supports arrays of logical
values as well. For example, the following statement returns a vector of logicals
indicating false for the first two elements and true for the last three:

[30 40 50 60 70] > 40
ans =
 0 0 1 1 1

This section covers the following topics:

• “Creating a Logical Array” on page 2-20

• “How Logical Arrays Are Used” on page 2-22

• “Identifying Logical Arrays” on page 2-24

Creating a Logical Array
One way of creating an array of logicals is to just enter a true or false value
for each element. The true function returns logical one; the false function
returns logical zero:

x = [true, true, false, true, false];

Logical Operations on an Array
You can also perform some logical operation on an array that yields an array of
logicals:

x = magic(4) >= 9
x =
 1 0 0 1
 0 1 1 0
 1 0 0 1
 0 1 1 0

Logical Types

2-21

The MATLAB functions that have names beginning with is (e.g., ischar,
issparse) also return a logical value or array:

a = [2.5 6.7 9.2 inf 4.8];

isfinite(a)
ans =
 1 1 1 0 1

This table shows some of the MATLAB operations that return a logical true or
false.

Sparse Logical Arrays
Logical arrays can also be sparse as long as they have no more than two
dimensions:

x = sparse(magic(20) > 395)
x =
 (1,1) 1
 (1,4) 1
 (1,5) 1
 (20,18) 1
 (20,19) 1

Function Operation

true, false Setting value to true or false

logical Numeric to logical conversion

& (and), | (or), ~ (not), xor, any, all Logical operations

&&, || Short-circuit AND and OR

== (eq), ~= (ne), < (lt), > (gt),
<= (le), >= (ge)

Relational operations

All is* functions, cellfun Test operations

strcmp, strncmp, strcmpi, strncmpi String comparisons

2 Data Types

2-22

How Logical Arrays Are Used
MATLAB has two primary uses for logical arrays:

• “Using Logicals in Conditional Statements” on page 2-22

• “Using Logicals in Array Indexing” on page 2-22

Most mathematics operations are not supported on logical values.

Using Logicals in Conditional Statements
Conditional statements are useful when you want to execute a block of code
only when a certain condition is met. For example, the sprintf command
shown below is valid only if str is a nonempty string. The statement

if ~isempty(str) && ischar(str)

checks for this condition and allows the sprintf to execute only if it is true:

str = 'Hello';

if ~isempty(str) && ischar(str)
 sprintf('Input string is ''%s''', str)
 end

ans =
 Input string is 'Hello'

Using Logicals in Array Indexing
MATLAB supports a type of array indexing that uses one array as the index
into another array. For example, array B below indexes into elements 1, 3, 6, 7,
and 10 of array A:

A = 5:5:50
A =
 5 10 15 20 25 30 35 40 45 50
B = [1 3 6 7 10];

A(B)
ans =
 5 15 30 35 50

In this case, the numeric values of array B designate the intended elements of A.

Logical Types

2-23

Another type of array index, a logical index, designates the elements of A based
on their position in the indexing array, B. In this masking type of operation,
every true element in the indexing array is treated as a positional index into
the array being accessed.

Logical Indexing Example 1. This next example creates logical array B that
satisfies the condition A > 0.5, and uses the positions of ones in B to index into
A. This is called logical indexing:

A = rand(5);
B = A > 0.5;

A(B) = 0
A =
 0.2920 0.3567 0.1133 0 0.0595
 0 0.4983 0 0.2009 0.0890
 0.3358 0.4344 0 0.2731 0.2713
 0 0 0 0 0.4091
 0.0534 0 0 0 0.4740

A simpler way to express this is

A(A > 0.5) = 0

Logical Indexing Example 2. The next example highlights the location of the prime
numbers in a magic square using logical indexing to set the nonprimes to 0:

A = magic(4)
A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

B = isprime(A)
B =
 0 1 1 1
 1 1 0 0
 0 1 0 0
 0 0 0 0

2 Data Types

2-24

A(~B) = 0; % Logical indexing

A
A =
 0 2 3 13
 5 11 0 0
 0 7 0 0
 0 0 0 0

Identifying Logical Arrays
This table shows the commands you can use to determine whether or not an
array x is logical. The last function listed, cellfun, operates on cell arrays,
which you can read about in the section “Cell Arrays” on page 2-66.

Command Operation

whos(x) Display value and data type for x.

islogical(x) Return true if array is logical.

isa(x, 'logical') Return true if array is logical.

class(x) Return string with data type name.

cellfun('islogical', x) Check each cell array element for logical.

Characters and Strings

2-25

Characters and Strings
In MATLAB, the term string refers to an array of Unicode characters.
MATLAB represents each character internally as its corresponding numeric
value. Unless you want to access these values, however, you can simply work
with the characters as they display on screen.

You can use char to hold an m-by-n array of strings as long as each string in the
array has the same length. (This is because MATLAB arrays must be
rectangular.) To hold an array of strings of unequal length, use a cell array.

The string is actually a vector whose components are the numeric codes for the
characters. The actual characters displayed depend on the character set
encoding for a given font.

This section covers

• “Creating Character Arrays” on page 2-25

• “Cell Arrays of Strings” on page 2-27

• “String Comparisons” on page 2-30

• “Searching and Replacing” on page 2-33

• “Converting from Numeric to String” on page 2-34

• “Converting from String to Numeric” on page 2-36

• “Function Summary” on page 2-38

Creating Character Arrays
Specify character data by placing characters inside a pair of single quotes. For
example, this line creates a 1-by-13 character array called name:

name = 'Thomas R. Lee';

In the workspace, the output of whos shows

Name Size Bytes Class

name 1x13 26 char array

You can see that each character uses two bytes of storage internally.

2 Data Types

2-26

The class and ischar functions show name’s identity as a character array:

class(name)
ans =
 char

ischar(name)
ans =
 1

You can also join two or more character arrays together to create a new
character array. Use either the string concatenation function, strcat, or the
MATLAB concatenation operator, [], to do this. The latter preserves any
trailing spaces found in the input arrays:

name = 'Thomas R. Lee';
title = ' Sr. Developer';

strcat(name,',',title)
ans =
 Thomas R. Lee, Sr. Developer

To concatenate strings vertically, use strvcat.

Creating Two-Dimensional Character Arrays
When creating a two-dimensional character array, be sure that each row has
the same length. For example, this line is legal because both input rows have
exactly 13 characters:

name = ['Thomas R. Lee' ; 'Sr. Developer']
name =
 Thomas R. Lee
 Sr. Developer

When creating character arrays from strings of different lengths, you can pad
the shorter strings with blanks to force rows of equal length:

name = ['Thomas R. Lee '; 'Senior Developer'];

Characters and Strings

2-27

A simpler way to create string arrays is to use the char function. char
automatically pads all strings to the length of the longest input string. In the
following example, char pads the 13-character input string 'Thomas R. Lee'
with three trailing blanks so that it will be as long as the second string:

name = char('Thomas R. Lee','Senior Developer')
name =
 Thomas R. Lee
 Senior Developer

When extracting strings from an array, use the deblank function to remove any
trailing blanks:

trimname = deblank(name(1,:))
trimname =
 Thomas R. Lee

size(trimname)
ans =
 1 13

Cell Arrays of Strings
Creating strings in a regular MATLAB array requires that all strings in the
array be of the same length. This often means that you have to pad blanks at
the end of strings to equalize their length. However, another type of MATLAB
array, the cell array, can hold different sizes and types of data in an array
without padding. Cell arrays provide a more flexible way to store strings of
varying length.

For details on cell arrays, see “Cell Arrays” on page 2-66.

Converting to a Cell Array of Strings
The cellstr function converts a character array into a cell array of strings.
Consider the character array

data = ['Allison Jones';'Development ';'Phoenix '];

Each row of the matrix is padded so that all have equal length (in this case, 13
characters).

2 Data Types

2-28

Now use cellstr to create a column vector of cells, each cell containing one of
the strings from the data array:

celldata = cellstr(data)
celldata =
 'Allison Jones'
 'Development'
 'Phoenix'

Note that the cellstr function strips off the blanks that pad the rows of the
input string matrix:

length(celldata{3})
ans =
 7

The iscellstr function determines if the input argument is a cell array of
strings. It returns a logical 1 (true) in the case of celldata:

iscellstr(celldata)
ans =
 1

Use char to convert back to a standard padded character array:

strings = char(celldata)
strings =
 Allison Jones
 Development
 Phoenix

length(strings(3,:))
ans =
 13

Characters and Strings

2-29

Functions for Cell Arrays of Strings
This table describes the MATLAB functions for working with cell arrays.

You can also use the following set functions with cell arrays of strings.

Function Description

cellstr Convert a character array to a cell array of strings.

char Convert a cell array of strings to a character array.

deblank Remove trailing blanks from a string.

iscellstr Return true for a cell array of strings.

sort Sort elements in ascending or descending order.

strcat Concatenate strings.

strcmp Compare strings.

strmatch Find possible matches for a string.

Function Description

intersect Set the intersection of two vectors.

ismember Detect members of a set.

setdiff Return the set difference of two vectors.

setxor Set the exclusive OR of two vectors.

union Set the union of two vectors.

unique Set the unique elements of a vector.

2 Data Types

2-30

String Comparisons
There are several ways to compare strings and substrings:

• You can compare two strings, or parts of two strings, for equality.

• You can compare individual characters in two strings for equality.

• You can categorize every element within a string, determining whether each
element is a character or white space.

These functions work for both character arrays and cell arrays of strings.

Comparing Strings for Equality
You can use any of four functions to determine if two input strings are
identical:

• strcmp determines if two strings are identical.

• strncmp determines if the first n characters of two strings are identical.

• strcmpi and strncmpi are the same as strcmp and strncmp, except that they
ignore case.

Consider the two strings

str1 = 'hello';
str2 = 'help';

Strings str1 and str2 are not identical, so invoking strcmp returns logical 0
(false). For example,

C = strcmp(str1,str2)
C =
 0

Note For C programmers, this is an important difference between the
MATLAB strcmp and C’s strcmp(), which returns 0 if the two strings are the
same.

Characters and Strings

2-31

The first three characters of str1 and str2 are identical, so invoking strncmp
with any value up to 3 returns 1:

C = strncmp(str1, str2, 2)
C =
 1

These functions work cell-by-cell on a cell array of strings. Consider the two cell
arrays of strings

A = {'pizza'; 'chips'; 'candy'};
B = {'pizza'; 'chocolate'; 'pretzels'};

Now apply the string comparison functions:

strcmp(A,B)
ans =
 1
 0
 0

strncmp(A,B,1)
ans =
 1
 1
 0

Comparing for Equality Using Operators
You can use MATLAB relational operators on character arrays, as long as the
arrays you are comparing have equal dimensions, or one is a scalar. For
example, you can use the equality operator (==) to determine which characters
in two strings match:

A = 'fate';
B = 'cake';

A == B
ans =
 0 1 0 1

All of the relational operators (>, >=, <, <=, ==, ~=) compare the values of
corresponding characters.

2 Data Types

2-32

Categorizing Characters Within a String
There are three functions for categorizing characters inside a string:

• isletter determines if a character is a letter

• isspace determines if a character is white space (blank, tab, or new line)

• isstrprop checks characters in a string to see if they match a category you
specify, such as

- Alphabetic

- Alphanumeric

- Lowercase or uppercase

- Decimal digits

- Hexadecimal digits

- Control characters

- Graphic characters

- Punctuation characters

- White-space characters

For example, create a string named mystring:

mystring = 'Room 401';

isletter examines each character in the string, producing an output vector of
the same length as mystring:

A = isletter(mystring)
A =
 1 1 1 1 0 0 0 0

The first four elements in A are logical 1 (true) because the first four characters
of mystring are letters.

Characters and Strings

2-33

Searching and Replacing
MATLAB provides several functions for searching and replacing characters in
a string. (MATLAB also supports search and replace operations using regular
expressions. See “Regular Expressions” on page 3-25.)

Consider a string named label:

label = 'Sample 1, 10/28/95';

The strrep function performs the standard search-and-replace operation. Use
strrep to change the date from '10/28' to '10/30':

newlabel = strrep(label, '28', '30')
newlabel =
 Sample 1, 10/30/95

findstr returns the starting position of a substring within a longer string. To
find all occurrences of the string 'amp' inside label, use

position = findstr('amp', label)
position =
 2

The position within label where the only occurrence of 'amp' begins is the
second character.

The strtok function returns the characters before the first occurrence of a
delimiting character in an input string. The default delimiting characters are
the set of white-space characters. You can use the strtok function to parse a
sentence into words. For example,

function allWords = words(inputString)
remainder = inputString;
allWords = '';

while (any(remainder))
 [chopped,remainder] = strtok(remainder);
 allWords = strvcat(allWords, chopped);
end

2 Data Types

2-34

The strmatch function looks through the rows of a character array or cell array
of strings to find strings that begin with a given series of characters. It returns
the indices of the rows that begin with these characters:

maxstrings = strvcat('max', 'minimax', 'maximum')
maxstrings =
 max
 minimax
 maximum

strmatch('max', maxstrings)
ans =
 1
 3

Converting from Numeric to String
The functions listed in this table provide a number of ways to convert numeric
data to character strings.

Function Description Example

char Convert a positive integer to an equivalent character.
(Truncates any fractional parts.)

[72 105] → 'Hi'

int2str Convert a positive or negative integer to a character
type. (Rounds any fractional parts.)

[72 105] → '72 105'

num2str Convert a numeric type to a character type of the
specified precision and format.

[72 105] → '72/105/'
(format set to %1d/)

mat2str Convert a numeric type to a character type of the
specified precision, returning a string MATLAB can
evaluate.

[72 105] → '[72 105]'

dec2hex Convert a positive integer to a character type of
hexadecimal base.

[72 105] → '48 69'

Characters and Strings

2-35

Converting to a Character Equivalent
The char function converts integers to Unicode character codes and returns a
string composed of the equivalent characters:

x = [77 65 84 76 65 66];
char(x)
ans =
 MATLAB

Converting to a String of Numbers
The int2str, num2str, and mat2str functions convert numeric values to
strings where each character represents a separate digit of the input value. The
int2str and num2str functions are often useful for labeling plots. For example,
the following lines use num2str to prepare automated labels for the x-axis of a
plot:

function plotlabel(x, y)
plot(x, y)
str1 = num2str(min(x));
str2 = num2str(max(x));
out = ['Value of f from ' str1 ' to ' str2];
xlabel(out);

Converting to a Specific Radix
Another class of conversion functions changes numeric values into strings
representing a decimal value in another base, such as binary or hexadecimal
representation. This includes dec2hex, dec2bin, and dec2base.

dec2bin Convert a positive integer to a character type of binary
base.

[72 105] → '1001000
 1101001'

dec2base Convert a positive integer to a character type of any
base from 2 through 36.

[72 105] → '110 151'
(base set to 8)

Function Description Example

2 Data Types

2-36

Converting from String to Numeric
The functions listed in this table provide a number of ways to convert character
strings to numeric data.

Converting from a Character Equivalent
Character arrays store each character as a 16-bit numeric value. Use one of the
integer conversion functions (e.g., uint8) or the double function to convert
strings to their numeric values, and char to revert to character representation:

name = 'Thomas R. Lee';

name = double(name)
name =
 84 104 111 109 97 115 32 82 46 32 76 101 101

Function Description Example

uintN
(e.g., uint8)

Convert a character to an integer code that
represents that character.

'Hi' → 72 105

str2num Convert a character type to a numeric type. '72 105' → [72 105]

str2double Similar to str2num, but offers better
performance and works with cell arrays of
strings.

{'72' '105'} → [72 105]

hex2num Convert a numeric type to a character type of
specified precision, returning a string that
MATLAB can evaluate.

'A' → '-1.4917e-154'

hex2dec Convert a character type of hexadecimal base to
a positive integer.

'A' → 10

bin2dec Convert a positive integer to a character type of
binary base.

'1010' → 10

base2dec Convert a positive integer to a character type of
any base from 2 through 36.

'12' → 10
(if base == 8)

Characters and Strings

2-37

name = char(name)
name =
 Thomas R. Lee

Converting from a Numeric String
Use str2num to convert a character array to the numeric value represented by
that string:

str = '37.294e-1';

val = str2num(str)
val =
 3.7294

The str2double function converts a cell array of strings to the double-precision
values represented by the strings:

c = {'37.294e-1'; '-58.375'; '13.796'};

d = str2double(c)
d =
 3.7294
 -58.3750
 13.7960

whos
 Name Size Bytes Class

 c 3x1 224 cell array
 d 3x1 24 double array

Converting from a Specific Radix
To convert from a character representation of a nondecimal number to the
value of that number, use one of these functions: hex2num, hex2dec, bin2dec,
or base2dec.

The hex2num and hex2dec functions both take hexadecimal (base 16) inputs,
but hex2num returns the IEEE double-precision floating-point number it
represents while hex2dec converts to a decimal integer.

2 Data Types

2-38

Function Summary
MATLAB provides these functions for working with character arrays:

• “Functions to Create Character Arrays” on page 2-38

• “Functions to Modify Character Arrays” on page 2-38

• “Functions to Read and Operate on Character Arrays” on page 2-39

• “Functions to Search or Compare Character Arrays” on page 2-39

• “Functions to Determine Data Type or Content” on page 2-39

• “Functions to Convert Between Numeric and String Data Types” on
page 2-40

• “Functions to Work with Cell Arrays of Strings as Sets” on page 2-40

Functions to Create Character Arrays

Function Description

'str' Create the string specified between quotes.

blanks Create a string of blanks.

sprintf Write formatted data to a string.

strcat Concatenate strings.

strvcat Concatenate strings vertically.

Functions to Modify Character Arrays

Function Description

deblank Remove trailing blanks.

lower Make all letters lowercase.

sort Sort elements in ascending or descending order.

strjust Justify a string.

strrep Replace one string with another.

Characters and Strings

2-39

strtrim Remove leading and trailing white space.

upper Make all letters uppercase.

Functions to Read and Operate on Character Arrays

Function Description

eval Execute a string with MATLAB expression.

sscanf Read a string under format control.

Functions to Search or Compare Character Arrays

Function Description

findstr Find one string within another.

strcmp Compare strings.

strcmpi Compare strings, ignoring case.

strmatch Find matches for a string.

strncmp Compare the first N characters of strings.

strncmpi Compare the first N characters, ignoring case.

strtok Find a token in a string.

Functions to Determine Data Type or Content

Function Description

iscellstr Return true for a cell array of strings.

ischar Return true for a character array.

isletter Return true for letters of the alphabet.

Functions to Modify Character Arrays

Function Description

2 Data Types

2-40

isstrprop Determine if a string is of the specified category.

isspace Return true for white-space characters.

Functions to Convert Between Numeric and String Data Types

Function Description

char Convert to a character or string.

cellstr Convert a character array to a cell array of strings.

double Convert a string to numeric codes.

int2str Convert an integer to a string.

mat2str Convert a matrix to an eval'able string.

num2str Convert a number to a string.

str2num Convert a string to a number.

str2double Convert a string to a double-precision value.

Functions to Work with Cell Arrays of Strings as Sets

Function Description

intersect Set the intersection of two vectors.

ismember Detect members of a set.

setdiff Return the set difference of two vectors.

setxor Set the exclusive OR of two vectors.

union Set the union of two vectors.

unique Set the unique elements of a vector.

Functions to Determine Data Type or Content

Function Description

Dates and Times

2-41

Dates and Times
MATLAB represents date and time information in either of three formats: date
strings, serial date numbers, or date vectors. You have the choice of using any
of these formats. If you work with more than one date and time format,
MATLAB provides functions to help you easily convert from one format to
another, (e.g., from a string to a serial date number).

When using date strings, you have an additional option of choosing from 19
different string styles to express date and/or time information.

This section covers the following topics:

• “Types of Date Formats” on page 2-41

• “Conversions Between Date Formats” on page 2-43

• “Date String Formats” on page 2-44

• “Output Formats” on page 2-44

• “Current Date and Time” on page 2-46

• “Function Summary” on page 2-47

Types of Date Formats
The three MATLAB date and time formats are

• “Date Strings”

• “Serial Date Numbers”

• “Date Vectors”

This table shows examples of the three formats.

Date Format Example

Date string 02-Oct-1996

Serial date number 729300

Date vector 1996 10 2 0 0 0

2 Data Types

2-42

Date Strings
There are a number of different styles in which to express date and time
information as a date string. For example, several possibilities for October 31,
2003 at 3:45:17 in the afternoon are

31-Oct-2003 15:45:17
10/31/03
15:45:17
03:45:17 PM

If you are working with a small number of dates at the MATLAB command line,
then date strings are often the most convenient format to use.

Note The MATLAB date function returns the current date and time as a
date string.

Serial Date Numbers
A serial date number represents a calendar date as the number of days that has
passed since a fixed base date. In MATLAB, serial date number 1 is January 1,
0000. MATLAB also uses serial time to represent fractions of days beginning at
midnight; for example, 6 p.m. equals 0.75 serial days. So the string
'31-Oct-2003, 6:00 pm' in MATLAB is date number 731885.75.

MATLAB works internally with serial date numbers. If you are using functions
that handle large numbers of dates or doing extensive calculations with dates,
you get better performance if you use date numbers.

Note The MATLAB now function returns the current date and time as a
serial date number.

Dates and Times

2-43

Date Vectors
Date vectors are an internal format for some MATLAB functions; you do not
typically use them in calculations. A date vector contains the elements [year
month day hour minute second].

Note The MATLAB clock function returns the current date and time as a
serial vector.

Conversions Between Date Formats
Functions that convert between date formats are shown below.

Here are some examples of conversions from one date format to another:

d1 = datenum('02-Oct-1996')
d1 =
 729300

d2 = datestr(d1 + 10)
d2 =
 12-Oct-1996

dv1 = datevec(d1)
dv1 =
 1996 10 2 0 0 0

dv2 = datevec(d2)
dv2 =
 1996 10 12 0 0 0

Function Description

datenum Convert a date string to a serial date number.

datestr Convert a serial date number to a date string.

datevec Split a date number or date string into individual
date elements.

2 Data Types

2-44

Date String Formats
The datenum function is important for doing date calculations efficiently.
datenum takes an input string in any of several formats, with 'dd-mmm-yyyy',
'mm/dd/yyyy', or 'dd-mmm-yyyy, hh:mm:ss.ss' most common. You can form
up to six fields from letters and digits separated by any other characters:

• The day field is an integer from 1 to 31.

• The month field is either an integer from 1 to 12 or an alphabetic string with
at least three characters.

• The year field is a nonnegative integer: if only two digits are specified, then
a year 19yy is assumed; if the year is omitted, then the current year is used
as a default.

• The hours, minutes, and seconds fields are optional. They are integers
separated by colons or followed by 'AM' or 'PM'.

For example, if the current year is 1996, then these are all equivalent:

'17-May-1996'
'17-May-96'
'17-May'
'May 17, 1996'
'5/17/96'
'5/17'

and both of these represent the same time:

'17-May-1996, 18:30'
'5/17/96/6:30 pm'

Note that the default format for numbers-only input follows the American
convention. Thus 3/6 is March 6, not June 3.

If you create a vector of input date strings, use a column vector and be sure all
strings are the same length. Fill in with spaces or zeros.

Output Formats
The command datestr(D, dateform) converts a serial date D to one of 19
different date string output formats showing date, time, or both. The default
output for dates is a day-month-year string: 01-Mar-1996. You select an
alternative output format by using the optional integer argument dateform.

Dates and Times

2-45

This table shows the date string formats that correspond to each dateform
value.

dateform Format Description

0 01-Mar-1996 15:45:17 day-month-year hour:minute:second

1 01-Mar-1996 day-month-year

2 03/01/96 month/day/year

3 Mar month, three letters

4 M month, single letter

5 3 month

6 03/01 month/day

7 1 day of month

8 Wed day of week, three letters

9 W day of week, single letter

10 1996 year, four digits

11 96 year, two digits

12 Mar96 month year

13 15:45:17 hour:minute:second

14 03:45:17 PM hour:minute:second AM or PM

15 15:45 hour:minute

16 03:45 PM hour:minute AM or PM

17 Q1-96 calendar quarter-year

18 Q1 calendar quarter

2 Data Types

2-46

Converting Output Format with datestr
Here are some examples of converting the date March 1, 1996 to various forms
using the datestr function:

d = '01-Mar-1999'
d =
 01-Mar-1999

datestr(d)
ans =
 01-Mar-1999

datestr(d, 2)
ans =
 03/01/99

datestr(d, 17)
ans =
 Q1-99

Current Date and Time
The function date returns a string for today’s date:

date
ans =
 02-Oct-1996

The function now returns the serial date number for the current date and time:

now
ans =
 729300.71

datestr(now)
ans =
 02-Oct-1996 16:56:16

datestr(floor(now))
ans =
 02-Oct-1996

Dates and Times

2-47

Function Summary
MATLAB provides functions for time and date handling. These functions are
in a directory called timefun in the MATLAB Toolbox:

• “Current Date and Time Functions”

• “Conversion Functions”

• “Utility Functions”

• “Timing Measurement Functions”

Current Date and Time Functions

Function Description

clock Return the current date and time as a date vector.

date Return the current date as date string.

now Return the current date and time as serial date number.

Conversion Functions

Function Description

datenum Convert to a serial date number.

datestr Convert to a string representation of the date.

datevec Convert to a date vector.

Utility Functions

Function Description

addtodate Modify a date number by field.

calendar Return a matrix representing a calendar.

datetick Label axis tick lines with dates.

eomday Return the last day of a year and month.

weekday Return the current day of the week.

2 Data Types

2-48

Timing Measurement Functions

Function Description

cputime Return the total CPU time used by MATLAB since it
was started.

etime Return the time elapsed between two date vectors.

tic, toc Measure the time elapsed between invoking tic and
toc.

Structures

2-49

Structures
Structures are MATLAB arrays with named “data containers” called fields. The
fields of a structure can contain any kind of data. For example, one field might
contain a text string representing a name, another might contain a scalar
representing a billing amount, a third might hold a matrix of medical test
results, and so on.

Like standard arrays, structures are inherently array oriented. A single
structure is a 1-by-1 structure array, just as the value 5 is a 1-by-1 numeric
array. You can build structure arrays with any valid size or shape, including
multidimensional structure arrays.

Note The examples in this section focus on two-dimensional structure
arrays. For examples of higher-dimension structure arrays, see
“Multidimensional Arrays” on page 1-48.

The following list summarizes the contents of this section:

• “Building Structure Arrays” on page 2-50

• “Accessing Data in Structure Arrays” on page 2-53

• “Using Dynamic Field Names” on page 2-54

• “Finding the Size of Structure Arrays” on page 2-55

• “Adding Fields to Structures” on page 2-56

• “Deleting Fields from Structures” on page 2-56

• “Applying Functions and Operators” on page 2-56

'John Doe'

127.00

 79 75 73
180 178 177.5
220 210 205

patient

.test

.billing

.name

2 Data Types

2-50

• “Writing Functions to Operate on Structures” on page 2-57

• “Organizing Data in Structure Arrays” on page 2-59

• “Nesting Structures” on page 2-63

• “Function Summary” on page 2-65

Building Structure Arrays
You can build structures in two ways:

• Using assignment statements

• Using the struct function

Building Structure Arrays Using Assignment Statements
You can build a simple 1-by-1 structure array by assigning data to individual
fields. MATLAB automatically builds the structure as you go along. For
example, create the 1-by-1 patient structure array shown at the beginning of
this section:

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

Now entering

patient

at the command line results in

name: 'John Doe'
billing: 127
test: [3x3 double]

patient is an array containing a structure with three fields. To expand the
structure array, add subscripts after the structure name:

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68 70 68; 118 118 119; 172 170 169];

Structures

2-51

The patient structure array now has size [1 2]. Note that once a structure
array contains more than a single element, MATLAB does not display
individual field contents when you type the array name. Instead, it shows a
summary of the kind of information the structure contains:

patient
patient =
1x2 struct array with fields:
 name
 billing
 test

You can also use the fieldnames function to obtain this information.
fieldnames returns a cell array of strings containing field names.

As you expand the structure, MATLAB fills in unspecified fields with empty
matrices so that

• All structures in the array have the same number of fields.

• All fields have the same field names.

For example, entering patient(3).name = 'Alan Johnson' expands the
patient array to size [1 3]. Now both patient(3).billing and
patient(3).test contain empty matrices.

Note Field sizes do not have to conform for every element in an array. In the
patient example, the name fields can have different lengths, the test fields
can be arrays of different sizes, and so on.

Building Structure Arrays Using the struct Function
You can preallocate an array of structures with the struct function. Its basic
form is

strArray = struct('field1',val1,'field2',val2, ...)

where the arguments are field names and their corresponding values. A field
value can be a single value, represented by any MATLAB data construct, or a
cell array of values. All field values in the argument list must be of the same
scale (single value or cell array).

2 Data Types

2-52

You can use different methods for preallocating structure arrays. These
methods differ in the way in which the structure fields are initialized. As an
example, consider the allocation of a 1-by-3 structure array, weather, with the
structure fields temp and rainfall. Three different methods for allocating such
an array are shown in this table.

Memory Requirements for Structures
You do not necessarily need a contiguous block of memory to store a structure.
The memory for each field in the structure needs to be contiguous, but not the
entire structure itself.

Method Syntax Initialization

struct weather(3) = struct('temp', 72, ...
'rainfall', 0.0);

weather(3) is initialized with the
field values shown. The fields for
the other structures in the array,
weather(1) and weather(2), are
initialized to the empty matrix.

struct with
repmat

weather = repmat(struct('temp', ...
72, 'rainfall', 0.0), 1, 3);

All structures in the weather array
are initialized using one set of field
values.

struct with
cell array
syntax

weather = ...
 struct('temp', {68, 80, 72}, ...
'rainfall', {0.2, 0.4, 0.0});

The structures in the weather
array are initialized with distinct
field values specified with cell
arrays.

Structures

2-53

Accessing Data in Structure Arrays
Using structure array indexing, you can access the value of any field or field
element in a structure array. Likewise, you can assign a value to any field or
field element. For the examples in this section, consider this structure array.

You can access subarrays by appending standard subscripts to a structure
array name. For example, the line below results in a 1-by-2 structure array:

mypatients = patient(1:2)
1x2 struct array with fields:
 name
 billing
 test

The first structure in the mypatients array is the same as the first structure
in the patient array:

mypatients(1)
ans =
 name: 'John Doe'
 billing: 127
 test: [3x3 double]

'Al Smith'

504.70

 80 80 80
153 153 154
181 190 182

'Ann Lane'

 68 70 68
118 118 119
172 170 169

28.50

'John Doe'

127.00

 79 75 73
180 178 177.5
220 210 205

patient(3)patient(2)patient(1)

.test

.billing

.name

patient
array

.billing

.name
.billing

.name

.test.test

2 Data Types

2-54

To access a field of a particular structure, include a period (.) after the structure
name followed by the field name:

str = patient(2).name
str =
 Ann Lane

To access elements within fields, append the appropriate indexing mechanism
to the field name. That is, if the field contains an array, use array subscripting;
if the field contains a cell array, use cell array subscripting, and so on:

test2b = patient(3).test(2,2)
test2b =
 153

Use the same notations to assign values to structure fields, for example,

patient(3).test(2,2) = 7;

You can extract field values for multiple structures at a time. For example, the
line below creates a 1-by-3 vector containing all of the billing fields:

bills = [patient.billing]
bills =
 127.0000 28.5000 504.7000

Similarly, you can create a cell array containing the test data for the first two
structures:

tests = {patient(1:2).test}
tests =
 [3x3 double] [3x3 double]

Using Dynamic Field Names
The most common way to access the data in a structure is by specifying the
name of the field that you want to reference. Another means of accessing
structure data is to use dynamic field names. These names express the field as
a variable expression that MATLAB evaluates at run-time. The
dot-parentheses syntax shown here makes expression a dynamic field name:

structName.(expression)

Structures

2-55

Index into this field using the standard MATLAB indexing syntax. For
example, to evaluate expression into a field name and obtain the values of that
field at columns 1 through 25 of row 7, use

structName.(expression)(7,1:25)

Dynamic Field Names Example
The avgscore function shown below computes an average test score, retrieving
information from the testscores structure using dynamic field names:

function avg = avgscore(testscores, student, first, last)
for k = first:last
 scores(k) = testscores.(student).week(k);
end
avg = sum(scores)/(last - first + 1);

You can run this function using different values for the dynamic field, student:

avgscore(testscores, 'Ann Lane', 1, 20)
ans =
 83.5000

avgscore(testscores, 'William King', 1, 20)
ans =
 92.1000

Finding the Size of Structure Arrays
Use the size function to obtain the size of a structure array, or of any structure
field. Given a structure array name as an argument, size returns a vector of
array dimensions. Given an argument in the form array(n).field, the size
function returns a vector containing the size of the field contents.

For example, for the 1-by-3 structure array patient, size(patient) returns
the vector [1 3]. The statement size(patient(1,2).name) returns the length
of the name string for element (1,2) of patient.

2 Data Types

2-56

Adding Fields to Structures
You can add a field to every structure in an array by adding the field to a single
structure. For example, to add a social security number field to the patient
array, use an assignment like

patient(2).ssn = '000-00-0000';

Now patient(2).ssn has the assigned value. Every other structure in the
array also has the ssn field, but these fields contain the empty matrix until you
explicitly assign a value to them.

To add new fields to a structure, specifying the names for these fields at
run-time, see the section on “Using Dynamic Field Names” on page 2-54.

Deleting Fields from Structures
You can remove a given field from every structure within a structure array
using the rmfield function. Its most basic form is

struc2 = rmfield(array, 'field')

where array is a structure array and 'field' is the name of a field to remove
from it. To remove the name field from the patient array, for example, enter

patient = rmfield(patient, 'name');

Applying Functions and Operators
Operate on fields and field elements the same way you operate on any other
MATLAB array. Use indexing to access the data on which to operate. For
example, this statement finds the mean across the rows of the test array in
patient(2):

mean((patient(2).test)');

There are sometimes multiple ways to apply functions or operators across
fields in a structure array. One way to add all the billing fields in the patient
array is

total = 0;
for k = 1:length(patient)
 total = total + patient(k).billing;
end

Structures

2-57

To simplify operations like this, MATLAB enables you to operate on all
like-named fields in a structure array. Simply enclose the array.field
expression in square brackets within the function call. For example, you can
sum all the billing fields in the patient array using

total = sum ([patient.billing]);

This is equivalent to using the comma-separated list:

total = sum ([patient(1).billing, patient(2).billing, ...]);

This syntax is most useful in cases where the operand field is a scalar field:

Writing Functions to Operate on Structures
You can write functions that work on structures with specific field
architectures. Such functions can access structure fields and elements for
processing.

Note When writing M-file functions to operate on structures, you must
perform your own error checking. That is, you must ensure that the code
checks for the expected fields.

As an example, consider a collection of data that describes measurements, at
different times, of the levels of various toxins in a water source. The data
consists of fifteen separate observations, where each observation contains
three separate measurements.

You can organize this data into an array of 15 structures, where each structure
has three fields, one for each of the three measurements taken.

The function concen, shown below, operates on an array of structures with
specific characteristics. Its arguments must contain the fields lead, mercury,
and chromium:

function [r1, r2] = concen(toxtest);
% Create two vectors. r1 contains the ratio of mercury to lead
% at each observation. r2 contains the ratio of lead to chromium.
r1 = [toxtest.mercury] ./ [toxtest.lead];
r2 = [toxtest.lead] ./ [toxtest.chromium];

2 Data Types

2-58

% Plot the concentrations of lead, mercury, and chromium
% on the same plot, using different colors for each.
lead = [toxtest.lead];
mercury = [toxtest.mercury];
chromium = [toxtest.chromium];

plot(lead, 'r'); hold on
plot(mercury, 'b')
plot(chromium, 'y'); hold off

Try this function with a sample structure array like test:

test(1).lead = .007;
test(2).lead = .031;
test(3).lead = .019;

test(1).mercury = .0021;
test(2).mercury = .0009;
test(3).mercury = .0013;

test(1).chromium = .025;
test(2).chromium = .017;
test(3).chromium = .10;

Structures

2-59

Organizing Data in Structure Arrays
The key to organizing structure arrays is to decide how you want to access
subsets of the information. This, in turn, determines how you build the array
that holds the structures, and how you break up the structure fields.

For example, consider a 128-by-128 RGB image stored in three separate
arrays; RED, GREEN, and BLUE.

0.689 0.706 0.118 0.884 ...
0.535 0.532 0.653 0.925 ...
0.314 0.265 0.159 0.101 ...
0.553 0.633 0.528 0.493 ...
0.441 0.465 0.512 0.512 ...
0.398 0.401 0.421 0.398 ...
0.320 0.988 0.912 0.713 ...
0.119 0.182 0.219 0.328 ...
0.125 0.495 0.128 0.133 ...
 .
 .
 .

0.342 0.647 0.515 0.816 ...
0.111 0.300 0.205 0.526 ...
0.523 0.428 0.712 0.929 ...
0.214 0.604 0.918 0.344 ...
0.100 0.121 0.113 0.126 ...
0.288 0.187 0.204 0.175 ...
0.208 0.576 0.760 0.531 ...
0.109 0.995 0.997 0.910 ...
0.426 0.727 0.995 0.726 ...
 .
 .
 .

0.112 0.986 0.234 0.432 ...
0.765 0.128 0.863 0.521 ...
1.000 0.985 0.761 0.698 ...
0.455 0.783 0.224 0.395 ...
0.021 0.500 0.311 0.123 ...
1.000 1.000 0.867 0.051 ...
1.000 0.945 0.998 0.893 ...
0.990 0.941 1.000 0.876 ...
0.902 0.867 0.834 0.798 ...
 .
 .
 .

Red intensity
values

Green intensity
values

Blue intensity
values

2 Data Types

2-60

There are at least two ways you can organize such data into a structure array.

Plane Organization
In the plane organization, shown to the left in the figure above, each field of the
structure is an entire plane of the image. You can create this structure using

A.r = RED;
A.g = GREEN;
A.b = BLUE;

This approach allows you to easily extract entire image planes for display,
filtering, or other tasks that work on the entire image at once. To access the
entire red plane, for example, use

redPlane = A.r;

Plane organization has the additional advantage of being extensible to
multiple images in this case. If you have a number of images, you can store
them as A(2), A(3), and so on, each containing an entire image.

0.689

0.112 0.986 0.234

0.342 0.647 0.515

0.706 0.118

B(1,1)

.b

.g

.r

B(1,2)

.b

.g

.r

B(1,3)

.b

.g

.r

A

.b

.g

.r
0.112 0.986 0.234 0.432 ...
0.765 0.128 0.863 0.521 ...
1.000 0.985 0.761 0.698 ...
 .
 .
 .

0.342 0.647 0.515 0.816 ...
0.111 0.300 0.205 0.526 ...
0.523 0.428 0.712 0.929 ...
 .
 .
 .

0.689 0.706 0.118 0.884 ...
0.535 0.532 0.653 0.925 ...
0.314 0.265 0.159 0.101 ...
 .
 .
 .

. . .

B

1-by-1 structure array where each field is a 128-by-128 array

128-by-128 structure array where each field is a single data element

Plane organization Element-by-element organization

0.535

0.765 0.128 0.863

0.111 0.300 0.205

0.532 0.653

B(2,1)

.b

.g

.r

B(2,2)

.b

.g

.r

B(2,3)

.b

.g

.r

. . .

.

.

.

.

.

.

.

.

.

Structures

2-61

The disadvantage of plane organization is evident when you need to access
subsets of the planes. To access a subimage, for example, you need to access
each field separately:

redSub = A.r(2:12,13:30);
greenSub = A.g(2:12,13:30);
blueSub = A.b(2:12,13:30);

Element-by-Element Organization
The element-by-element organization, shown to the right in the figure above,
has the advantage of allowing easy access to subsets of data. To set up the data
in this organization, use

for m = 1:size(RED,1)
 for n = 1:size(RED,2)
 B(m,n).r = RED(m,n);
 B(m,n).g = GREEN(m,n);
 B(m,n).b = BLUE(m,n);
 end
end

With element-by-element organization, you can access a subset of data with a
single statement:

Bsub = B(1:10,1:10);

To access an entire plane of the image using the element-by-element method,
however, requires a loop:

redPlane = zeros(128, 128);
for k = 1:(128 ∗ 128)
 redPlane(k) = B(k).r;
end

Element-by-element organization is not the best structure array choice for
most image processing applications; however, it can be the best for other
applications wherein you will routinely need to access corresponding subsets of
structure fields. The example in the following section demonstrates this type of
application.

2 Data Types

2-62

Example — A Simple Database
Consider organizing a simple database.

Each of the possible organizations has advantages depending on how you want
to access the data:

• Plane organization makes it easier to operate on all field values at once. For
example, to find the average of all the values in the amount field,

– Using plane organization
 avg = mean(A.amount);

– Using element-by-element organization
 avg = mean([B.amount]);

12.50

'Ann Jones'

'80 Park St.'

B(1) B(2) B(3)

A

'Ann Jones' ...
'Dan Smith' ...
'Kim Lee ' ...
 .
 .
 .

'80 Park St.' ...
'5 Lake Ave.' ...
'116 Elm St.' ...
 .
 .
 .

12.50 ...
81.29 ...
30.00 ...
 .
 .
 .

. . .

BPlane organization Element-by-element organization

81.29

'Dan Smith'

'5 Lake Ave.'

30.00

'Kim Lee'

'116 Elm St.'

A.name = strvcat('Ann Jones', ...
 'Dan Smith',...);
A.address = strvcat('80 Park St.', ...
 '5 Lake Ave.',...);
A.amount = [12.5; 81.29; 30; ...];

B(1).name = 'Ann Jones';
B(1).address = '80 Park St.';
B(1).amount = 12.5;

B(2).name = 'Dan Smith';
B(2).address = '5 Lake Ave.';
B(2).amount = 81.29;

.

.

.

.name

.name .name .name

.address
.address .address .address

.amount
.amount .amount .amount

Structures

2-63

• Element-by-element organization makes it easier to access all the informa-
tion related to a single client. Consider an M-file, client.m, which displays
the name and address of a given client on screen.

Using plane organization, pass individual fields.
 function client(name,address)
 disp(name)
 disp(address)

 To call the client function,
 client(A.name(2,:),A.address(2,:))

Using element-by-element organization, pass an entire structure.
 function client(B)
 disp(B)

 To call the client function,
 client(B(2))

• Element-by-element organization makes it easier to expand the string array
fields. If you do not know the maximum string length ahead of time for plane
organization, you may need to frequently recreate the name or address field
to accommodate longer strings.

Typically, your data does not dictate the organization scheme you choose.
Rather, you must consider how you want to access and operate on the data.

Nesting Structures
A structure field can contain another structure, or even an array of structures.
Once you have created a structure, you can use the struct function or direct
assignment statements to nest structures within existing structure fields.

Building Nested Structures with the struct Function
To build nested structures, you can nest calls to the struct function. For
example, create a 1-by-1 structure array:

A = struct('data', [3 4 7; 8 0 1], 'nest',...
 struct('testnum', 'Test 1', 'xdata', [4 2 8],...
 'ydata', [7 1 6]));

2 Data Types

2-64

You can build nested structure arrays using direct assignment statements.
These statements add a second element to the array:

A(2).data = [9 3 2; 7 6 5];
A(2).nest.testnum = 'Test 2';
A(2).nest.xdata = [3 4 2];
A(2).nest.ydata = [5 0 9];

Indexing Nested Structures
To index nested structures, append nested field names using dot notation. The
first text string in the indexing expression identifies the structure array, and
subsequent expressions access field names that contain other structures.

For example, the array A created earlier has three levels of nesting:

• To access the nested structure inside A(1), use A(1).nest.

• To access the xdata field in the nested structure in A(2), use
A(2).nest.xdata.

• To access element 2 of the ydata field in A(1), use A(1).nest.ydata(2).

3 4 7
8 0 1

A(2)A(1)

A

'Test 1'

[4 2 8]

[7 1 6]

'Test 2'

[3 4 2]

[5 0 9]

9 3 2
7 6 5.data

.nest .testnum

.xdata

.ydata

.data

.nest .testnum

.xdata

.ydata

Structures

2-65

Function Summary
This table describes the MATLAB functions for working with structures.

Function Description

deal Deal inputs to outputs.

fieldnames Get structure field names.

isfield Return true if the field is in a structure array.

isstruct Return true for structures.

rmfield Remove a structure field.

struct Create or convert to a structure array.

struct2cell Convert a structure array into a cell array.

2 Data Types

2-66

Cell Arrays
A cell array provides a storage mechanism for dissimilar kinds of data. You can
store arrays of different types and/or sizes within the cells of a cell array. For
example, you can store a 1-by-50 char array, a 7-by-13 double array, and a
1-by-1 uint32 in cells of the same cell array.

This illustration shows a cell array that contains arrays of: unsigned integers
(cell 1,1), strings (cell 1,2), complex numbers (cell 1,3), floating-point numbers
(cell 2,1), signed integers (cell 2,2), and another cell array (cell 2,3).

To access data in a cell array, you use the same matrix indexing as with other
MATLAB matrices and arrays. However, with cell array indexing, you use
curly braces, {}, instead of square brackets an parentheses around the array
indices. For example, A{2,5} accesses the cell in row 2 and column 5 of cell
array A.

Note The examples in this section focus on two-dimensional cell arrays. For
examples of higher-dimension cell arrays, see “Multidimensional Arrays” on
page 1-48.

'Anne Smith'

'Class II '

'Obs. 2 '

'Obs. 1 '

'9/12/94 '3 4 2
9 7 6
8 5 1

-7 2 -14
 8 3 -45
52 -16 3

'text'
4 2
1 5

.02 + 8i

.25+3i 8-16i

 34+5i 7+.92i

1.43 2.98 7.83 5.67
4.21

cell 1,1 cell 1,2 cell 1,3

cell 2,1 cell 2,2 cell 2,3

7.3 2.5
1.4 0

Cell Arrays

2-67

The following list summarizes the contents of this section:

• “Creating Cell Arrays” on page 2-67

• “Obtaining Data from Cell Arrays” on page 2-70

• “Deleting Cells” on page 2-72

• “Reshaping Cell Arrays” on page 2-72

• “Replacing Lists of Variables with Cell Arrays” on page 2-72

• “Applying Functions and Operators” on page 2-74

• “Organizing Data in Cell Arrays” on page 2-75

• “Nesting Cell Arrays” on page 2-76

• “Converting Between Cell and Numeric Arrays” on page 2-78

• “Cell Arrays of Structures” on page 2-78

• “Function Summary” on page 2-79

Creating Cell Arrays
You can create cell arrays by

• Using assignment statements

• Preallocating the array using the cell function, then assigning data to cells

Creating Cell Arrays with Assignment Statements
You can build a cell array by assigning data to individual cells, one cell at a
time. MATLAB automatically builds the array as you go along. There are two
ways to assign data to cells:

• Cell indexing

Enclose the cell subscripts in parentheses using standard array notation.
Enclose the cell contents on the right side of the assignment statement in
curly braces {}. For example, create a 2-by-2 cell array A:
A(1,1) = {[1 4 3; 0 5 8; 7 2 9]};
A(1,2) = {'Anne Smith'};
A(2,1) = {3+7i};
A(2,2) = {-pi:pi/10:pi};

2 Data Types

2-68

Note The notation {} denotes the empty cell array, just as [] denotes the
empty matrix for numeric arrays. You can use the empty cell array in any cell
array assignments.

• Content indexing

Enclose the cell subscripts in curly braces using standard array notation.
Specify the cell contents on the right side of the assignment statement:
A{1,1} = [1 4 3; 0 5 8; 7 2 9];
A{1,2} = 'Anne Smith';
A{2,1} = 3+7i;
A{2,2} = -pi:pi/10:pi;

The various examples in this guide do not use one syntax throughout, but
attempt to show representative usage of cell and content addressing. You can
use the two forms interchangeably.

Note If you already have a numeric array of a given name, don’t try to create
a cell array of the same name by assignment without first clearing the
numeric array. If you do not clear the numeric array, MATLAB assumes that
you are trying to “mix” cell and numeric syntaxes, and generates an error.
Similarly, MATLAB does not clear a cell array when you make a single
assignment to it. If any of the examples in this section give unexpected
results, clear the cell array from the workspace and try again.

MATLAB displays the cell array A in a condensed form:

A =
 [3x3 double] 'Anne Smith'
 [3.0000+ 7.0000i] [1x21 double]

To display the full cell contents, use the celldisp function. For a high-level
graphical display of cell architecture, use cellplot.

If you assign data to a cell that is outside the dimensions of the current array,
MATLAB automatically expands the array to include the subscripts you

Cell Arrays

2-69

specify. It fills any intervening cells with empty matrices. For example, the
assignment below turns the 2-by-2 cell array A into a 3-by-3 cell array.

A(3,3) = {5};

Cell Array Syntax: Using Braces
The curly braces {} are cell array constructors, just as square brackets are
numeric array constructors. Curly braces behave similarly to square brackets,
except that you can nest curly braces to denote nesting of cells (see “Nesting
Cell Arrays” on page 2-76 for details).

Curly braces use commas or spaces to indicate column breaks and semicolons
to indicate row breaks between cells. For example,

C = {[1 2], [3 4]; [5 6], [7 8]};

results in

Use square brackets to concatenate cell arrays, just as you do for numeric
arrays.

'Anne Smith'
1 4 3
0 5 8
7 2 9

3+7i [-3.14...3.14]

cell 1,2cell 1,1 cell 1,3

[]

cell 2,2cell 2,1 cell 2,3

5[]

cell 3,2cell 3,1 cell 3,3

[]

[]

[7 8]

cell 2,2

[1 2]

cell 1,1 cell 1,2

cell 2,1

[3 4]

[5 6]

2 Data Types

2-70

Preallocating Cell Arrays with the cell Function
The cell function allows you to preallocate empty cell arrays of the specified
size. For example, this statement creates an empty 2-by-3 cell array:

B = cell(2, 3);

Use assignment statements to fill the cells of B:

B(1,3) = {1:3};

The cell function offers the most memory-efficient way of preallocating a cell
array.

Memory Requirements for Cell Arrays
You do not necessarily need a contiguous block of memory to store a cell array.
The memory for each cell needs to be contiguous, but not the entire array of
cells.

Obtaining Data from Cell Arrays
You can obtain data from cell arrays and store the result as either a standard
array or a new cell array. This section covers

• Accessing cell contents using content indexing

• Accessing a subset of cells using cell indexing

Accessing Cell Contents Using Content Indexing
You can use content indexing on the right side of an assignment to access some
or all of the data in a single cell. Specify the variable to receive the cell contents
on the left side of the assignment. Enclose the cell index expression on the right
side of the assignment in curly braces. This indicates that you are assigning
cell contents, not the cells themselves.

Consider the 2-by-2 cell array N:

N{1,1} = [1 2; 4 5];
N{1,2} = 'Name';
N{2,1} = 2-4i;
N{2,2} = 7;

Cell Arrays

2-71

You can obtain the string in N{1,2} using

c = N{1,2}
c =
 Name

Note In assignments, you can use content indexing to access only a single
cell, not a subset of cells. For example, the statements A{1,:} = value and B
= A{1,:} are both invalid. However, you can use a subset of cells any place
you would normally use a comma-separated list of variables (for example, as
function inputs or when building an array). See “Replacing Lists of Variables
with Cell Arrays” on page 2-72 for details.

To obtain subsets of a cell’s contents, concatenate indexing expressions. For
example, to obtain element (2,2) of the array in cell N{1,1}, use

d = N{1,1}(2,2)
d =
 5

Accessing a Subset of Cells Using Cell Indexing
Use cell indexing to assign any set of cells to another variable, creating a new
cell array. Use the colon operator to access subsets of cells within a cell array.

2
cell 2,2

7

06

5

53 9

4

cell 1,1 cell 1,2

cell 2,1

cell 3,1

B = A(2:3,2:3)

cell 1,1 cell 1,2

cell 2,1

cell 1,3

6
cell 2,2

cell 3,2

0
cell 2,3

cell 3,3
7 2

2 Data Types

2-72

Deleting Cells
You can delete an entire dimension of cells using a single statement. Like
standard array deletion, use vector subscripting when deleting a row or column
of cells and assign the empty matrix to the dimension:

A(cell_subscripts) = []

When deleting cells, curly braces do not appear in the assignment statement at
all.

Reshaping Cell Arrays
Like other arrays, you can reshape cell arrays using the reshape function. The
number of cells must remain the same after reshaping; you cannot use reshape
to add or remove cells:

A = cell(3, 4);

size(A)
ans =
 3 4

B = reshape(A, 6, 2);

size(B)
ans =
 6 2

Replacing Lists of Variables with Cell Arrays
Cell arrays can replace comma-separated lists of MATLAB variables in

• Function input lists

• Function output lists

• Display operations

• Array constructions (square brackets and curly braces)

Cell Arrays

2-73

If you use the colon to index multiple cells in conjunction with the curly brace
notation, MATLAB treats the contents of each cell as a separate variable. For
example, assume you have a cell array T where each cell contains a separate
vector. The expression T{1:5} is equivalent to a comma-separated list of the
vectors in the first five cells of T.

Consider the cell array C:

C(1) = {[1 2 3]};
C(2) = {[1 0 1]};
C(3) = {1:10};
C(4) = {[9 8 7]};
C(5) = {3};

To convolve the vectors in C(1) and C(2) using conv,

d = conv(C{1:2})
d =
 1 2 4 2 3

Display vectors two, three, and four with

C{2:4}
ans =
 1 0 1

ans =
 1 2 3 4 5 6 7 8 9 10

ans =
 9 8 7

Similarly, you can create a new numeric array using the statement

B = [C{1}; C{2}; C{4}]
B =
 1 2 3
 1 0 1
 9 8 7

2 Data Types

2-74

You can also use content indexing on the left side of an assignment to create a
new cell array where each cell represents a separate output argument:

[D{1:2}] = eig(B)
D =
 [3x3 double] [3x3 double]

You can display the actual eigenvectors and eigenvalues using D{1} and D{2}.

Note The varargin and varargout arguments allow you to specify variable
numbers of input and output arguments for MATLAB functions that you
create. Both varargin and varargout are cell arrays, allowing them to hold
various sizes and kinds of MATLAB data. See “Passing Variable Numbers of
Arguments” on page 4-23 for details.

Applying Functions and Operators
Use indexing to apply functions and operators to the contents of cells. For
example, use content indexing to call a function with the contents of a single
cell as an argument:

A{1,1} = [1 2; 3 4];
A{1,2} = randn(3, 3);
A{1,3} = 1:5;

B = sum(A{1,1})
B =
 4 6

To apply a function to several cells of a non-nested cell array, use a loop:

for k = 1:length(A)
 M{k} = sum(A{1,k});
end

Cell Arrays

2-75

Organizing Data in Cell Arrays
Cell arrays are useful for organizing data that consists of different sizes or
kinds of data. Cell arrays are better than structures for applications where

• You need to access multiple fields of data with one statement.

• You want to access subsets of the data as comma-separated variable lists.

• You don’t have a fixed set of field names.

• You routinely remove fields from the structure.

As an example of accessing multiple fields with one statement, assume that
your data consists of

• A 3-by-4 array consisting of measurements taken for an experiment.

• A 15-character string containing a technician’s name.

• A 3-by-4-by-5 array containing a record of measurements taken for the past
five experiments.

For many applications, the best data construct for this data is a structure.
However, if you routinely access only the first two fields of information, then a
cell array might be more convenient for indexing purposes.

This example shows how to access the first and second elements of the cell
array TEST:

[newdata,name] = deal(TEST{1:2})

This example shows how to access the first and second elements of the
structure TEST:

newdata = TEST.measure
name = TEST.name

The varargin and varargout arguments are examples of the utility of cell
arrays as substitutes for comma-separated lists. Create a 3-by-3 numeric array
A:

A = [0 1 2; 4 0 7; 3 1 2];

2 Data Types

2-76

Now apply the normest (2-norm estimate) function to A, and assign the function
output to individual cells of B:

[B{1:2}] = normest(A)
B =
 [8.8826] [4]

All of the output values from the function are stored in separate cells of B. B(1)
contains the norm estimate; B(2) contains the iteration count.

Nesting Cell Arrays
A cell can contain another cell array, or even an array of cell arrays. (Cells that
contain noncell data are called leaf cells.) You can use nested curly braces, the
cell function, or direct assignment statements to create nested cell arrays.
You can then access and manipulate individual cells, subarrays of cells, or cell
elements.

Building Nested Arrays with Nested Curly Braces
You can nest pairs of curly braces to create a nested cell array. For example,

clear A
A(1,1) = {magic(5)};

A(1,2) = {{[5 2 8; 7 3 0; 6 7 3] 'Test 1'; [2-4i 5+7i] {17 []}}}
A =
 [5x5 double] {2x2 cell}

Note that the right side of the assignment is enclosed in two sets of curly
braces. The first set represents cell (1,2) of cell array A. The second “packages”
the 2-by-2 cell array inside the outer cell.

Building Nested Arrays with the cell Function
To nest cell arrays with the cell function, assign the output of cell to an
existing cell:

1 Create an empty 1-by-2 cell array.

A = cell(1,2);

Cell Arrays

2-77

2 Create a 2-by-2 cell array inside A(1,2).

A(1,2) = {cell(2,2)};

3 Fill A, including the nested array, using assignments.

A(1,1) = {magic(5)};
A{1,2}(1,1) = {[5 2 8; 7 3 0; 6 7 3]};
A{1,2}(1,2) = {'Test 1'};
A{1,2}(2,1) = {[2-4i 5+7i]};
A{1,2}(2,2) = {cell(1, 2)}
A{1,2}{2,2}(1) = {17};

Note the use of curly braces until the final level of nested subscripts. This is
required because you need to access cell contents to access cells within cells.

You can also build nested cell arrays with direct assignments using the
statements shown in step 3 above.

Indexing Nested Cell Arrays
To index nested cells, concatenate indexing expressions. The first set of
subscripts accesses the top layer of cells, and subsequent sets of parentheses
access successively deeper layers.

For example, array A has three levels of nesting:

• To access the 5-by-5 array in cell (1,1), use A{1,1}.

• To access the 3-by-3 array in position (1,1) of cell (1,2), use A{1,2}{1,1}.

• To access the 2-by-2 cell array in cell (1,2), use A{1,2}.

• To access the empty cell in position (2,2) of cell (1,2), use
A{1,2}{2,2}{1,2}.

cell 1,1 cell 1,2

[2-4i 5+7i]

'Test 1'
5 2 8
7 3 0
6 7 3

17 24 1 8 15
23 5 7 14 16
 4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

17

2 Data Types

2-78

Converting Between Cell and Numeric Arrays
Use for loops to convert between cell and numeric formats. For example, create
a cell array F:

F{1,1} = [1 2; 3 4];
F{1,2} = [-1 0; 0 1];
F{2,1} = [7 8; 4 1];
F{2,2} = [4i 3+2i; 1-8i 5];

Now use three for loops to copy the contents of F into a numeric array NUM:

for k = 1:4
 for m = 1:2
 for n = 1:2
 NUM(m,n,k) = F{k}(m,n);
 end
 end
end

Similarly, you must use for loops to assign each value of a numeric array to a
single cell of a cell array:

G = cell(1,16);
for m = 1:16
 G{m} = NUM(m);
end

Cell Arrays of Structures
Use cell arrays to store groups of structures with different field architectures:

cStr = cell(1,2);
cStr{1}.label = '12/2/94 - 12/5/94';
cStr{1}.obs = [47 52 55 48; 17 22 35 11];
cStr{2}.xdata = [-0.03 0.41 1.98 2.12 17.11];
cStr{2}.ydata = [-3 5 18 0 9];
cStr{2}.zdata = [0.6 0.8 1 2.2 3.4];

Cell Arrays

2-79

Cell 1 of the cStr array contains a structure with two fields, one a string and
the other a vector. Cell 2 contains a structure with three vector fields.

When building cell arrays of structures, you must use content indexing.
Similarly, you must use content indexing to obtain the contents of structures
within cells. The syntax for content indexing is

cellArray{index}.field

For example, to access the label field of the structure in cell 1, use
cStr{1}.label.

Function Summary
This table describes the MATLAB functions for working with cell arrays.

Function Description

cell Create a cell array.

cell2struct Convert a cell array into a structure array.

celldisp Display cell array contents.

cellfun Apply a cell function to a cell array.

cellplot Display a graphical depiction of a cell array.

deal Copy input to separate outputs.

iscell Return true for a cell array.

num2cell Convert a numeric array into a cell array.

cell 1 cell 2

[-0.03 0.41 1.98 2.12 17.11]

[-3 5 18 0 9]

'12/2/94 - 12/5/94'

47 52 55 48
17 22 35 11

cStr(2)cStr(1)

[0.6 0.8 1 2.2 3.4]

.label

.obs

.xdata

.ydata

.zdata

2 Data Types

2-80

Function Handles
A function handle is a MATLAB value and data type that provides a means of
calling a function indirectly. You can pass function handles in calls to other
functions (often called function functions). You can also store function handles
in data structures for later use (for example, as Handle Graphics® callbacks).

Read more about function handles in the section, “Function Handles” on
page 4-27.

Constructing and Invoking a Function Handle
You construct a handle for a specific function by preceding the function name
with an @ sign. Use only the function name (with no path information) after the
@ sign:

fhandle = @functionname

Handles to Anonymous Functions
Another way to construct a function handle is to create an anonymous function.
For example,

sqr = @(x) x.^2;

creates an anonymous function that computes the square of its input argument
x. The variable sqr contains a handle to the anonymous function. See
“Anonymous Functions” on page 5-3 for more information.

Calling a Function Using Its Handle
To execute a function associated with a function handle, use the syntax shown
here, treating the function handle fhandle as if it were a function name:

fhandle(arg1, arg2, ..., argn)

If the function being called takes no input arguments, then use empty
parentheses after the function handle name:

fhandle()

Function Handles

2-81

Simple Function Handle Example
The following example calls a function plotFHandle, passing it a handle for the
MATLAB sin function. plotFHandle then calls the plot function, passing it
some data and the function handle to sin. The plot function calls the function
associated with the handle to compute its y-axis values:

function x = plotFHandle(fhandle, data)
plot(data, fhandle(data))

Call plotFhandle with a handle to the sin function and the value shown below:

plotFHandle(@sin, -pi:0.01:pi)

2 Data Types

2-82

MATLAB Classes
All MATLAB data types are implemented as object-oriented classes. You can
add data types of your own to your MATLAB environment by creating
additional classes. These user-defined classes define the structure of your new
data type, and the M-file functions, or methods, that you write for each class
define the behavior for that data type.

These methods can also define the way various MATLAB operators, including
arithmetic operations, subscript referencing, and concatenation, apply to the
new data types. For example, a class called polynomial might redefine the
addition operator (+) so that it correctly performs the operation of addition on
polynomials.

With MATLAB classes you can

• Create methods that override existing MATLAB functionality

• Restrict the operations that are allowed on an object of a class

• Enforce common behavior among related classes by inheriting from the same
parent class

• Significantly increase the reuse of your code

Read more about MATLAB classes in “Classes and Objects” on page 8-1.

Java Classes

2-83

Java Classes
MATLAB provides an interface to the Java programming language that
enables you to create objects from Java classes and call Java methods on these
objects. A Java class is a MATLAB data type. Native and third-party classes
are already available through the MATLAB interface. You can also create your
own Java class definitions and bring them into MATLAB.

The MATLAB Java interface enables you to

• Access Java API (application programming interface) class packages that
support essential activities such as I/O and networking

• Access third-party Java classes

• Easily construct Java objects in MATLAB

• Call Java object methods, using either Java or MATLAB syntax

• Pass data between MATLAB variables and Java objects

Read more about Java classes in MATLAB in “Calling Java from MATLAB” in
the MATLAB External Interfaces documentation.

2 Data Types

2-84

3
Basic Program
Components

This chapter introduces some of the principal building blocks used in writing MATLAB programs.

Variables (p. 3-2) Guidelines for creating variables; global and persistent
variables; variable scope and lifetime

Keywords (p. 3-9) Reserved words that you should avoid using

Special Values (p. 3-10) Functions that return constant values, like pi or inf

Operators (p. 3-12) Arithmetic, relational, and logical operators

MATLAB Expressions (p. 3-22) Executing user-supplied strings; constructing executable
strings, shell escape functions

Regular Expressions (p. 3-25) A versatile way to search and replace character strings

Comma-Separated Lists (p. 3-54) Using lists with structures and cell arrays to simplify your
code

Program Control Statements (p. 3-60) Using statements such as if, for, and try-catch to control
the code path your program follows

Symbol Reference (p. 3-69) Quick reference to the symbols used by MATLAB

MATLAB Functions (p. 3-81) Description of the M-file, built-in, and overloaded function
types supplied with MATLAB

3 Basic Program Components

3-2

Variables
A MATLAB variable is essentially a tag that you assign to a value while that
value remains in memory. The tag gives you a way to reference the value in
memory so that your programs can read it, operate on it with other data, and
save it back to memory. This section covers the following topics on using
variables in MATLAB:

• “Types of Variables” on page 3-2

• “Naming Variables” on page 3-6

• “Guidelines to Using Variables” on page 3-7

• “Scope of a Variable” on page 3-7

• “Lifetime of a Variable” on page 3-8

Types of Variables
MATLAB provides three basic types of variables:

• “Local Variables” on page 3-2

• “Global Variables” on page 3-3

• “Persistent Variables” on page 3-5

Local Variables
Each MATLAB function has its own local variables. These are separate from
those of other functions (except for nested functions), and from those of the base
workspace. Variables defined in a function do not remain in memory from one
function call to the next, unless they are defined as global or persistent.

Scripts, on the other hand, do not have a separate workspace. They store their
variables in a workspace that is shared with the caller of the script. When
called from the command line, they share the base workspace. When called
from a function, they share that function’s workspace.

Note If you run a script that alters a variable that already exists in the
caller’s workspace, that variable is overwritten by the script.

Variables

3-3

Global Variables
If several functions, and possibly the base workspace, all declare a particular
name as global, then they all share a single copy of that variable. Any
assignment to that variable, in any function, is available to all the other
functions declaring it global.

Suppose, for example, you want to study the effect of the interaction
coefficients, α and β, in the Lotka-Volterra predator-prey model.

Create an M-file, lotka.m.

function yp = lotka(t,y)
%LOTKA Lotka-Volterra predator-prey model.
global ALPHA BETA
yp = [y(1) - ALPHA*y(1)*y(2); -y(2) + BETA*y(1)*y(2)];

Then interactively enter the statements

global ALPHA BETA
ALPHA = 0.01
BETA = 0.02
[t,y] = ode23('lotka',0,10,[1; 1]);
plot(t,y)

The two global statements make the values assigned to ALPHA and BETA at the
command prompt available inside the function defined by lotka.m. They can
be modified interactively and new solutions obtained without editing any files.

Creating Global Variables. Each function that uses a global variable must first
declare the variable as global. It is usually best to put global declarations
toward the beginning of the function. You would declare global variable MAXLEN
as follows:

global MAXLEN

If the M-file contains subfunctions as well, then each subfunction requiring
access to the global variable must declare it as global. To access the variable
from the MATLAB command line, you must declare it as global at the
command line.

y· 2 y– 2= βy1+ y2

y·1 y1= αy1– y2

3 Basic Program Components

3-4

MATLAB global variable names are typically longer and more descriptive than
local variable names, and often consist of all uppercase characters. These are
not requirements, but guidelines to increase the readability of MATLAB code,
and to reduce the chance of accidentally redefining a global variable.

Displaying Global Variables. To see only those variables you have declared as
global, use the who or whos functions with the literal, global.

global MAXLEN MAXWID
MAXLEN = 36; MAXWID = 78;
len = 5; wid = 21;

whos global
 Name Size Bytes Class

 MAXLEN 1x1 8 double array (global)
 MAXWID 1x1 8 double array (global)

Grand total is 2 elements using 16 bytes

Suggestions for Using Global Variables. A certain amount of risk is associated with
using global variables and, because of this, it is recommended that you use
them sparingly. You might, for example, unintentionally give a global variable
in one function a name that is already used for a global variable in another
function. When you run your application, one function may overwrite the
variable used by the other. This error can be difficult to track down.

Another problem comes when you want to change the variable name. To make
a change without introducing an error into the application, you must find every
occurrence of that name in your code (and other people’s code, if you share
functions).

Alternatives to Using Global Variables. Instead of using a global variable, you may
be able to

• Pass the variable to other functions as an additional argument. In this way,
you make sure that any shared access to the variable is intentional.

If this means that you have to pass a number of additional variables, you can
put them into a structure or cell array and just pass it as one additional
argument.

Variables

3-5

• Use a persistent variable (described in the next section), if you only need to
make the variable persist in memory from one function call to the next.

Persistent Variables
Characteristics of persistent variables are

• You can declare and use them within M-file functions only.

• Only the function in which the variables are declared is allowed access to it.

• MATLAB does not clear them from memory when the function exits, so their
value is retained from one function call to the next.

You must declare persistent variables before you can use them in a function. It
is usually best to put your persistent declarations toward the beginning of the
function. You would declare persistent variable SUM_X as follows:

persistent SUM_X

If you clear a function that defines a persistent variable (i.e., using clear
functionname or clear all), or if you edit the M-file for that function,
MATLAB clears all persistent variables used in that function.

You can use the mlock function to keep an M-file from being cleared from
memory, thus keeping persistent variables in the M-file from being cleared as
well.

Initializing Persistent Variables. When you declare a persistent variable, MATLAB
initializes its value to an empty matrix, []. After the declaration statement,
you can assign your own value to it. This is often done using an isempty
statement, as shown here:

function findSum(inputvalue)
persistent SUM_X

if isempty(SUM_X)
 SUM_X = 0;
end

SUM_X = SUM_X + inputvalue

This initializes the variable to 0 the first time you execute the function, and
then accumulates the value on each iteration.

3 Basic Program Components

3-6

Naming Variables
MATLAB variable names must begin with a letter, which may be followed by
any combination of letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase characters, so A and a are not the same
variable.

Although variable names can be of any length, MATLAB uses only the first N
characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make each
variable name unique in the first N characters to enable MATLAB to
distinguish variables.

N = namelengthmax
N =
 63

The genvarname function can be useful in creating variable names that are
both valid and unique.

Verifying a Variable Name
You can use the isvarname function to make sure a name is valid before you
use it. isvarname returns 1 if the name is valid, and 0 otherwise.

isvarname 8th_column
ans =
 0 % Not valid - begins with a number

Avoid Using Function Names for Variables
When naming a variable, make sure you are not using a name that is already
used as a function name. If you define a variable with a function name, you
won’t be able to call that function until you either remove the variable from
memory with the clear function, or invoke the function using builtin.

For example, if you enter the following command, you will not be able to use
the MATLAB disp function until you clear the variable with clear disp.

disp = 50;

To test whether a proposed variable name is already used as a function name,
use

which -all name

Variables

3-7

Guidelines to Using Variables
The same guidelines that apply to MATLAB variables at the command line also
apply to variables in M-files:

• You do not need to type or declare variables used in M-files (with the possible
exception of designating them as global or persistent).

• Before assigning one variable to another, you must be sure that the variable
on the right-hand side of the assignment has a value.

• Any operation that assigns a value to a variable creates the variable, if
needed, or overwrites its current value, if it already exists.

Scope of a Variable
MATLAB stores variables in a part of memory called a workspace. The base
workspace holds variables created during your interactive MATLAB session
and also any variables created by running M-file scripts. Variables created at
the MATLAB command prompt can also be used by scripts without having to
declare them as global.

Functions do not use the base workspace. Every function has its own function
workspace. Each function workspace is kept separate from the base workspace
and all other workspaces to protect the integrity of the data used by that
function. Even subfunctions that are defined in the same M-file have a
separate function workspace.

Extending Variable Scope
In most cases, variables created within a function are known only within that
function. These variables are not available at the MATLAB command prompt
or to any other function or subfunction. The most secure way to extend the
scope of a function variable is to pass it to other functions as an argument in
the function call. Since MATLAB passes data only by value, you also need to
add the variable to the return values of any function that modifies its value.

Another way to extend the variable scope is to declare the variable as global
within every function that needs access to it. If you do this, you need make sure
that no functions with access to the variable overwrite its value
unintentionally.

3 Basic Program Components

3-8

Scope in Nested Functions
Variables within nested functions are accessible to more than just their
immediate function. As a general rule, the scope of a local variable is the
largest containing function body in which the variable appears, and all
functions nested within that function. For more information on nested
functions, see “Variable Scope in Nested Functions” on page 5-18.

Lifetime of a Variable
Variables created at the MATLAB command prompt or in an M-file script exist
until you clear them or end your MATLAB session. Variables in functions exist
only until the function completes unless they have been declared as global or
persistent.

Keywords

3-9

Keywords
MATLAB reserves certain words for its own use as keywords of the language.
To list the keywords, type

iskeyword
ans =
 'break'
 'case'
 'catch'
 'continue'
 'else'
 'elseif'
 'end'
 'for'
 'function'
 'global'
 'if'
 'otherwise'
 'persistent'
 'return'
 'switch'
 'try'
 'while'

See the online function reference pages to learn how to use these keywords.

You should not use MATLAB keywords other than for their intended purpose.
For example, a keyword should not be used as follows:

while = 5;
??? while = 5;
 |
Error: Expected a variable, function, or constant, found "=".

3 Basic Program Components

3-10

Special Values
Several functions return important special values that you can use in your
M-files.

Function Return Value

ans Most recent answer (variable). If you do not assign an output
variable to an expression, MATLAB automatically stores the
result in ans.

eps Floating-point relative accuracy. This is the tolerance
MATLAB uses in its calculations.

intmax Largest 8-, 16-, 32-, or 64-bit integer your computer can
represent.

intmin Smallest 8-, 16-, 32-, or 64-bit integer your computer can
represent.

realmax Largest floating-point number your computer can represent.

realmin Smallest positive floating-point number your computer can
represent.

pi 3.1415926535897...

i, j Imaginary unit.

inf Infinity. Calculations like n/0, where n is any nonzero real
value, result in inf.

NaN Not a Number, an invalid numeric value. Expressions like 0/0
and inf/inf result in a NaN, as do arithmetic operations
involving a NaN. Also, if n is complex with a zero real part, then
n/0 returns a value with a NaN real part.

computer Computer type.

version MATLAB version string.

Special Values

3-11

Here are some examples that use these values in MATLAB expressions.

x = 2 * pi
x =
 6.2832

A = [3+2i 7-8i]
A =
 3.0000 + 2.0000i 7.0000 - 8.0000i

tol = 3 * eps
tol =
 6.6613e-016

intmax('uint64')
ans =
 18446744073709551615

3 Basic Program Components

3-12

Operators
The MATLAB operators fall into three categories:

• “Arithmetic Operators” on page 3-12 perform numeric computations, for
example, adding two numbers or raising the elements of an array to a given
power.

• “Relational Operators” on page 3-13 compare operands quantitatively, using
operators like “less than” and “not equal to.”

• “Logical Operators” on page 3-15 use the logical operators AND, OR, and
NOT.

This section also discusses “Operator Precedence” on page 3-20.

Arithmetic Operators
MATLAB provides these arithmetic operators.

Operator Description

+ Addition

- Subtraction

.* Multiplication

./ Right division

.\ Left division

+ Unary plus

- Unary minus

: Colon operator

.^ Power

.' Transpose

' Complex conjugate transpose

* Matrix multiplication

Operators

3-13

Arithmetic Operators and Arrays
Except for some matrix operators, MATLAB arithmetic operators work on
corresponding elements of arrays with equal dimensions. For vectors and
rectangular arrays, both operands must be the same size unless one is a scalar.
If one operand is a scalar and the other is not, MATLAB applies the scalar to
every element of the other operand — this property is known as scalar
expansion.

This example uses scalar expansion to compute the product of a scalar operand
and a matrix.

A = magic(3)
A =
 8 1 6
 3 5 7
 4 9 2

3 * A
ans =
 24 3 18
 9 15 21
 12 27 6

Relational Operators
MATLAB provides these relational operators.

/ Matrix right division

\ Matrix left division

^ Matrix power

Operator Description

< Less than

<= Less than or equal to

Operator Description

3 Basic Program Components

3-14

Relational Operators and Arrays
The MATLAB relational operators compare corresponding elements of arrays
with equal dimensions. Relational operators always operate
element-by-element. In this example, the resulting matrix shows where an
element of A is equal to the corresponding element of B.

A = [2 7 6;9 0 5;3 0.5 6];
B = [8 7 0;3 2 5;4 -1 7];

A == B
ans =
 0 1 0
 0 0 1
 0 0 0

For vectors and rectangular arrays, both operands must be the same size
unless one is a scalar. For the case where one operand is a scalar and the other
is not, MATLAB tests the scalar against every element of the other operand.
Locations where the specified relation is true receive logical 1. Locations where
the relation is false receive logical 0.

Relational Operators and Empty Arrays
The relational operators work with arrays for which any dimension has size
zero, as long as both arrays are the same size or one is a scalar. However,
expressions such as

A == []

return an error if A is not 0-by-0 or 1-by-1. This behavior is consistent with that
of all other binary operators, such as +, -, >, <, &, |, etc.

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Operator Description

Operators

3-15

To test for empty arrays, use the function

isempty(A)

Logical Operators
MATLAB offers three types of logical operators and functions:

• Element-wise — operate on corresponding elements of logical arrays.

• Bit-wise — operate on corresponding bits of integer values or arrays.

• Short-circuit — operate on scalar, logical expressions.

The values returned by MATLAB logical operators and functions, with the
exception of bit-wise functions, are of type logical and are suitable for use
with logical indexing.

Element-Wise Operators and Functions
The following logical operators and functions perform element-wise logical
operations on their inputs to produce a like-sized output array. The examples
shown in the following table use vector inputs A and B, where

A = [0 1 1 0 1];
B = [1 1 0 0 1];

Operator Description Example

& Returns 1 for every element location that is
true (nonzero) in both arrays, and 0 for all
other elements.

A & B = 01001

| Returns 1 for every element location that is
true (nonzero) in either one or the other, or
both arrays, and 0 for all other elements.

A | B = 11101

~ Complements each element of the input
array, A.

~A = 10010

xor Returns 1 for every element location that is
true (nonzero) in only one array, and 0 for
all other elements.

xor(A,B)=10100

3 Basic Program Components

3-16

For operators and functions that take two array operands, (&, |, and xor), both
arrays must have equal dimensions, with each dimension being the same size.
The one exception to this is where one operand is a scalar and the other is not.
In this case, MATLAB tests the scalar against every element of the other
operand.

Note MATLAB converts any finite nonzero, numeric values used as inputs to
logical expressions to logical 1, or true.

Operator Overloading. You can overload the &, |, and ~ operators to make their
behavior dependent upon the data type on which they are being used. Each of
these operators has a representative function that is called whenever that
operator is used. These are shown in the table below.

Other Array Functions. Two other MATLAB functions that operate logically on
arrays, but not in an element-wise fashion, are any and all. These functions
show whether any or all elements of a vector, or a vector within a matrix or an
array, are nonzero.

When used on a matrix, any and all operate on the columns of the matrix.
When used on an N-dimensional array, they operate on the first nonsingleton
dimension of the array. Or, you can specify an additional dimension input to
operate on a specific dimension of the array.

The examples shown in the following table use array input A, where

A = [0 1 2;
 0 -3 8;
 0 5 0];

Logical Operation Equivalent Function

A & B and(A, B)

A | B or(A, B)

~A not(A)

Operators

3-17

Note The all and any functions ignore any NaN values in the input arrays.

Logical Expressions Using the find Function. The find function determines the
indices of array elements that meet a given logical condition. The function is
useful for creating masks and index matrices. In its most general form, find
returns a single vector of indices. This vector can be used to index into arrays
of any size or shape.

For example,

A = magic(4)
A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

i = find(A > 8);
A(i) = 100
A =
 100 2 3 100
 5 100 100 8
 100 7 6 100
 4 100 100 1

Function Description Example

any(A) Returns 1 for a vector where any element of
the vector is true (nonzero), and 0 if no
elements are true.

any(A)
ans =
 0 1 1

all(A) Returns 1 for a vector where all elements of
the vector are true (nonzero), and 0 if all
elements are not true.

all(A)
ans =
 0 1 0

3 Basic Program Components

3-18

Note An alternative to using find in this context is to index into the matrix
using the logical expression itself. See the example below.

The last two statements of the previous example can be replaced with this one
statement:

A(A > 8) = 100;

You can also use find to obtain both the row and column indices of a
rectangular matrix for the array values that meet the logical condition:

A = magic(4)
A =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

[row, col] = find(A > 12)
row =
 1
 4
 4
 1
col =
 1
 2
 3
 4

Bit-Wise Functions
The following functions perform bit-wise logical operations on nonnegative
integer inputs. Inputs may be scalar or in arrays. If in arrays, these functions
produce a like-sized output array.

The examples shown in the following table use scalar inputs A and B, where

A = 28; % binary 11100
B = 21; % binary 10101

Operators

3-19

Short-Circuit Operators
The following operators perform AND and OR operations on logical expressions
containing scalar values. They are short-circuit operators in that they evaluate
their second operand only when the result is not fully determined by the first
operand.

The statement shown here performs an AND of two logical terms, A and B:

A && B

If A equals zero, then the entire expression will evaluate to logical 0 (false),
regardless of the value of B. Under these circumstances, there is no need to
evaluate B because the result is already known. In this case, MATLAB
short-circuits the statement by evaluating only the first term.

Function Description Example

bitand Returns the bit-wise AND of two
nonnegative integer arguments.

bitand(A,B) = 20
(binary 10100)

bitor Returns the bit-wise OR of two
nonnegative integer arguments.

bitor(A,B) = 29
(binary 11101)

bitcmp Returns the bit-wise complement as an
n-bit number, where n is the second
input argument to bitcmp.

bitcmp(A,5) = 3
(binary 00011)

bitxor Returns the bit-wise exclusive OR of two
nonnegative integer arguments.

bitxor(A,B) = 9
(binary 01001)

Operator Description

&& Returns logical 1 (true) if both inputs evaluate to true, and
logical 0 (false) if they do not.

|| Returns logical 1 (true) if either input, or both, evaluate to
true, and logical 0 (false) if they do not.

3 Basic Program Components

3-20

A similar case is when you OR two terms and the first term is true. Again,
regardless of the value of B, the statement will evaluate to true. There is no
need to evaluate the second term, and MATLAB does not do so.

Advantage of Short-Circuiting. You can use the short-circuit operators to evaluate
an expression only when certain conditions are satisfied. For example, you
want to execute an M-file function only if the M-file resides on the current
MATLAB path.

Short-circuiting keeps the following code from generating an error when the
file, myfun.m, cannot be found:

comp = (exist('myfun.m') == 2) && (myfun(x) >= y)

Similarly, this statement avoids divide-by-zero errors when b equals zero:

x = (b ~= 0) && (a/b > 18.5)

You can also use the && and || operators in if and while statements to take
advantage of their short-circuiting behavior:

if (nargin >= 3) && (ischar(varargin{3}))

Operator Precedence
You can build expressions that use any combination of arithmetic, relational,
and logical operators. Precedence levels determine the order in which
MATLAB evaluates an expression. Within each precedence level, operators
have equal precedence and are evaluated from left to right. The precedence
rules for MATLAB operators are shown in this list, ordered from highest
precedence level to lowest precedence level:

1 Parentheses ()

2 Transpose (.'), power (.^), complex conjugate transpose ('), matrix power (^)

3 Unary plus (+), unary minus (-), logical negation (~)

4 Multiplication (.*), right division (./), left division(.\), matrix
multiplication (*), matrix right division (/), matrix left division (\)

5 Addition (+), subtraction (-)

6 Colon operator (:)

Operators

3-21

7 Less than (<), less than or equal to (<=), greater than (>), greater than or
equal to (>=), equal to (==), not equal to (~=)

8 Element-wise AND (&)

9 Element-wise OR (|)

10 Short-circuit AND (&&)

11 Short-circuit OR (||)

Precedence of AND and OR Operators
MATLAB always gives the & operator precedence over the | operator. Although
MATLAB typically evaluates expressions from left to right, the expression
a|b&c is evaluated as a|(b&c). It is a good idea to use parentheses to explicitly
specify the intended precedence of statements containing combinations of &
and |.

The same precedence rule holds true for the && and || operators.

Overriding Default Precedence
The default precedence can be overridden using parentheses, as shown in this
example:

A = [3 9 5];
B = [2 1 5];
C = A./B.^2
C =
 0.7500 9.0000 0.2000

C = (A./B).^2
C =
 2.2500 81.0000 1.0000

3 Basic Program Components

3-22

MATLAB Expressions
Two specific types of MATLAB expressions covered in this section are

• “String Evaluation” on page 3-22

• “Shell Escape Functions” on page 3-23

String Evaluation
String evaluation adds power and flexibility to the MATLAB language, letting
you perform operations like executing user-supplied strings and constructing
executable strings through concatenation of strings stored in variables.

eval
The eval function evaluates a string that contains a MATLAB expression,
statement, or function call. In its simplest form, the eval syntax is

eval('string')

For example, this code uses eval on an expression to generate a Hilbert matrix
of order n.

t = '1/(m + n - 1)';
for m = 1:k
 for n = 1:k
 a(m,n) = eval(t);
 end
end

Here is an example that uses eval on a statement.

eval('t = clock');

Constructing Strings for Evaluation. You can concatenate strings to create a
complete expression for input to eval. This code shows how eval can create 10
variables named P1, P2, ..., P10, and set each of them to a different value.

for n = 1:10
 eval(['P', int2str(n), '= n .^ 2'])
end

MATLAB Expressions

3-23

feval
The feval function differs from eval in that it executes a function rather than
a MATLAB expression. The function to be executed is specified in the first
argument by either a function handle or a string containing the function name.

You can use feval and the input function to choose one of several tasks defined
by M-files. This example uses function handles for the sin, cos, and log
functions.

fun = [@sin; @cos; @log];
k = input('Choose function number: ');
x = input('Enter value: ');
feval(fun(k), x)

Shell Escape Functions
It is sometimes useful to access your own C or Fortran programs using shell
escape functions. Shell escape functions use the shell escape command ! to
make external stand-alone programs act like new MATLAB functions. A shell
escape M-function is an M-file that

1 Saves the appropriate variables on disk.

2 Runs an external program (which reads the data file, processes the data, and
writes the results back out to disk).

3 Loads the processed file back into the workspace.

For example, look at the code for garfield.m, below. This function uses an
external function, gareqn, to find the solution to Garfield’s equation.

function y = garfield(a,b,q,r)
save gardata a b q r
!gareqn
load gardata

3 Basic Program Components

3-24

This M-file

1 Saves the input arguments a, b, q, and r to a MAT-file in the workspace
using the save command.

2 Uses the shell escape operator to access a C or Fortran program called
gareqn that uses the workspace variables to perform its computation.
gareqn writes its results to the gardata MAT-file.

3 Loads the gardata MAT-file to obtain the results.

Regular Expressions

3-25

Regular Expressions
A regular expression is a string of characters that defines a certain pattern.
You would normally use a regular expression in searching through text for a
group of words that matches this pattern, perhaps while parsing program
input, or while processing a block of text.

The string 'Joh?n\w*' is an example of a regular expression. It defines a
pattern that starts with the letters Jo, is optionally followed by the letter h
(indicated by 'h?'), is then followed by the letter n, and ends with any number
of non-whitespace characters (indicated by '\w*'). This pattern matches any
of the following:

Jon, John, Jonathan, Johnny

MATLAB supports most of the special characters, or metacharacters,
commonly used with regular expressions and provides several functions to use
in searching and replacing text with these expressions.

This section discusses the following topics:

• “MATLAB Regular Expression Functions” on page 3-25

• “Elements of an Expression” on page 3-26

• “Tokens” on page 3-40

• “Handling Multiple Strings” on page 3-46

• “Operator Summary” on page 3-50

MATLAB Regular Expression Functions
Several MATLAB functions support searching and replacing characters using
regular expressions:

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.

regexprep Replace string using regular expression.

3 Basic Program Components

3-26

See the function reference pages to obtain more information on these functions.
For more information on how to use regular expressions in general, consult a
reference on that subject.

Elements of an Expression
The following tables show the syntax supported by the regexp, regexpi, and
regexprep functions. Expressions shown in the left column have special
meaning and match one or more characters according to the usage described in
the right column. Any character not having a special meaning, (e.g., any
alphabetic character) matches that same character literally.

These elements are presented under these categories:

• “Character Classes” on page 3-26

• “Character Representation” on page 3-29

• “Logical Operators” on page 3-30

• “Lookaround Operators” on page 3-33

• “Quantifiers” on page 3-36

• “Tokens” on page 3-40

Each table is followed by a set of examples that show how to use the syntax
presented in that table.

Character Classes
Character classes represent either a specific set of characters (e.g., uppercase)
or a certain type of character (e.g., non-white-space).

Operator Usage

. Any single character, including white space

[c1c2c3] Any character contained within the brackets: c1 or c2 or c3

[^c1c2c3] Any character not contained within the brackets:
anything but c1 or c2 or c3

[c1-c2] Any character in the range of c1 through c2

\s Any white-space character; equivalent to [\f\n\r\t\v]

Regular Expressions

3-27

These examples demonstrate how to use the character classes listed above. See
the regexp reference page for help with syntax.

Most of these examples use the following string:

str = 'The rain in Spain falls mainly on the plain.';

Any Character — .
Use '..ain' in an expression to match a sequence of five characters ending in
'ain'. Note that . matches white-space characters as well:

regexp(str, '..ain')
ans =
 4 13 24 39

Matches ' rain', 'Spain', ' main', and 'plain'.

Returning Strings Rather than Indices. Here is the same example, this time
specifying the command qualifier 'match'. In this case, regexp returns the text
of the matching strings rather than the starting index:

regexp(str, '..ain', 'match')
ans =
 ' rain' 'Spain' ' main' 'plain'

\S Any non-white-space character; equivalent to
[^ \f\n\r\t\v]

\w Any alphabetic, numeric, or underscore character;
equivalent to [a-zA-Z_0-9]

\W Any character that is not alphabetic, numeric, or
underscore; equivalent to [^a-zA-Z_0-9]

\d Any numeric digit; equivalent to [0-9]

\D Any nondigit character; equivalent to [^0-9]

Operator Usage

3 Basic Program Components

3-28

Selected Characters — [c1c2c3]
Use [c1c2c3] in an expression to match selected characters r, p, or m followed
by 'ain'. Specify two qualifiers this time, 'match' and 'start', along with an
output argument for each, mat and idx. This returns the matching strings and
the starting indices of those strings:

[mat idx] = regexp(str, '[rpm]ain', 'match', 'start')
mat =
 'rain' 'pain' 'main'
idx =
 5 14 25

Range of Characters — [c1 - c2]
Use [c1-c2] in an expression to find words that begin with a letter in the range
of A through Z:

[mat idx] = regexp(str, '[A-Z]\w*', 'match', 'start')
mat =
 'The' 'Spain'
idx =
 1 13

Word and White-Space Characters — \w, \s
Use \w and \s in an expression to find words that end with the letter n followed
by a white-space character. Add a new qualifier, 'end', to return the str index
that marks the end of each match:

[mat ix1 ix2] = regexp(str, '\w*n\s', 'match', 'start', 'end')
mat =
 'rain ' 'in ' 'Spain ' 'on '
ix1 =
 5 10 13 32
ix2 =
 9 12 18 34

Regular Expressions

3-29

Numeric Digits — \d
Use \d to find numeric digits in the following string:

numstr = 'Easy as 1, 2, 3';

[mat idx] = regexp(numstr, '\d', 'match', 'start')
mat =
 '1' '2' '3'
idx =
 9 12 15

Character Representation
The following character combinations represent specific character and numeric
values.

Operator Usage

\a Alarm (beep)

\b Backspace

\e Escape

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\oN or \o{N} Character of octal value N

\xN or \x{N} Character of hexadecimal value N

\char If a character has special meaning in a regular
expression, precede it with backslash (\) to match it
literally.

3 Basic Program Components

3-30

Octal and Hexadecimal — \o, \x
Use \x and \o in an expression to find a comma (hex 2C) followed by a space
(octal 40) followed by the character 2:

numstr = 'Easy as 1, 2, 3';

[mat idx] = regexp(numstr, '\x2C\o{40}2', 'match', 'start')
mat =
 ', 2'
idx =
 10

Special Characters — \char
Use \ before a character that has a special meaning to the regular expression
functions if you want that character to be interpreted literally. The intention
in this example is to have the string '(ab[XY|Z]c)' interpreted literally. The
first expression does not do that because regexp interprets the parentheses
and | sign as the special characters for grouping and logical OR:

regexp('(ab[XY|Z]c)', '(ab[XY|Z]c)', 'match')
ans =
 'ab[XY' 'Z]c'

This next expression uses a \ before any special characters. As a result the
entire string is matched:

regexp('(ab[XY|Z]c)', '\(ab\[XY\|Z\]c\)', 'match')
ans =
 '(ab[XY|Z]c)'

Logical Operators
Logical operators do not match any specific characters. They are used to specify
the context for matching an accompanying regular expression.

Operator Usage

(expr) Group regular expressions and capture tokens.

(?:expr) Group regular expressions, but do not capture tokens.

Regular Expressions

3-31

Grouping and Capture — (expr)
You can group elements together using either (expr) to group and capture or
(?:expr) for grouping alone. For an example of the former, see “Using Tokens
— Example 1” on page 3-43. For the latter, see the “Grouping-Only” example
below.

Grouping Only — (?:expr)
Use (?:expr) to group a consonant followed by a vowel in the palindrome pstr.
Specify at least two consecutive occurrences ({2,}) of this group. Return the
starting and ending indices of the matched substrings:

pstr = 'Marge lets Norah see Sharon''s telegram';
expr = '(?:[^aeiou][aeiou]){2,}';

[mat ix1 ix2] = regexp(pstr, expr, 'match', 'start', 'end')
mat =
 'Nora' 'haro' 'tele'
ix1 =
 12 23 31
ix2 =
 15 26 34

(?>expr) Group atomically.

(?#expr) Insert a comment into the expression. Comments are
ignored in matching.

expr1|expr2 Match expression expr1 or expression expr2.

^expr Match the expression only at the beginning of the string.

expr$ Match the expression only at the end of the string.

\<expr Match the characters when they start a word.

expr\> Match the characters when they end a word.

\<expr\> Match an exact word.

Operator Usage

3 Basic Program Components

3-32

Remove the grouping, and the {2,} now applies only to [aeiou]. The command
is entirely different now as it looks for a consonant followed by at least two
consecutive vowels:

expr = '[^aeiou][aeiou]{2,}';

[mat ix1 ix2] = regexp(pstr, expr, 'match', 'start', 'end')
mat =
 'see'
ix1 =
 18
ix2 =
 20

Including Comments — (?#expr)
Use (?#expr) to add a comment to this expression that matches capitalized
words in pstr. Comments are ignored in the process of finding a match:

regexp(pstr, '(?# Match words in caps)[A-Z]\w+', 'match')
ans =
 'Marge' 'Norah' 'Sharon'

Alternative Match — expr1|expr2
Use p1|p2 to pick out words in the string that start with let or tel:

regexpi(pstr, '(let|tel)\w+', 'match')
ans =
 'lets' 'telegram'

Note Be careful about using the '|' operator within square brackets in
MATLAB regular expressions. Because the '|' operator has a higher
precedence than '[]', MATLAB interprets the expresssion '[A|B]' not as
'A' or 'B', but as '[A' or 'B]'. The recommended way to match "the letter A
or the letter B" in a MATLAB regexp expression is to use '[AB]'.

Regular Expressions

3-33

Start and End of String Match — ^expr, expr$
Use ^expr to match words starting with the letter m or M only when it begins
the string, and expr$ to match words ending with m or M only when it ends the
string:

regexpi(pstr, '^m\w*|\w*m$', 'match')
ans =
 'Marge' 'telegram'

Start and End of Word Match — \<expr, expr\>
Use \<expr to match any words starting with n or N, or ending with e or E:

regexpi(pstr, '\<n\w*|\w*e\>', 'match')
ans =
 'Marge' 'Norah' 'see'

Exact Word Match — \<expr\>
Use \<expr\> to match a word starting with an n or N and ending with an h or
H:

regexpi(pstr, '\<n\w*h\>', 'match')
ans =
 'Norah'

Lookaround Operators
Lookaround operators have two components: a match pattern and a test
pattern. If you call the match pattern p1 and the test pattern p2, then the
simplest form of lookaround operator looks like this:

p1(?=p2)

The match pattern p1 is just like any other element in an expression. For
example, it can be '\<[A-Za-z]+\>' to make regexp find any word.

The test pattern p2 places a condition on this match. There can be a match for
p1 only if there is also a match for p2, and the p2 match must immediately
precede (for lookbehind operators) or follow (for lookahead operators) the
match for p1.

3 Basic Program Components

3-34

In the following expression, the match pattern is '\<[A-Za-z]+\>' and the test
pattern is '\S'. The entire expression can be read as “Find those words that
are followed by a non-white-space character”:

'\<[A-Za-z]+\>(?=\S)'

When used on the following string, this lookahead expression matches the
letters of the words Raven and Nevermore:

str = 'Quoth the Raven, "Nevermore"';

regexp(str, '\<[A-Za-z]+\>(?=\S)', 'match')
ans =
 'Raven' 'Nevermore'

One important characteristic of lookaround operators is how they affect the
parsing of the input string. The parser can be said to “consume” pieces of the
string as it looks for matching phrases. With lookaround operators, only the
match pattern p1 affects the current parsing location. Finding a match for the
test pattern p2 does not move the parser location.

Note You can also use lookaround operators to perform a logical AND of two
elements. See “Using Lookaround as a Logical Operator” on page 3-36.

This table shows the four lookaround expressions: lookahead, negative
lookahead, lookbehind, and negative lookbehind.

Operator Usage

expr1(?=expr2) Match expression expr1 if followed by expression
expr2.

expr1(?!expr2) Match expression expr1 if not followed by expression
expr2.

(?<=expr1)expr2 Match expression expr2 if preceded by expression
expr1.

(?<!expr1)expr2 Match expression expr2 if not preceded by
expression expr1.

Regular Expressions

3-35

Lookahead — expr1(?=expr2)
Use p1(?=p2) to find all words of this string that precede a comma:

poestr = ['While I nodded, nearly napping, ' ...
 'suddenly there came a tapping,'];

[mat idx] = regexp(poestr, '\w*(?=,)', 'match', 'start')
mat =
 'nodded' 'napping' 'tapping'
idx =
 9 24 55

Negative Lookahead — expr1(?!expr2)
Use p1(?!p2) to find all words that do not precede a comma:

[mat idx] = regexp(poestr, '\w+(?!\w*,)', 'match', 'start')
mat =
 'While' 'I' 'nearly' 'suddenly' 'there' 'came' 'a'
idx =
 1 7 17 33 42 48 53

Lookbehind — (?<=expr1)expr2
Use (?<=p1)p2 to find all words that follow a comma and zero or more spaces:

[mat idx] = regexp(poestr, '(?<=,\s*)\w*', 'match', 'start')
mat =
 'nearly' 'suddenly'
idx =
 17 33

Negative Lookbehind — (?<!expr1)expr2
Use (?<!p1)p2 to find all words that do not follow a comma and zero or more
spaces:

[mat idx] = regexp(poestr, '(?<!,\s*\w*)\w*', 'match', 'start')
mat =
 'While' 'I' 'nodded' 'napping' 'there' 'came' 'a' 'tapping'
idx =
 1 7 9 24 42 48 53 55

3 Basic Program Components

3-36

Using Lookaround as a Logical Operator
You can use lookaround operators to perform a logical AND, as shown in this
example. The expression used here finds all words that contain a sequence of
two letters under the condition that the two letters are identical and are in the
range a through m. (The expression '(?=[a-m])' is a lookahead test for the
range a through m, and the expression '(.)\1' tests for identical characters
using a token):

[mat idx] = regexp(poestr, '\<\w*(?=[a-m])(.)\1\w*\>', ...
 'match', 'start')
mat =
 'nodded' 'suddenly'
idx =
 9 33

Note that when using a lookahead operator to perform an AND, you need to
place the match expression expr1 after the test expression expr2:

(?=expr2)expr1 or (?!expr2)expr1

Quantifiers
You can use quantifiers to specify how many instances of an element are to be
matched. The first six rows of this table show the basic quantifiers. When used
alone, they match as much of the string as possible. Thus these are sometimes
called greedy quantifiers.

When one of these quantifiers is followed by a plus sign (e.g., '\w*+'), it is
known as a possessive quantifier. Possessive quantifiers also match as much of
the string as possible, but they do not rescan any portions of the string should
the initial match fail.

When you follow a quantifier with a question mark (e.g., '\w*?'), it is known
as a lazy quantifier. Lazy quantifiers match as little of the string as possible.

Regular Expressions

3-37

See the examples for each quantifier and quantifier type following the table.

Zero or One — expr?
Use ? to make the HTML <code> and </code> tags optional in the string. The
first string, hstr1, contains one occurrence of each tag. Since the expression
uses ()? around the tags, one occurrence is a match:

hstr1 = '<td><code>%%</code>
</td>';
expr = '(<code>)?..(</code>)?
';

regexp(hstr1, expr, 'match')
ans =
 '<code>%%</code>
'

Operator Usage

expr? Match the preceding element 0 times or 1 time.
Equivalent to {0,1}.

expr* Match the preceding element 0 or more times.
Equivalent to {0,}.

expr+ Match the preceding element 1 or more times.
Equivalent to {1,}.

expr{n} Must match exactly n times. Equivalent to {n,n}.

expr{n,} Must occur at least n times.

expr{n,m} Must occur at least n times but no more than m times.

qu_expr? Match the quantifed expression according to the
guidelines stated above for lazy quantifiers, where
qu_expr represents any one of the expressions shown in
the top six rows of this table.

qu_expr+ Match the quantified expression according to the
guidelines stated above for possessive quantifiers,
where qu_expr represents any one of the expressions
shown in the top six rows of this table.

3 Basic Program Components

3-38

The second string, hstr2, does not contain the code tags at all. Just the same,
the expression matches because ()? allows for zero occurrences of the tags:

hstr2 = '<td>%%
</td>';
expr = '(<code>)?..(</code>)?
';

regexp(hstr2, expr, 'match')
ans =
 '%%
'

Zero or More — expr*
Use * to match strings having any number of line breaks, including no line
breaks at all.

hstr1 = '<p>This string has

line breaks</p>';
expr = '<p>.*(
)*.*</p>';

regexp(hstr1, expr, 'match')
ans =
 '<p>This string has

line breaks</p>'

hstr2 = '<p>This string has no line breaks</p>';
regexp(hstr2, expr, 'match')
ans =
 '<p>This string has no line breaks</p>'

One or More — expr+
Use + to verify that the HTML image source is not empty. This looks for one or
more characters in the gif filename:

hstr = '';
expr = '<img src="\w+.gif';

regexp(hstr, expr, 'match')
ans =
 '<img src="b_prev.gif'

Regular Expressions

3-39

Exact, Minimum, and Maximum Quantities — {min,max}
Use {m}, {m,}, and {m,n} to verify the href syntax used in HTML. This
statement requires the href to have at least one non-white-space character,
followed by exactly one occurrence of .html, optionally followed by # and five to
eight digits:

hstr = '';
expr = '<a href="\w{1,}(\.html){1}(\#\d{5,8}){0,1}"';

regexp(hstr, expr, 'match')
ans =
 '<a href="s13.html#18760"'

Greedy Quantifiers — expr*
Use * to match as many characters as possible between any < and > signs in the
string. Because of the .* in the expression, regexp reads all characters in the
string up to the end. Finding no closing > at the end, regexp then backs up to
the and ends the phrase there:

hstr = '<tr valign=top><td>xyz';

regexp(hstr, '<.*>', 'match')
ans =
 '<tr valign=top><td>'

Possessive Quantifiers — expr*+
Except for the possessive *+ quantifier, this expression is the same as that used
in the last example. Unlike the greedy quantifier, possessive quantifiers do not
reevaluate parts of the string that have already been evaluated. This command
scans the entire string because of the .* quantifier, but then cannot back up to
locate the sequence that would satisfy the expression. As a result, no
match is found and regexp returns an empty cell array:

regexp(hstr, '<.*+>', 'match')
ans =
 {}

3 Basic Program Components

3-40

Lazy Quantifiers — expr*?
This example shows the difference between lazy and greedy quantifiers. The
first expression uses lazy .*? to match the minimum number of characters
between <tr, <td, or </td tags:

hstr = '<tr valign=top><td>
</td>';

regexp(hstr, '</?t.*?>', 'match')
ans =
 '<tr valign=top>' '<td>' '</td>'

The second expression uses greedy .* to match all characters from the opening
<tr to the ending </td:

regexp(hstr, '</?t.*>', 'match')
ans =
 '<tr valign=top><td>
</td>'

Tokens
Parentheses used in a regular expression not only group elements of that
expression together, but also designate any matches found for that group as
tokens. You can use tokens to match other parts of the same string. One
advantage of using tokens is that they remember what they matched, so you
can recall and reuse matched text in the process of searching or replacing.

This section covers

• “Introduction to Using Tokens” on page 3-41

• “Using the token Parameter” on page 3-41

• “Operators Used with Tokens” on page 3-42

• “Using Tokens — Example 1” on page 3-43

• “Using Tokens — Example 2” on page 3-43

• “Using Tokens in a Replacement String” on page 3-44

• “Named Capture — (?<name>expr)” on page 3-44

• “Conditional Expressions — (?(token)expr1|expr2)” on page 3-45

Regular Expressions

3-41

Introduction to Using Tokens
You can turn any pattern being matched into a token by enclosing the pattern
in parentheses within the expression. For example, to create a token for a
dollar amount, you could use '(\$\d+)'. Each token in the expression is
assigned a number from 1 to 255 going from left to right. To make a reference
to a token later in the expression, refer to it using a backslash followed by the
token number. For example, when referencing a token generated by the third
set of parentheses in the expression, use \3.

As a simple example, if you wanted to search for identical sequential letters in
a string, you could capture the first letter as a token and then search for a
matching character immediately afterwards. In the expression shown below,
the (\S) phrase creates a token whenever regexp matches any
non-white-space character in the string. The second part of the expression,
'\1', looks for a second instance of the same character immediately following
the first:

poestr = ['While I nodded, nearly napping, ' ...
 'suddenly there came a tapping,'];

[mat tok ext] = regexp(poestr, '(\S)\1', 'match', ...
 'tokens', 'tokenExtents');
mat
mat =
 'dd' 'pp' 'dd' 'pp'

The tokens returned in cell array tok are:

'd', 'p', 'd', 'p'

Starting and ending indices for each token in the input string poestr are:

11 11, 26 26, 35 35, 57 57

Using the token Parameter
You can have regexp and regexpi return the actual tokens rather than token
indices by specifying the optional 'token' parameter in the command. The
following example is the same as the one above, except that it returns the text
of the tokens found by the pattern \S.

3 Basic Program Components

3-42

tok = regexp(poestr, '(\S)\1', 'tokens')
tok =
 {1x1 cell} {1x1 cell} {1x1 cell} {1x1 cell}

tok{:}
ans =
 'd'
ans =
 'p'
ans =
 'd'
ans =
 'p'

Operators Used with Tokens
Here are the operators you can use with tokens in MATLAB.

Operator Usage

(expr) Capture in a token all characters matched by the
expression within the parentheses.

\N Match the Nth token generated by this command.
That is, use \1 to match the first token, \2 to match
the second, and so on.

$N Insert the match for the Nth token in a replacement
string. Used only by the regexprep function.

(?<name>expr) Capture in a token all characters matched by the
expression within the parentheses. Assign a name
to the token.

\k<name> Match the token referred to by name.

(?(tok)expr) If token tok is generated, then match expression
expr.

(?(tok)expr1|
expr2)

If token tok is generated, then match expression
expr1. Otherwise, match expression expr2.

Regular Expressions

3-43

Using Tokens — Example 1
Here is an example of how tokens are assigned values. Suppose that you are
going to search the following text:

andy ted bob jim andrew andy ted mark

You choose to search the above text with the following search pattern:

and(y|rew)|(t)e(d)

This pattern has three parenthetical expressions that generate tokens. When
you finally perform the search, the following tokens are generated for each
match.

Only the highest level parentheses are used. For example, if the search pattern
and(y|rew) finds the text andrew, token 1 is assigned the value rew. However,
if the search pattern (and(y|rew)) is used, token 1 is assigned the value
andrew.

Using Tokens — Example 2
Use (expr) and \N to capture pairs of matching HTML tags (e.g., <a> and <\a>)
and the text between them. The expression used for this example is

expr = '<(\w+).*?>.*?</\1>';

The first part of the expression, '<(\w+)', matches an opening bracket (<)
followed by one or more alphabetic, numeric, or underscore characters. The
enclosing parentheses capture token characters following the opening bracket.

Match Token 1 Token 2

andy y

ted t d

andrew rew

andy y

ted t d

3 Basic Program Components

3-44

The second part of the expression, '.*?>.*?', matches the remainder of this
HTML tag (characters up to the >), and any characters that may precede the
next opening bracket.

The last part, '</\1>', matches all characters in the ending HTML tag. This
tag is composed of the sequence </tag>, where tag is whatever characters were
captured as a token.

hstr = '<!comment>Default
';
expr = '<(\w+).*?>.*?</\1>';

[mat tok] = regexp(hstr, expr, 'match', 'tokens');
mat{:}
ans =

ans =
 Default

tok{:}
ans =
 'a'
ans =
 'b'

Using Tokens in a Replacement String
When using tokens in a replacement string, reference them using $1, $2, etc.
instead of \1, \2, etc. This example captures two tokens and reverses their
order. The first, $1, is 'Norma Jean' and the second, $2, is 'Baker'. Note that
regexprep returns the modified string, not a vector of starting indices, by
default:

regexprep('Norma Jean Baker', '(\w+\s\w+)\s(\w+)', '$2, $1')
ans =
 Baker, Norma Jean

Named Capture — (?<name>expr)
If you use a lot of tokens in your expressions, it may be helpful to assign them
names rather than having to keep track of which token number is assigned to
which token. Use the operator (?<name>expr) to assign name to the token
matching expression expr.

Regular Expressions

3-45

When referencing a named token within the expression, use the syntax
\k<name> instead of the numeric \1, \2, etc.:

poestr = ['While I nodded, nearly napping, ' ...
 'suddenly there came a tapping,'];

regexp(poestr, '(?<anychar>.)\k<anychar>', 'match')
ans =
 'dd' 'pp' 'dd' 'pp'

Conditional Expressions — (?(token)expr1|expr2)
With conditional regular expressions, you can select which pattern to match,
depending on whether a token elsewhere in the string is found. The expression
appears as

(?(token)expr1|expr2)

This expression can be translated as an if-then-else statement, as follows:

if the specified token is found
 then match expression expr1
 else match expression expr2

The next example uses the conditional expression expr to match the string
regardless of the gender used. The expression creates a token if Mr is followed
by the letter s. It later matches either her or his, depending on whether this
token was found. The phrase (?(1)her|his) means that if token 1 is found,
then match her, else match his:

expr = 'Mr(s?)\..*?(?(1)her|his) son';

[mat tok] = regexp('Mr. Clark went to see his son', ...
 expr, 'match', 'tokens')
mat =
 'Mr. Clark went to see his son'
tok =
 {1x2 cell}

tok{:}
ans =
 '' 'his'

3 Basic Program Components

3-46

In the second part of the example, the token s is found and MATLAB matches
the word her:

[mat tok] = regexp('Mrs. Clark went to see her son', ...
expr, 'match', 'tokens')
mat =
 'Mrs. Clark went to see her son'
tok =
 {1x2 cell}

tok{:}
ans =
 's' 'her'

Note The MATLAB regular expression functions support both if-then and
if-then-else statements.

Handling Multiple Strings
You can use any of the MATLAB regular expression functions with cell arrays
of strings as well as with single strings. Any or all of the input parameters (the
string, expression, or replacement string) can be a cell array of strings. The
regexp function requires that the string and expression arrays have the same
number of elements if both are vectorized (i.e., if they have dimensions greater
than 1-by-N). The regexprep function requires that the expression and
replacement arrays have the same number of elements if the replacement
array is vectorized. (The cell arrays do not have to have the same shape.)

Whenever the first input parameter to a regular expression function is a cell
array, all output values are cell arrays of the same size.

This section covers the following topics:

• “Finding a Single Pattern in Multiple Strings” on page 3-47

• “Finding Multiple Patterns in Multiple Strings” on page 3-48

• “Replacing Multiple Strings” on page 3-49

Regular Expressions

3-47

Finding a Single Pattern in Multiple Strings
The example shown here uses the regexp function on a cell array of strings
cstr. It searches each string of the cell array for consecutive matching letters
(e.g., 'oo'). The function returns a cell array of the same size as the input
array. Each row of the return array contains the indices for which there was a
match against the input cell array.

Here is the input cell array:

cstr = { ...
'Whose woods these are I think I know.' ; ...
'His house is in the village though;' ; ...
'He will not see me stopping here' ; ...
'To watch his woods fill up with snow.'};

Find consecutive matching letters by capturing a letter as a token (.) and then
repeating that letter as a token reference, \1:

idx = regexp(cstr, '(.)\1');

whos idx
 Name Size Bytes Class

 idx 4x1 296 cell array

idx{:}
ans = % 'Whose woods these are I think I know.'
 8 % |8

ans = % 'His house is in the village though;'
 23 % |23

ans = % 'He will not see me stopping here'
 6 14 23 % |6 |14 |23

ans = % 'To watch his woods fill up with snow.'
 15 22 % |15 |22

3 Basic Program Components

3-48

To return substrings instead of indices, use the 'match' parameter:

mat = regexp(cstr, '(.)\1', 'match');
mat{3}
ans =
 'll' 'ee' 'pp'

Finding Multiple Patterns in Multiple Strings
This example uses a cell array of strings in both the input string and the
expression. The two cell arrays are of different shapes: cstr is 4-by-1 while
expr is 1-by-4. The command is valid as long as they both have the same
number of cells.

Find uppercase or lowercase 'i' followed by a white-space character in str{1},
the sequence 'hou' in str{2}, two consecutive matching letters in str{3}, and
words beginning with 'w' followed by a vowel in str{4}.

expr = {'i\s', 'hou', '(.)\1', '\<w[aeiou]'};
idx = regexpi(cstr, expr);

idx{:}
ans = % 'Whose woods these are I think I know.'
 23 31 % |23 |31

ans = % 'His house is in the village though;'
 5 30 % |5 |30

ans = % 'He will not see me stopping here'
 6 14 23 % |6 |14 |23

ans = % 'To watch his woods fill up with snow.'
 4 14 28 % |4 |14 |28

Note that the returned cell array has the dimensions of the input string, cstr.
The dimensions of the return value are always derived from the input string,
whenever the input string is a cell array. If the input string is not a cell array,
then it is the dimensions of the expression that determine the shape of the
return array.

Regular Expressions

3-49

Replacing Multiple Strings
When replacing multiple strings with regexprep, use a single replacement
string if the expression consists of a single string. This example uses a common
replacement value ('--') for all matches found in the multiple string input
cstr. The function returns a cell array of strings having the same dimensions
as the input cell array:

s = regexprep(cstr, '(.)\1', '--', 'ignorecase')
s =
 'Whose w--ds these are I think I know.'
 'His house is in the vi--age though;'
 'He wi-- not s-- me sto--ing here'
 'To watch his w--ds fi-- up with snow.'

You can use multiple replacement strings if the expression consists of multiple
strings. In this example, the input string and replacement string are both
4-by-1 cell arrays, and the expression is a 1-by-4 cell array. As long as the
expression and replacement arrays contain the same number of elements, the
statement is valid. The dimensions of the return value match the dimensions
of the input string:

expr = {'i\s', 'hou', '(.)\1', '\<w[aeiou]'};
repl = {'-1-'; '-2-'; '-3-'; '-4-'};

s = regexprep(cstr, expr, repl, 'ignorecase')
s =
 'Whose w-3-ds these are -1-think -1-know.'
 'His -2-se is in the vi-3-age t-2-gh;'
 'He -4--3- not s-3- me sto-3-ing here'
 'To -4-tch his w-3-ds fi-3- up -4-th snow.'

3 Basic Program Components

3-50

Operator Summary
MATLAB provides these operators for working with regular expressions:

• “Character Classes” on page 3-50

• “Character Representation” on page 3-51

• “Logical Operators” on page 3-51

• “Lookaround Operators” on page 3-52

• “Quantifiers” on page 3-52

• “Token Operators” on page 3-53

Character Classes

Operator Usage

. Any single character, including white space

[c1c2c3] Any character contained within the brackets: c1 or c2 or
c3

[^c1c2c3] Any character not contained within the brackets:
anything but c1 or c2 or c3

[c1-c2] Any character in the range of c1 through c2

\s Any white-space character; equivalent to [\f\n\r\t]

\S Any non-white-space character; equivalent to
[^ \f\n\r\t]

\w Any alphabetic, numeric, or underscore character;
equivalent to [a-zA-Z_0-9]

\W Any character that is not alphabetic, numeric, or
underscore; equivalent to [^a-zA-Z_0-9]

\d Any numeric digit; equivalent to [0-9]

\D Any nondigit character; equivalent to [^0-9]

Regular Expressions

3-51

Character Representation

Operator Usage

\a Alarm (beep)

\b Backspace

\e Escape

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\oN or \o{N} Character of octal value N

\xN or \x{N} Character of hexadecimal value N

\char If a character has special meaning in a regular
expression, precede it with backslash (\) to match it
literally.

Logical Operators

Operator Usage

(expr) Group regular expressions and capture tokens.

(?:expr) Group regular expressions, but do not capture tokens.

(?>expr) Group atomically.

(?#expr) Insert a comment into the expression. Comments are
ignored in matching.

expr1|expr2 Match expression expr1 or expression expr2.

^expr Match the expression only at the beginning of the string.

expr$ Match the expression only at the end of the string.

3 Basic Program Components

3-52

\<expr Match the characters when they start a word.

expr\> Match the characters when they end a word.

\<expr\> Match an exact word.

Lookaround Operators

Operator Usage

expr1(?=expr2) Match expression expr1 if followed by expression
expr2.

expr1(?!expr2) Match expression expr1 if not followed by expression
expr2.

(?<=expr1)expr2 Match expression expr2 if preceded by expression
expr1.

(?<!expr1)expr2 Match expression expr2 if not preceded by
expression expr1.

Quantifiers

Operator Usage

? Match the preceding element 0 times or 1 time.
Equivalent to {0,1}.

* Match the preceding element 0 or more times.
Equivalent to {0,}.

+ Match the preceding element 1 or more times.
Equivalent to {1,}.

{n} Must match exactly n times. Equivalent to {n,n}.

{n,} Must occur at least n times.

Logical Operators

Operator Usage

Regular Expressions

3-53

{n,m} Must occur at least n times but no more than m
times.

q? Match the preceding element q times according to
the guidelines stated above for lazy quantifiers,
where q represents any one of the expressions
shown in the top six rows of this table (e.g., {2,5}?).

q+ Match the preceding element q times according to
the guidelines stated above for possessive
quantifiers, where q represents any one of the
expressions shown in the top six rows of this table
(e.g., {2,5}+).

Token Operators

Operator Usage

(expr) Capture in a token all characters matched by the
expression within the parentheses.

\N Match the Nth token generated by this command.
That is, use \1 to match the first token, \2 to match
the second, and so on.

$N Insert the match for the Nth token in a replacement
string. Used only by the regexprep function.

(?<name>expr) Capture in a token all characters matched by the
expression within the parentheses. Assign a name to
the token.

\k<name> Match the token referred to by name.

(?(tok)expr) If token tok is generated, then match expression
expr.

(?(tok)expr1|
expr2)

If token tok is generated, then match expression
expr1. Otherwise, match expression expr2.

Quantifiers (Continued)

Operator Usage

3 Basic Program Components

3-54

Comma-Separated Lists
Typing in a series of numbers separated by commas gives you what is called a
comma-separated list. MATLAB returns each value individually:

1, 2, 3
ans =
 1
ans =
 2
ans =
 3

Such a list, by itself, is not very useful. But when used with large and more
complex data structures like MATLAB structures and cell arrays, the
comma-separated list can enable you to simplify your MATLAB code.

This section covers

• “Generating a List from a Cell Array” on page 3-54

• “Generating a List from a Structure” on page 3-55

• “How to Use the Comma-Separated List” on page 3-56

• “Fast Fourier Transform Example” on page 3-58

Generating a List from a Cell Array
Extracting multiple elements from a cell array yields a comma-separated list.
Given a 4-by-6 cell array as shown here

C = cell(4, 6);
for k = 1:24, C{k} = k * 2; end

C
C =
 [2] [10] [18] [26] [34] [42]
 [4] [12] [20] [28] [36] [44]
 [6] [14] [22] [30] [38] [46]
 [8] [16] [24] [32] [40] [48]

Comma-Separated Lists

3-55

extracting the fifth column generates the following comma-separated list:

C{:, 5}
ans =
 34
ans =
 36
ans =
 38
ans =
 40

This is the same as explicitly typing

C{1, 5}, C{2, 5}, C{3, 5}, C{4, 5}

Generating a List from a Structure
For structures, extracting a field of the structure that exists across one of its
dimensions yields a comma-separated list.

Start by converting the cell array used above into a 4-by-1 MATLAB structure
with six fields: f1 through f6. Read field f5 for all rows and MATLAB returns
a comma-separated list:

S = cell2struct(C, {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}, 2);

S.f5
ans =
 34
ans =
 36
ans =
 38
ans =
 40

This is the same as explicitly typing

S(1).f5, S(2).f5, S(3).f5, S(4).f5

3 Basic Program Components

3-56

How to Use the Comma-Separated List
Common uses for comma-separated lists are

• “Constructing Arrays” on page 3-56

• “Displaying Arrays” on page 3-56

• “Concatenation” on page 3-57

• “Function Call Arguments” on page 3-57

• “Function Return Values” on page 3-58

The following sections provide examples of using comma-separated lists with
cell arrays. Each of these examples applies to MATLAB structures as well.

Constructing Arrays
You can use a comma-separated list to enter a series of elements when
constructing a matrix or array. Note what happens when you insert a list of
elements as opposed to adding the cell itself.

When you specify a list of elements with C{:, 5}, MATLAB inserts the four
individual elements:

A = {'Hello', C{:, 5}, magic(4)}
A =
 'Hello' [34] [36] [38] [40] [4x4 double]

When you specify the C cell itself, MATLAB inserts the entire cell array:

A = {'Hello', C, magic(4)}
A =
 'Hello' {4x6 cell} [4x4 double]

Displaying Arrays
Use a list to display all or part of a structure or cell array:

A{:}
ans =
 Hello
ans =
 34
ans =
 36

Comma-Separated Lists

3-57

ans =
 38
 .
 .
 .

Concatenation
Putting a comma-separated list inside square brackets extracts the specified
elements from the list and concatenates them:

A = [C{:, 5:6}]
A =
 34 36 38 40 42 44 46 48

whos A
 Name Size Bytes Class

 A 1x8 64 double array

Function Call Arguments
When writing the code for a function call, you enter the input arguments as a
list with each argument separated by a comma. If you have these arguments
stored in a structure or cell array, then you can generate all or part of the
argument list from the structure or cell array instead. This can be especially
useful when passing in variable numbers of arguments.

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));

C{1,1} = 'LineWidth'; C{2,1} = 2;
C{1,2} = 'MarkerEdgeColor'; C{2,2} = 'k';
C{1,3} = 'MarkerFaceColor'; C{2,3} = 'g';

plot(X, Y, '--rs', C{:})

3 Basic Program Components

3-58

Function Return Values
MATLAB functions can also return more than one value to the caller. These
values are returned in a list with each value separated by a comma. Instead of
listing each return value, you can use a comma-separated list with a structure
or cell array. This becomes more useful for those functions that have variable
numbers of return values.

This example returns four values to a cell array:

C = cell(1, 4);
[C{:}] = fileparts('work/mytests/strArrays.mat')
C =
 'work/mytests' 'strArrays' '.mat' ''

Fast Fourier Transform Example
The fftshift function swaps the left and right halves of each dimension of an
array. For a simple vector such as [0 2 4 6 8 10] the output would be [6 8
10 0 2 4]. For a multidimensional array, fftshift performs this swap along
each dimension.

fftshift uses vectors of indices to perform the swap. For the vector shown
above, the index [1 2 3 4 5 6] is rearranged to form a new index [4 5 6 1 2
3]. The function then uses this index vector to reposition the elements. For a
multidimensional array, fftshift must construct an index vector for each
dimension. A comma-separated list makes this task much simpler.

Here is the fftshift function:

function y = fftshift(x)

numDims = ndims(x);
idx = cell(1, numDims);

for k = 1:numDims
 m = size(x, k);
 p = ceil(m/2);
 idx{k} = [p+1:m 1:p];
 end

y = x(idx{:});

Comma-Separated Lists

3-59

The function stores the index vectors in cell array idx. Building this cell array
is relatively simple. For each of the N dimensions, determine the size of that
dimension and find the integer index nearest the midpoint. Then, construct a
vector that swaps the two halves of that dimension.

By using a cell array to store the index vectors and a comma-separated list for
the indexing operation, fftshift shifts arrays of any dimension using just a
single operation: y = x(idx{:}). If you were to use explicit indexing, you would
need to write one if statement for each dimension you want the function to
handle:

if ndims(x) == 1
 y = x(index1);
else if ndims(x) == 2
 y = x(index1, index2);
end

Another way to handle this without a comma-separated list would be to loop
over each dimension, converting one dimension at a time and moving data each
time. With a comma-separated list, you move the data just once. A
comma-separated list makes it very easy to generalize the swapping operation
to an arbitrary number of dimensions.

3 Basic Program Components

3-60

Program Control Statements
Program control is divided into these four categories:

• “Conditional Control — if, switch” on page 3-60

• “Loop Control — for, while, continue, break” on page 3-64

• “Error Control — try, catch” on page 3-67

• “Program Termination — return” on page 3-68

Note You can often speed up the execution of MATLAB code by replacing for
and while loops with vectorized code. See “Techniques for Improving
Performance” on page 10-4 for more information on this.

Conditional Control — if, switch
This group of control statements enables you to select at run-time which block
of code is executed. To make this selection based on whether a condition is true
or false, use the if statement (which may include else or elseif). To select
from a number of possible options depending on the value of an expression, use
the switch and case statements (which may include otherwise).

if, else, and elseif
if evaluates a logical expression and executes a group of statements based on
the value of the expression. In its simplest form, its syntax is

if logical_expression
 statements
end

If the logical expression is true (that is, if it evaluates to logical 1), MATLAB
executes all the statements between the if and end lines. It resumes execution
at the line following the end statement. If the condition is false (evaluates to
logical 0), MATLAB skips all the statements between the if and end lines, and
resumes execution at the line following the end statement.

Program Control Statements

3-61

For example,

if rem(a, 2) == 0
 disp('a is even')
 b = a/2;
end

You can nest any number of if statements.

If the logical expression evaluates to a nonscalar value, all the elements of the
argument must be nonzero. For example, assume X is a matrix. Then the
statement

if X
 statements
end

is equivalent to

if all(X(:))
 statements
end

The else and elseif statements further conditionalize the if statement:

• The else statement has no logical condition. The statements associated with
it execute if the preceding if (and possibly elseif condition) evaluates to
logical 0 (false).

• The elseif statement has a logical condition that it evaluates if the
preceding if (and possibly elseif condition) is false. The statements
associated with it execute if its logical condition evaluates to logical 1 (true).
You can have multiple elseif statements within an if block.

if n < 0 % If n negative, display error message.
 disp('Input must be positive');
elseif rem(n,2) == 0 % If n positive and even, divide by 2.
 A = n/2;
else
 A = (n+1)/2; % If n positive and odd, increment and divide.
end

3 Basic Program Components

3-62

if Statements and Empty Arrays. An if condition that reduces to an empty array
represents a false condition. That is,

if A
 S1
else
 S0
end

executes statement S0 when A is an empty array.

switch, case, and otherwise
switch executes certain statements based on the value of a variable or
expression. Its basic form is

switch expression (scalar or string)
 case value1
 statements % Executes if expression is value1
 case value2
 statements % Executes if expression is value2
 .
 .
 .
 otherwise
 statements % Executes if expression does not
 % match any case
end

This block consists of

• The word switch followed by an expression to evaluate.

• Any number of case groups. These groups consist of the word case followed
by a possible value for the expression, all on a single line. Subsequent lines
contain the statements to execute for the given value of the expression.
These can be any valid MATLAB statement including another switch block.
Execution of a case group ends when MATLAB encounters the next case
statement or the otherwise statement. Only the first matching case is
executed.

• An optional otherwise group. This consists of the word otherwise, followed
by the statements to execute if the expression’s value is not handled by any

Program Control Statements

3-63

of the preceding case groups. Execution of the otherwise group ends at the
end statement.

• An end statement.

switch works by comparing the input expression to each case value. For
numeric expressions, a case statement is true if (value==expression). For
string expressions, a case statement is true if strcmp(value,expression).

The code below shows a simple example of the switch statement. It checks the
variable input_num for certain values. If input_num is -1, 0, or 1, the case
statements display the value as text. If input_num is none of these values,
execution drops to the otherwise statement and the code displays the text
'other value'.

switch input_num
 case -1
 disp('negative one');
 case 0
 disp('zero');
 case 1
 disp('positive one');
 otherwise
 disp('other value');
end

Note For C programmers, unlike the C language switch construct, the
MATLAB switch does not “fall through.” That is, if the first case statement is
true, other case statements do not execute. Therefore, break statements are
not used.

switch can handle multiple conditions in a single case statement by enclosing
the case expression in a cell array.

switch var
 case 1
 disp('1')
 case {2,3,4}
 disp('2 or 3 or 4')

3 Basic Program Components

3-64

 case 5
 disp('5')
 otherwise
 disp('something else')
end

Loop Control — for, while, continue, break
With loop control statements, you can repeatedly execute a block of code,
looping back through the block while keeping track of each iteration with an
incrementing index variable. Use the for statement to loop a specific number
of times. The while statement is more suitable for basing the loop execution on
how long a condition continues to be true or false. The continue and break
statements give you more control on exiting the loop.

for
The for loop executes a statement or group of statements a predetermined
number of times. Its syntax is

for index = start:increment:end
 statements
end

The default increment is 1. You can specify any increment, including a negative
one. For positive indices, execution terminates when the value of the index
exceeds the end value; for negative increments, it terminates when the index is
less than the end value.

For example, this loop executes five times.

for n = 2:6
 x(n) = 2 * x(n - 1);
end

You can nest multiple for loops.

for m = 1:5
 for n = 1:100
 A(m, n) = 1/(m + n - 1);
 end
end

Program Control Statements

3-65

Note You can often speed up the execution of MATLAB code by replacing for
and while loops with vectorized code. See “Vectorizing Loops” on page 10-4 for
details.

Using Arrays as Indices. The index of a for loop can be an array. For example,
consider an m-by-n array A. The statement

for k = A
 statements
end

sets k equal to the vector A(:,i), where i is the iteration number of the loop.
For the first loop iteration, k is equal to A(:,1); for the second, k is equal to
A(:,2); and so on until k equals A(:,n). That is, the loop iterates for a number
of times equal to the number of columns in A. For each iteration, k is a vector
containing one of the columns of A.

while
The while loop executes a statement or group of statements repeatedly as long
as the controlling expression is true (1). Its syntax is

while expression
 statements
end

If the expression evaluates to a matrix, all its elements must be 1 for execution
to continue. To reduce a matrix to a scalar value, use the all and any functions.

For example, this while loop finds the first integer n for which n! (n factorial)
is a 100-digit number.

n = 1;
while prod(1:n) < 1e100
 n = n + 1;
end

Exit a while loop at any time using the break statement.

3 Basic Program Components

3-66

while Statements and Empty Arrays. A while condition that reduces to an empty
array represents a false condition. That is,

while A, S1, end

never executes statement S1 when A is an empty array.

continue
The continue statement passes control to the next iteration of the for or while
loop in which it appears, skipping any remaining statements in the body of the
loop. In nested loops, continue passes control to the next iteration of the for
or while loop enclosing it.

The example below shows a continue loop that counts the lines of code in the
file, magic.m, skipping all blank lines and comments. A continue statement is
used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered.

fid = fopen('magic.m', 'r');
count = 0;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line) | strncmp(line, '%', 1)
 continue
 end
 count = count + 1;
end
disp(sprintf('%d lines', count));

break
The break statement terminates the execution of a for loop or while loop.
When a break statement is encountered, execution continues with the next
statement outside of the loop. In nested loops, break exits from the innermost
loop only.

The example below shows a while loop that reads the contents of the file fft.m
into a MATLAB character array. A break statement is used to exit the while
loop when the first empty line is encountered. The resulting character array
contains the M-file help for the fft program.

Program Control Statements

3-67

fid = fopen('fft.m', 'r');
s = '';
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line)
 break
 end
 s = strvcat(s, line);
end
disp(s)

Error Control — try, catch
Error control statements provide a way for you to take certain actions in the
event of an error. Use the try statement to test whether a certain command in
your code generates an error. If an error does occur within the try block,
MATLAB immediately jumps to the corresponding catch block. The catch part
of the statement needs to respond in some way to the error.

try and catch
The general form of a try-catch statement sequence is

try
 statement
 ...
 statement
catch
 statement
 ...
 statement
end

In this sequence, the statements between try and catch are executed until an
error occurs. The statements between catch and end are then executed. Use
lasterr to see the cause of the error. If an error occurs between catch and end,
MATLAB terminates execution unless another try-catch sequence has been
established.

3 Basic Program Components

3-68

Program Termination — return
Program termination control enables you to exit from your program at some
point prior to its normal termination point.

return
After a MATLAB function runs to completion, it terminates and returns control
either to the function that called it, or to the keyboard. If you need to exit a
function prior to the point of normal completion, you can force an early
termination using the return function. return immediately terminates the
current sequence of commands and exits the currently running function.

return is also used to terminate keyboard mode.

Symbol Reference

3-69

Symbol Reference
This section provides a quick reference to the following symbols used in
MATLAB programming:

• “Asterisk — *” on page 3-70

• “At — @” on page 3-70

• “Colon — :” on page 3-71

• “Comma — ,” on page 3-72

• “Curly Braces — { }” on page 3-73

• “Dot — .” on page 3-73

• “Dot-Dot — ..” on page 3-74

• “Dot-Dot-Dot (Ellipsis) — ...” on page 3-74

• “Dot-Parentheses — .()” on page 3-75

• “Exclamation Point — !” on page 3-75

• “Parentheses — ()” on page 3-76

• “Percent — %” on page 3-76

• “Percent-Brace — %{ %}” on page 3-77

• “Semicolon — ;” on page 3-77

• “Single Quotes — ' '” on page 3-78

• “Slash and Backslash — / \” on page 3-79

• “Space Character” on page 3-78

• “Square Brackets — []” on page 3-79

This section does not include symbols used in arithmetic, relational, and logical
operations. For a description of these symbols, see the top of the list “Functions
— Alphabetical List” in the MATLAB Help browser.

3 Basic Program Components

3-70

Asterisk — *
An asterisk in a filename specification is used as a wildcard specifier, as
described below.

Filename Wildcard
Wildcards are generally used in file operations that act on multiple files or
directories. They usually appear in the string containing the file or directory
specification. MATLAB matches all characters in the name exactly except for
the wildcard character *, which can match any one or more characters.

To locate all files with names that start with 'january_' and have a mat file
extension, use

dir('january_*.mat')

You can also use wildcards with the who and whos functions. To get information
on all variables with names starting with 'image' and ending with 'Offset',
use

whos image*Offset

At — @
The @ sign signifies either a function handle constructor or a directory that
supports a MATLAB class.

Function Handle Constructor
The @ operator forms a handle to either the named function that follows the @
sign, or to the anonymous function that follows the @ sign.

Function Handles in General. Function handles are commonly used in passing
functions as arguments to other functions. Construct a function handle by
preceding the function name with an @ sign:

fhandle = @myfun

You can read more about function handles in “Function Handles” on page 4-27.

Symbol Reference

3-71

Handles to Anonymous Functions. Anonymous functions give you a quick means of
creating simple functions without having to create M-files each time. You can
construct an anonymous function and a handle to that function using the
syntax

fhandle = @(arglist) body

where body defines the body of the function and arglist is the list of
arguments you can pass to the function.

See “Anonymous Functions” on page 5-3 for more information.

Class Directory Designator
A MATLAB class directory contains source files that define the methods and
properties of a class. All MATLAB class directory names must begin with an @
sign:

\@myclass\get.m

See “MATLAB Classes” on page 2-82 for more information.

Colon — :
The colon operator generates a sequence of numbers that you can use in
creating or indexing into arrays. See “Generating a Numeric Sequence” on
page 1-10 for more information on using the colon operator.

Numeric Sequence Range
Generate a sequential series of regularly spaced numbers from first to last
using the syntax first:last. For an incremental sequence from 6 to 17, use

N = 6:17

Numeric Sequence Step
Generate a sequential series of numbers, each number separated by a step
value, using the syntax first:step:last. For a sequence from 2 through 38,
stepping by 4 between each entry, use

N = 2:4:38

3 Basic Program Components

3-72

Indexing Range Specifier
Index into multiple rows or columns of a matrix using the colon operator to
specify a range of indices:

B = A(7, 1:5); % Read columns 1-5 of row 7.
B = A(4:2:8, 10:15); % Read columns 1-5 of rows 4, 6, and 8.
B = A(:, 1:5); % Read columns 1-5 of all rows.

Conversion to Column Vector
Convert a matrix or array to a column vector using the colon operator as a
single index:

A = rand(3,4);
B = A(:);

Preserving Array Shape on Assignment
Using the colon operator on the left side of an assignment statement, you can
assign new values to array elements without changing the shape of the array:

A = rand(3,4);
A(:) = 1:12;

Comma — ,
A comma is used to separate the following types of elements.

Row Element Separator
When constructing an array, use a comma to separate elements that belong in
the same row:

A = [5.92, 8.13, 3.53]

Array Index Separator
When indexing into an array, use a comma to separate the indices into each
dimension:

X = A(2, 7, 4)

Symbol Reference

3-73

Function Input and Output Separator
When calling a function, use a comma to separate output and input arguments:

function [data, text] = xlsread(file, sheet, range, mode)

Command or Statement Separator
To enter more than one MATLAB command or statement on the same line,
separate each command or statement with a comma:

for k = 1:10, sum(A(k)), end

Curly Braces — { }
Use curly braces to construct or get the contents of cell arrays.

Cell Array Constructor
To construct a cell array, enclose all elements of the array in curly braces:

C = {[2.6 4.7 3.9], rand(8)*6, 'C. Coolidge'}

Cell Array Indexing
Index to a specific cell array element by enclosing all indices in curly braces:

A = C{4,7,2}

See “Cell Arrays” on page 2-66 for more information.

Dot — .
The single dot operator has the following different uses in MATLAB.

Structure Field Definition
Add fields to a MATLAB structure by following the structure name with a dot
and then a field name:

funds(5,2).bondtype = 'Corporate';

See “Structures” on page 2-49 for more information.

3 Basic Program Components

3-74

Object Method Specifier
Specify the properties of an instance of a MATLAB class using the object name
followed by a dot, and then the property name:

val = asset.current_value

See “MATLAB Classes” on page 2-82 for more information.

Dot-Dot — ..
Two dots in sequence refer to the parent of the current directory.

Parent Directory
Specify the directory immediately above your current directory using two dots.
For example, to go up two levels in the directory tree and down into the testdir
directory, use

cd ..\..\testdir

Dot-Dot-Dot (Ellipsis) — ...
The ellipsis is the line continuation operator in MATLAB.

Line Continuation
Continue any MATLAB command or expression by placing an ellipsis at the
end of the line to be continued:

sprintf('The current value of %s is %d', ...
 vname, value)

Entering Long Strings. You cannot use an ellipsis within single quotes to continue
a string to the next line:

string = 'This is not allowed and will generate an ...
 error in MATLAB.'

To enter a string that extends beyond a single line, piece together shorter
strings using either the concatenation operator ([]) or the sprintf function.

Symbol Reference

3-75

Here are two examples:

quote1 = [
 'Tiger, tiger, burning bright in the forests of the night, ' ...
 'what immortal hand or eye could frame thy fearful symmetry?'];

quote2 = sprintf('%s%s%s', ...
 'In Xanadu did Kubla Khan a stately pleasure-dome decree, ', ...
 'where Alph, the sacred river, ran ', ...
 'through caverns measureless to man down to a sunless sea.');

Dot-Parentheses — .()
Use dot-parentheses to specify the name of a dynamic structure field.

Dynamic Structure Fields
Sometimes it is useful to reference structures with field names that can vary.
For example, the referenced field might be passed as an argument to a
function. Dynamic field names specify a variable name for a structure field.

The variable fundtype shown here is a dynamic field name:

type = funds(5,2).(fundtype);

See “Using Dynamic Field Names” on page 2-54 for more information.

Exclamation Point — !
The exclamation point precedes operating system commands that you want to
execute from within MATLAB.

Shell Escape
The exclamation point initiates a shell escape function. Such a function is to be
performed directly by the operating system:

!rmdir oldtests

See “Shell Escape Functions” on page 3-23 for more information.

3 Basic Program Components

3-76

Parentheses — ()
Parentheses are used mostly for indexing into elements of an array or for
specifying arguments passed to a called function.

Array Indexing
When parentheses appear to the right of a variable name, they are indices into
the array stored in that variable:

A(2, 7, 4)

Function Input Arguments
When parentheses follow a function name in a function declaration or call, the
enclosed list contains input arguments used by the function:

function sendmail(to, subject, message, attachments)

Percent — %
The percent sign is most commonly used to indicate nonexecutable text within
the body of a program. This text is normally used to include comments in your
code. Some functions also interpret the percent sign as a conversion specifier.

See “Help Text” on page 4-11 for more information.

Single Line Comments
Precede any one-line comments in your code with a percent sign. MATLAB
does not execute anything that follows a percent sign (that is, unless the sign
is quoted, '%'):

% The purpose of this routine is to compute
% the value of ...

Conversion Specifiers
Some functions, like sscanf and sprintf, precede conversion specifiers with
the percent sign:

sprintf('%s = %d', name, value)

Symbol Reference

3-77

Percent-Brace — %{ %}
The %{ and %} symbols enclose a block of comments that extend beyond one
line.

Block Comments
Enclose any multiline comments with percent followed by an opening or closing
brace.

%{
The purpose of this routine is to compute
the value of ...
%}

Note The %{ and %} operators must appear alone on the lines that
immediately precede and follow the block of help text. Do not include any
other text on these lines.

Semicolon — ;
The semicolon cnn be used to construct arrays, supress output from a MATLAB
command, or to separate commands entered on the same line.

Array Row Separator
When used within square brackets to create a new array or concatenate
existing arrays, the semicolon creates a new row in the array:

A = [5, 8; 3, 4]
A =
 5 8
 3 4

Output Suppression
When placed at the end of a command, the semicolon tells MATLAB not to
display any output from that command. In this example, MATLAB does not
display the resulting 100-by-100 matrix:

A = ones(100, 100);

3 Basic Program Components

3-78

Command or Statement Separator
Like the comma operator, you can enter more than one MATLAB command on
a line by separating each command with a semicolon. MATLAB suppresses
output for those commands terminated with a semicolon, and displays the
output for commands terminated with a comma.

In this example, assignments to variables A and C are terminated with a
semicolon, and thus do not display. Because the assignment to B is
comma-terminated, the output of this one command is displayed:

A = 12.5; B = 42.7, C = 1.25;
B =
 42.7000

Single Quotes — ' '
Single quotes are the constructor symbol for MATLAB character arrays.

Character and String Constructor
MATLAB constructs a character array from all characters enclosed in single
quotes. If only one character is in quotes, then MATLAB constructs a 1-by-1
array:

S = 'Hello World'

See “Characters and Strings” on page 2-25 for more information.

Space Character
The space character serves a purpose similar to the comma in that it can be
used to separate row elements in an array constructor, or the values returned
by a function.

Row Element Separator
You have the option of using either commas or spaces to delimit the row
elements of an array when constructing the array. To create a 1-by-3 array, use

A = [5.92 8.13 3.53]
A =
 5.9200 8.1300 3.5300

Symbol Reference

3-79

When indexing into an array, you must always use commas to reference each
dimension of the array.

Function Output Separator
Spaces are allowed when specifying a list of values to be returned by a function.
You can use spaces to separate return values in both function declarations and
function calls:

function [data text] = xlsread(file, sheet, range, mode)

Slash and Backslash — / \
The slash (/) and backslash (\) characters separate the elements of a path or
directory string. On Windows-based systems, both slash and backslash have
the same effect. On UNIX-based systems, you must use slash only.

On a Windows system, you can use either backslash or slash:

dir([matlabroot '\toolbox\matlab\elmat\shiftdim.m'])
dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

On a UNIX system, use only the forward slash:

dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

Square Brackets — []
Square brackets are used in array construction and concatenation, and also in
declaring and capturing values returned by a function.

Array Constructor
To construct a matrix or array, enclose all elements of the array in square
brackets:

A = [5.7, 9.8, 7.3; 9.2, 4.5, 6.4]

Concatenation
To combine two or more arrays into a new array through concatenation, enclose
all array elements in square brackets:

A = [B, eye(6), diag([0:2:10])]

3 Basic Program Components

3-80

Function Declarations and Calls
When declaring or calling a function that returns more than one output,
enclose each return value that you need in square brackets:

[data, text] = xlsread(file, sheet, range, mode)

MATLAB Functions

3-81

MATLAB Functions
Many of the functions provided with MATLAB are implemented as M-files just
like the M-files that you will create with MATLAB. Other MATLAB functions
are precompiled executable programs called built-ins that run much more
efficiently.

This section discusses both types of functions and also functions that are
overloaded to handle different data types appropriately:

• “M-File Functions” on page 3-81

• “Built-In Functions” on page 3-82

• “Overloaded MATLAB Functions” on page 3-83

M-File Functions
If you look in the subdirectories of the toolbox\matlab directory, you can find
the M-file sources to many of the functions supplied with MATLAB. You can
locate your toolbox\matlab directory by typing

dir([matlabroot '\toolbox\matlab\'])

MATLAB functions with an M-file source are just like any other functions
coded with MATLAB. When one of these M-file functions is called, MATLAB
parses and executes each line of code in the M-file. It saves the parsed version
of the function in memory, eliminating parsing time on any further calls to this
function.

Identifying M-File Functions
To find out if a function is implemented with an M-file, use the exist function.
The exist function searches for the name you enter on the MATLAB path and
returns a number identifying the source. If the source is an M-file, then exist
returns the number 2. This example identifies the source for the repmat
function as an M-file:

exist repmat
ans =
 2

3 Basic Program Components

3-82

The exist function also returns 2 for files that have a file type unknown to
MATLAB. However, if you invoke exist on a MATLAB function name, the file
type will be known to MATLAB and will return 2 only on M-files.

Viewing the Source Code
One advantage of functions implemented as M-files is that you can look at the
source code. This may help when you need to understand why the function
returns a value you didn’t expect, if you need to figure out how to code
something in MATLAB that is already coded in a function, or perhaps to help
you create a function that overloads one of the MATLAB functions.

To find the source code for any MATLAB M-file function, use which:

which repmat
 D:\matlabR14\toolbox\matlab\elmat\repmat.m

Built-In Functions
Functions that are frequently used or that can take more time to execute are
often implemented as executable files. These functions are called built-ins.

Unlike M-file functions, you cannot see the source code for built-ins. Although
most built-in functions do have an M-file associated with them, this file is there
mainly to supply the help documentation for the function. Take the reshape
function, for example, and find it on the MATLAB path:

which reshape
 D:\matlabR14\toolbox\matlab\elmat\reshape.m

If you type this M-file out, you will see that it consists almost entirely of help
text. At the bottom is a call to the built-in executable image.

Identifying Built-In Functions
As with M-file functions, you can identify which functions are built-ins using
the exist function. This function identifies built-ins by returning the number
5:

exist reshape
ans =
 5

MATLAB Functions

3-83

Forcing a Built-In Call
If you overload any of the MATLAB built-in functions to handle a specific data
type, then MATLAB will always call the overloaded function on that type. If,
for some reason, you need to call the built-in version, you can override the usual
calling mechanism using a function called builtin. The expression

builtin('reshape', arg1, arg2, ..., argN);

forces a call to MATLAB built-in reshape, passing the arguments shown even
though an overload exists for the data types in this argument list.

Overloaded MATLAB Functions
An overloaded function is an additional implementation of an existing function
that has been designed specifically to handle a certain data type. When you
pass an argument of this type in a call to the function, MATLAB looks for the
function implementation that handles that type and executes that function
code.

Each overloaded MATLAB function has an M-file on the MATLAB path. The
M-files for a certain data type (or class) are placed in a directory named with
an @ sign followed by the class name. For example, to overload the MATLAB
plot function to plot expressions of a class named polynom differently than
other data types, you would create a directory called @polynom and store your
own version of plot.m in that directory.

You can add your own overloads to any function by creating a class directory
for the data type you wish to support for that function, and creating an M-file
that handles that type in a manner different from the default. See “Setting Up
Class Directories” on page 8-6 and “Designing User Classes in MATLAB” on
page 8-9.

When you use the which command with the -all option, MATLAB returns all
occurrences of the file you are looking for. This is an easy way to find functions
that are overloaded:

which -all set % Show all implementations for 'set'

3 Basic Program Components

3-84

4

M-File Programming

When you write a program in MATLAB, you save it to a file called an M-file (named after its .m file
extension). There are two types of M-files that you can write: scripts and functions. Most of this
chapter is about functions, as they are the more complex and useful of the two M-file types.

This chapter covers basic program development, describes how to write and call scripts and functions,
and shows how to pass different types of data in a function call.

Program Development (p. 4-2) Procedures and tools used in creating, debugging, optimizing,
and checking in a program

Working with M-Files (p. 4-7) Introduction to the basic MATLAB program file

M-File Scripts and Functions (p. 4-16) Overview of scripts, simple programs that require no input or
output, and functions, more complex programs that exchange
input and output data with the caller

Function Arguments (p. 4-21) Handling the data passed into and out of an M-file function,
checking input data, passing variable numbers of arguments

Function Handles (p. 4-27) Packaging the access to a function into a function handle, and
passing that handle to other functions

Calling Functions (p. 4-31) Calling syntax, determining which function will be called,
passing different types of arguments, passing arguments in
structures and cell arrays, identifying function dependencies

4 M-File Programming

4-2

Program Development
This section explains the basic steps in developing an M-file program in
MATLAB. Associated with each step in this process are certain MATLAB tools
and utilities that are fully documented in the Desktop Tools and Development
Environment documentation.

This section covers

• “Creating a Program” on page 4-2

• “Getting the Bugs Out” on page 4-3

• “Cleaning Up the Program” on page 4-4

• “Improving Performance” on page 4-5

• “Checking It In” on page 4-6

For more ideas on good programming style, see “Program Development” on
page 11-16. The MATLAB Programming Tips is a compilation of useful pieces
of information that can show you alternate and often more efficient ways to
accomplish common programming tasks while also expanding your knowledge
of MATLAB.

Creating a Program
You can type in your program code using any text editor. This section focuses
on using the MATLAB Editor/Debugger for this purpose. The Editor/Debugger
is fully documented in “Ways to Edit and Debug Files” in the Desktop Tools and
Development Environment documentation.

The first step in creating a program is to open an editing window. To create a
new M-file, type the word edit at the MATLAB command prompt. To edit an
existing M-file, type edit followed by the filename:

edit drawPlot.m

MATLAB opens a new window for entering your program code. As you type in
your program, MATLAB keeps track of the line numbers in the left column.

Program Development

4-3

Saving the Program
It is usually a good idea to save your program periodically while you are in the
development process. To do this, click File -> Save in the Editor/Debugger.
Enter a filename with a .m extension in the Save file as dialog box that appears
and click OK. It is customary and less confusing if you give the M-file the same
name as the first function in the M-file.

Running the Program
Before trying to run your program, make sure that its M-file is on the MATLAB
path. The MATLAB path defines those directories that you want MATLAB to
know about when executing M-files. The path includes all the directories that
contain functions provided with MATLAB. It should also include any
directories that you use for your own functions.

Use the which function to see if your program is on the path:

which drawPlot
 D:\matlabR14\work\drawPlot.m

If not, add its directory to the path using the addpath function:

addpath('D:\matlabR14\work')

Now you can run the program just by typing the name of the M-file at the
MATLAB command prompt:

drawPlot(xdata, ydata)

Getting the Bugs Out
In all but the simplest programs, you are likely to encounter some type of
unexpected behavior when you run the program for the first time. Program
defects can show up in the form of warning or error messages displayed in the
command window, programs that hang (never terminate), inaccurate results,
or some number of other symptoms. This is where the second functionality of
the MATLAB Editor/Debugger becomes useful.

The MATLAB Debugger enables you to examine the inner workings of your
program while you run it. You can stop the execution of your program at any
point and then continue from that point, stepping through the code line by line
and examining the results of each operation performed. You have the choice of

4 M-File Programming

4-4

operating the debugger from the Editor window that displays your program,
from the MATLAB command line, or both.

The Debugging Process
You can step through the program right from the start if you want. For longer
programs, you will probably save time by stopping the program somewhere in
the middle and stepping through from there. You can do this by approximating
where the program code breaks and setting a stopping point (or breakpoint) at
that line. Once a breakpoint has been set, start your program from the
MATLAB command prompt. MATLAB opens an Editor/Debugger window (if it
is not already open) showing a green arrow pointing to the next line to execute.

From this point, you can examine any values passed into the program, or the
results of each operation performed. You can step through the program line by
line to see which path is taken and why. You can step into any functions that
your program calls, or choose to step over them and just see the end results.
You can also modify the values assigned to a variable and see how that affects
the outcome.

To learn about using the MATLAB Debugger, see “Debugging and Improving
M-Files” in the Desktop Tools and Development Environment documentation.
Type help debug for a listing of all MATLAB debug functions.

For programming tips on how to debug, see “Debugging” on page 11-19.

Cleaning Up the Program
Even after your program is bug-free, there are still some steps you can take to
improve its performance and readability. The MATLAB M-Lint utility
generates a report that can highlight potential problems in your code. For
example, you may be using the element-wise AND operator (&) where the
short-circuit AND (&&) is more appropriate. You may be using the find function
in a context where logical subscripting would be faster.

MATLAB offers M-Lint and several other reporting utilities to help you make
the finishing touches to your program code. These tools are described under
“Tuning and Refining M-Files” in the Desktop Tools and Development
Environment documentation.

Program Development

4-5

Improving Performance
The MATLAB Profiler generates a report that shows how your program spends
its processing time. For details about using the MATLAB Profiler, see
“Profiling for Improving Performance” in the MATLAB Desktop Tools and
Development Environment documentation. For tips on other ways to improve
the performance of your programs, see Chapter 10, “Improving Performance
and Memory Usage.”.

Three types of reports are available:

• “Summary Report” on page 4-5

• “Detail Report” on page 4-5

• “File Listing” on page 4-5

Summary Report
The summary report provides performance information on your main program
and on every function it calls. This includes how many times each function is
called, the total time spent in that function, along with a bar graph showing the
relative time spent by each function.

Detail Report
When you click a function name in the summary report, MATLAB displays a
detailed report on that function. This report shows the lines of that function
that take up the most time, the time spent executing that line, the percentage
of total time for that function that is spent on that line, and a bar graph
showing the relative time spent on the line.

File Listing
The detail report for a function also displays the entire M-file code for that
function. This listing enables you to view the time-consuming code in the
context of the entire function body. For every line of code that takes any
significant time, additional performance information is provided by the
statistics and by the color and degree of highlighting of the program code.

4 M-File Programming

4-6

Checking It In
Source control systems offer a way to manage large numbers of files while they
are under development. They keep track of the work done on these files as your
project progresses, and also ensure that changes are made in a secure and
orderly fashion.

If you have a source control system available to you, you will probably want to
check your M-files into the system once they are complete. If further work is
required on one of those files, you just check it back out, make the necessary
modifications, and then check it back in again.

MATLAB provides an interface to external source control systems so that you
can check files in and out directly from your MATLAB session. See “Revision
Control” in the Desktop Tools and Development Environment documentation
for instructions on how to use this interface.

Working with M-Files

4-7

Working with M-Files
MATLAB provides a full programming language that enables you to write a
series of MATLAB statements into a file and then execute them with a single
command. You write your program in an ordinary text file, giving the file a
name of filename.m. The term you use for filename becomes the new
command that MATLAB associates with the program. The file extension of .m
makes this a MATLAB M-file.

This section covers

• “Types of M-Files” on page 4-7

• “Basic Parts of an M-File” on page 4-8

• “Creating a Simple M-File” on page 4-13

• “Providing Help for Your Program” on page 4-15

• “Creating P-Code Files” on page 4-15

Types of M-Files
M-files can be scripts that simply execute a series of MATLAB statements, or
they can be functions that also accept input arguments and produce output.

MATLAB scripts:

• Are useful for automating a series of steps you need to perform many times.

• Do not accept input arguments or return output arguments.

• Store variables in a workspace that is shared with other scripts and with the
MATLAB command line interface.

MATLAB functions:

• Are useful for extending the MATLAB language for your application.

• Can accept input arguments and return output arguments.

• Store variables in a workspace internal to the function.

4 M-File Programming

4-8

Basic Parts of an M-File
This simple function shows the basic parts of an M-file. Note that any line that
begins with % is not executable:

function f = fact(n) Function definition line
% Compute a factorial value. H1 line
% FACT(N) returns the factorial of N, Help text
% usually denoted by N!

% Put simply, FACT(N) is PROD(1:N). Comment
f = prod(1:n); Function body

The table below briefly describes each of these M-file parts. Both functions and
scripts can have all of these parts, except for the function definition line which
applies to functions only. These parts are described in greater detail following
the table.

M-File Element Description

Function definition line
(functions only)

Defines the function name, and the number and
order of input and output arguments

H1 line A one line summary description of the program,
displayed when you request help on an entire
directory, or when you use lookfor

Help text A more detailed description of the program,
displayed together with the H1 line when you
request help on a specific function

Function or script body Program code that performs the actual
computations and assigns values to any output
arguments

Comments Text in the body of the program that explains
the internal workings of the program

Working with M-Files

4-9

Function Definition Line
The function definition line informs MATLAB that the M-file contains a
function, and specifies the argument calling sequence of the function. The
function definition line for the fact function is

All MATLAB functions have a function definition line that follows this pattern.

Function Name. Function names must begin with a letter, may contain any
alphanumeric characters or underscores, and must be no longer than the
maximum allowed length (returned by the function namelengthmax). Because
variables must obey similar rules, you can use the isvarname function to check
whether a function name is valid:

isvarname myfun

Although function names can be of any length, MATLAB uses only the first N
characters of the name (where N is the number returned by the function
namelengthmax) and ignores the rest. Hence, it is important to make each
function name unique in the first N characters:

N = namelengthmax
N =
 63

Note Some operating systems may restrict file names to shorter lengths.

The name of the text file that contains a MATLAB function consists of the
function name with the extension .m appended. For example,

average.m

function y = fact(x)

input argument

function name
output argument

keyword

4 M-File Programming

4-10

If the filename and the function definition line name are different, the internal
(function) name is ignored. Thus, if average.m is the file that defines a function
named computeAverage, you would invoke the function by typing

average

Note While the function name specified on the function definition line does
not have to be the same as the filename, it is best to use the same name for
both to avoid confusion.

Function Arguments. If the function has multiple output values, enclose the
output argument list in square brackets. Input arguments, if present, are
enclosed in parentheses following the function name. Use commas to separate
multiple input or output arguments. Here is the declaration for a function
named sphere that has three inputs and three outputs:

function [x, y, z] = sphere(theta, phi, rho)

If there is no output, leave the output blank

function printresults(x)

or use empty square brackets:

function [] = printresults(x)

The variables that you pass to the function do not need to have the same name
as those in the function definition line.

The H1 Line
The H1 line, so named because it is the first help text line, is a comment line
immediately following the function definition line. Because it consists of
comment text, the H1 line begins with a percent sign, %. For the average
function, the H1 line is

% AVERAGE Mean of vector elements.

Working with M-Files

4-11

This is the first line of text that appears when a user types help functionname
at the MATLAB prompt. Further, the lookfor function searches on and
displays only the H1 line. Because this line provides important summary
information about the M-file, it is important to make it as descriptive as
possible.

Help Text
You can create online help for your M-files by entering help text on one or more
consecutive comment lines at the start of your M-file program. MATLAB
considers the first group of consecutive lines immediately following the H1 line
that begin with % to be the online help text for the function. The first line
without % as the left-most character ends the help.

The help text for the average function is

% AVERAGE(X), where X is a vector, is the mean of vector elements.
% Nonvector input results in an error.

When you type help functionname at the command prompt, MATLAB
displays the H1 line followed by the online help text for that function. The help
system ignores any comment lines that appear after this help block.

Note Help text in an M-file can be viewed at the MATLAB command prompt
only (using help functionname). You cannot display this text using the
MATLAB Help browser. You can, however, use the Help browser to get help on
MATLAB functions and also to read the documentation on any MathWorks
products.

The Function or Script Body
The function body contains all the MATLAB code that performs computations
and assigns values to output arguments. The statements in the function body
can consist of function calls, programming constructs like flow control and
interactive input/output, calculations, assignments, comments, and blank
lines.

4 M-File Programming

4-12

For example, the body of the average function contains a number of simple
programming statements:

[m,n] = size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1)) % Flow control
 error('Input must be a vector') % Error message display
end
y = sum(x)/length(x); % Computation and assignment

Comments
As mentioned earlier, comment lines begin with a percent sign (%). Comment
lines can appear anywhere in an M-file, and you can append comments to the
end of a line of code. For example,

% Add up all the vector elements.
y = sum(x) % Use the sum function.

In addition to comment lines, you can insert blank lines anywhere in an M-file.
Blank lines are ignored. However, a blank line can indicate the end of the help
text entry for an M-file.

Block Comments. To write comments that require more than one line, use the
block comment operators, %{ and %}:

%{
This next block of code checks the number of inputs
passed in, makes sure that each input is a valid data
type, and then branches to start processing the data.
%}

Note The %{ and %} operators must appear alone on the lines that
immediately precede and follow the block of help text. Do not include any
other text on these lines.

Working with M-Files

4-13

Creating a Simple M-File
You create M-files using a text editor. MATLAB provides a built-in editor, but
you can use any text editor you like. Once you have written and saved the
M-file, you can run the program as you would any other MATLAB function or
command.

The process looks like this:

Using Text Editors
M-files are ordinary text files that you create using a text editor. If you use the
MATLAB Editor/Debugger, open a new file by selecting New -> M-File from
the File menu at the top of the MATLAB Command Window.

Another way to edit an M-file is from the MATLAB command line using the
edit function. For example,

edit foo

opens the editor on the file foo.m. Omitting a filename opens the editor on an
untitled file.

 function c = myfile(a,b)
 c = sqrt((a.^2)+(b.^2))

1

a = 7.5
b = 3.342
c = myfile(a,b)

c =

8.2109

Create an M-file using a text
editor.

Call the M-file from the
command line, or from within
another M-file.

2

4 M-File Programming

4-14

You can create the fact function shown in “Basic Parts of an M-File” on
page 4-8 by opening your text editor, entering the lines shown, and saving the
text in a file called fact.m in your current directory.

Once you have created this file, here are some things you can do:

• List the names of the files in your current directory:

what

• List the contents of M-file fact.m:

type fact

• Call the fact function:

fact(5)
ans =
 120

A Word of Caution on Saving M-Files
Save any M-files you create and any MathWorks supplied M-files that you edit
in directories outside of the directory tree in which the MATLAB software is
installed. If you keep your files in any of the installed directories, your files may
be overwritten when you install a new version of MATLAB.

MATLAB installs its software into directories under $matlabroot/toolbox. To
see what $matlabroot is on your system, type matlabroot at the MATLAB
command prompt.

Also note that locations of files in the $matlabroot/toolbox directory tree are
loaded and cached in memory at the beginning of each MATLAB session to
improve performance. If you save files to $matlabroot/toolbox directories
using an external editor, or if you add or remove files from these directories
using file system operations, enter the commands clear functionname and
rehash toolbox before you use the files in the current session.

For more information, see the rehash function reference page or the section
“Toolbox Path Caching” in the Desktop Tools and Development Environment
documentation.

Working with M-Files

4-15

Providing Help for Your Program
You can provide user information for the programs you write by including a
help text section at the beginning of your M-file. (See “Help Text” on page 4-11).

You can also make help entries for an entire directory by creating a file with
the special name Contents.m that resides in the directory. This file must
contain only comment lines; that is, every line must begin with a percent sign.
MATLAB displays the lines in a Contents.m file whenever you type

help directoryname

If a directory does not contain a Contents.m file, typing help directoryname
displays the first help line (the H1 line) for each M-file in the directory.

Creating P-Code Files
You can save a preparsed version of a function or script, called P-code files, for
later MATLAB sessions using the pcode function. For example,

pcode average

parses average.m and saves the resulting pseudocode to the file named
average.p. This saves MATLAB from reparsing average.m the first time you
call it in each session.

MATLAB is very fast at parsing so the pcode function rarely makes much of a
speed difference.

One situation where pcode does provide a speed benefit is for large GUI
applications. In this case, many M-files must be parsed before the application
becomes visible.

You can also use pcode to hide algorithms you have created in your M-file, if
you need to do this for proprietary reasons.

4 M-File Programming

4-16

M-File Scripts and Functions
This section covers the following topics regarding functions:

• “M-File Scripts” on page 4-16

• “M-File Functions” on page 4-17

• “Types of Functions” on page 4-18

• “Identifying Dependencies” on page 4-19

M-File Scripts
Scripts are the simplest kind of M-file because they have no input or output
arguments. They are useful for automating series of MATLAB commands, such
as computations that you have to perform repeatedly from the command line.

The Base Workspace
Scripts share the base workspace with your interactive MATLAB session and
with other scripts. They operate on existing data in the workspace, or they can
create new data on which to operate. Any variables that scripts create remain
in the workspace after the script finishes so you can use them for further
computations. You should be aware, though, that running a script can
unintentionally overwrite data stored in the base workspace by commands
entered at the MATLAB command prompt.

Simple Script Example
These statements calculate rho for several trigonometric functions of theta,
then create a series of polar plots:

% An M-file script to produce % Comment lines
% "flower petal" plots
theta = -pi:0.01:pi; % Computations
rho(1,:) = 2 * sin(5 * theta) .^ 2;
rho(2,:) = cos(10 * theta) .^ 3;
rho(3,:) = sin(theta) .^ 2;
rho(4,:) = 5 * cos(3.5 * theta) .^ 3;
for k = 1:4
 polar(theta, rho(k,:)) % Graphics output
 pause
end

M-File Scripts and Functions

4-17

Try entering these commands in an M-file called petals.m. This file is now a
MATLAB script. Typing petals at the MATLAB command line executes the
statements in the script.

After the script displays a plot, press Enter or Return to move to the next plot.
There are no input or output arguments; petals creates the variables it needs
in the MATLAB workspace. When execution completes, the variables (i, theta,
and rho) remain in the workspace. To see a listing of them, enter whos at the
command prompt.

M-File Functions
Functions are program routines, usually implemented in M-files, that accept
input arguments and return output arguments. They operate on variables
within their own workspace. This workspace is separate from the workspace
you access at the MATLAB command prompt.

The Function Workspace
Each M-file function has an area of memory, separate from the MATLAB base
workspace, in which it operates. This area, called the function workspace, gives
each function its own workspace context.

While using MATLAB, the only variables you can access are those in the calling
context, be it the base workspace or that of another function. The variables that
you pass to a function must be in the calling context, and the function returns
its output arguments to the calling workspace context. You can, however,
define variables as global variables explicitly, allowing more than one
workspace context to access them.

Simple Function Example
The average function is a simple M-file that calculates the average of the
elements in a vector:

function y = average(x)
% AVERAGE Mean of vector elements.
% AVERAGE(X), where X is a vector, is the mean of vector elements.
% Nonvector input results in an error.
[m,n] = size(x);

4 M-File Programming

4-18

if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))
 error('Input must be a vector')
end
y = sum(x)/length(x); % Actual computation

Try entering these commands in an M-file called average.m. The average
function accepts a single input argument and returns a single output
argument. To call the average function, enter

z = 1:99;

average(z)
ans =
 50

Types of Functions
MATLAB provides the following types of functions. Each function type is
described in more detail in a later section of this documentation:

• The “Primary M-File Functions” on page 5-14 is the first function in an
M-file and typically contains the main program.

• “Subfunctions” on page 5-31 act as subroutines to the main function. You can
also use them to define multiple functions within a single M-file.

• “Nested Functions” on page 5-15 are functions defined within another
function. They can help to improve the readability of your program and also
give you more flexible access to variables in the M-file.

• “Anonymous Functions” on page 5-3 provide a quick way of making a
function from any MATLAB expression. You can compose anonymous
functions either from within another function or at the MATLAB command
prompt.

• “Overloaded Functions” on page 5-34 are useful when you need to create a
function that responds to different types of inputs accordingly. They are
similar to overloaded functions in any object-oriented language.

• “Private Functions” on page 5-33 give you a way to restrict access to a
function. You can call them only from an M-file function in the parent
directory.

M-File Scripts and Functions

4-19

You might also see the term function functions in the documentation. This is
not really a separate function type. The term function functions refers to any
functions that accept another function as an input argument. You can pass a
function to another function using a function handle.

Identifying Dependencies
Most any program you write will make calls to other functions and scripts. If
you need to know what other functions and scripts your program is dependent
upon, use one of the techniques described below.

Simple Display of M-File Dependencies
For a simple display of all M-files referenced by a particular function, follow
these steps:

1 Type clear functions to clear all functions from memory (see Note below).

Note clear functions does not clear functions locked by mlock. If you have
locked functions (which you can check using inmem) unlock them with
munlock, and then repeat step 1.

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, because you can get different
results when calling the same function with different arguments.

3 Type inmem to display all M-files that were used when the function ran. If
you want to see what MEX-files were used as well, specify an additional
output:

[mfiles, mexfiles] = inmem

4 M-File Programming

4-20

Detailed Display of M-File Dependencies
For a much more detailed display of dependent function information, use the
depfun function. In addition to M-files, depfun shows which built-ins and
classes a particular function depends on:

[list, builtins, classes] = depfun('strtok.m');

list
list =
 'D:\matlabR14\toolbox\matlab\strfun\strtok.m'
 'D:\matlabR14\toolbox\matlab\graphics\newplot.p'
 'D:\matlabR14\toolbox\matlab\graphics\closereq.m'
 'D:\matlabR14\toolbox\matlab\ops\@double\any.bi'
 .
 .
 .

Function Arguments

4-21

Function Arguments
When calling a function, the caller provides the function with any data it needs
by passing the data in an argument list. Data that needs to be returned to the
caller is passed back in a list of return values.

Semantically speaking, MATLAB always passes argument data by value.
(Internally, MATLAB optimizes away any unnecessary copy operations.)

If you pass data to a function that then modifies this data, you will need to
update your own copy of the data. You can do this by having the function return
the updated value as an output argument.

This section covers

• “Checking the Number of Input Arguments” on page 4-21

• “Passing Variable Numbers of Arguments” on page 4-23

• “Returning Output Arguments” on page 4-25

Checking the Number of Input Arguments
The nargin and nargout functions enable you to determine how many input
and output arguments a function is called with. You can then use conditional
statements to perform different tasks depending on the number of arguments.
For example,

function c = testarg1(a, b)
if (nargin == 1)
 c = a .^ 2;
elseif (nargin == 2)
 c = a + b;
end

Given a single input argument, this function squares the input value. Given
two inputs, it adds them together.

4 M-File Programming

4-22

Here is a more advanced example that finds the first token in a character
string. A token is a set of characters delimited by white space or some other
character. Given one input, the function assumes a default delimiter of white
space; given two, it lets you specify another delimiter if desired. It also allows
for two possible output argument lists:

function [token, remainder] = strtok(string, delimiters)
% Function requires at least one input argument
if nargin < 1
 error('Not enough input arguments.');
end
token = []; remainder = [];
len = length(string);
if len == 0
 return
end

% If one input, use white space delimiter
if (nargin == 1)
 delimiters = [9:13 32]; % White space characters
end
i = 1;

% Determine where non-delimiter characters begin
while (any(string(i) == delimiters))
 i = i + 1;
 if (i > len), return, end
end

% Find where token ends
start = i;
while (~any(string(i) == delimiters))
 i = i + 1;
 if (i > len), break, end
end
finish = i - 1;
token = string(start:finish);

Function Arguments

4-23

% For two output arguments, count characters after
% first delimiter (remainder)
if (nargout == 2)
 remainder = string(finish+1:end);
end

The strtok function is a MATLAB M-file in the strfun directory.

Note The order in which output arguments appear in the function
declaration line is important. The argument that the function returns in most
cases appears first in the list. Additional, optional arguments are appended to
the list.

Passing Variable Numbers of Arguments
The varargin and varargout functions let you pass any number of inputs or
return any number of outputs to a function. This section describes how to use
these functions and also covers

• “Unpacking varargin Contents” on page 4-24

• “Packing varargout Contents” on page 4-24

• “varargin and varargout in Argument Lists” on page 4-25

MATLAB packs all specified input arguments into a cell array, a special kind
of MATLAB array that consists of cells instead of array elements. Each cell can
hold any size or kind of data — one might hold a vector of numeric data,
another in the same array might hold an array of string data, and so on. For
output arguments, your function code must pack them into a cell array so that
MATLAB can return the arguments to the caller.

Here is an example function that accepts any number of two-element vectors
and draws a line to connect them:

function testvar(varargin)
for k = 1:length(varargin)
 x(k) = varargin{k}(1); % Cell array indexing
 y(k) = varargin{k}(2);
end

4 M-File Programming

4-24

xmin = min(0,min(x));
ymin = min(0,min(y));
axis([xmin fix(max(x))+3 ymin fix(max(y))+3])
plot(x,y)

Coded this way, the testvar function works with various input lists; for
example,

testvar([2 3],[1 5],[4 8],[6 5],[4 2],[2 3])
testvar([-1 0],[3 -5],[4 2],[1 1])

Unpacking varargin Contents
Because varargin contains all the input arguments in a cell array, it’s
necessary to use cell array indexing to extract the data. For example,

y(n) = varargin{n}(2);

Cell array indexing has two subscript components:

• The indices within curly braces {} specify which cell to get the contents of.

• The indices within parentheses () specify a particular element of that cell.

In the preceding code, the indexing expression {i} accesses the nth cell of
varargin. The expression (2) represents the second element of the cell
contents.

Packing varargout Contents
When allowing any number of output arguments, you must pack all of the
output into the varargout cell array. Use nargout to determine how many
output arguments the function is called with. For example, this code accepts a
two-column input array, where the first column represents a set of x
coordinates and the second represents y coordinates. It breaks the array into
separate [xi yi] vectors that you can pass into the testvar function shown in
the earlier example:

function [varargout] = testvar2(arrayin)
for k = 1:nargout
 varargout{k} = arrayin(k,:); % Cell array assignment
end

Function Arguments

4-25

The assignment statement inside the for loop uses cell array assignment
syntax. The left side of the statement, the cell array, is indexed using curly
braces to indicate that the data goes inside a cell. For complete information on
cell array assignment, see “Cell Arrays” on page 2-66.

To call testvar2, type

a = [1 2; 3 4; 5 6; 7 8; 9 0];

[p1, p2, p3, p4, p5] = testvar2(a)
p1 =
 1 2
p2 =
 3 4
p3 =
 5 6
p4 =
 7 8
p5 =
 9 0

varargin and varargout in Argument Lists
varargin or varargout must appear last in the argument list, following any
required input or output variables. That is, the function call must specify the
required arguments first. For example, these function declaration lines show
the correct placement of varargin and varargout:

function [out1,out2] = example1(a,b,varargin)
function [i,j,varargout] = example2(x1,y1,x2,y2,flag)

Returning Output Arguments
Any variables you place to the left of the equals sign in the function definition
line are returned to the caller when the function terminates. If you pass any
input variables that the function can modify, you will need to include the same
variables as output arguments so that the caller receives the updated value.

For example, if the function readText shown below reads one line of a file each
time is it called, then it must keep track of the offset into the file. But when
readText terminates, its copy of the offset variable is cleared from memory.

4 M-File Programming

4-26

To keep the offset value from being lost, readText must return this value to the
caller:

[text, offset] = readText(filestart, offset)

Note If you include output arguments in your function definition line, make
sure that your function code assigns a value to each one.

Function Handles

4-27

Function Handles
A function handle is a MATLAB value that provides a means of calling a
function indirectly. You can pass function handles in calls to other functions
(often called function functions). You can also store function handles in data
structures for later use (for example, as Handle Graphics callbacks).

Constructing a Function Handle
Use the following syntax to construct a function handle, preceding the name of
the function with an @ sign. Use only the function name, with no path
information, after the @ sign:

fhandle = @functionname

MATLAB maps the handle to the function you specify and saves this mapping
information in the handle. If there is more than one function with this name,
MATLAB maps to the one function source it would dispatch to if you were
actually calling the function.

A function handle retains that same mapping even if its corresponding function
goes out of scope. For example, if, after creating the handle, you change the
MATLAB path so that a different function of the same name now takes
precedence, invoking the function handle still executes the code to which the
handle was originally mapped.

Handles to Anonymous Functions
Another way to construct a function handle is to create an anonymous function.
For example,

sqr = @(x) x.^2;

creates an anonymous function that computes the square of its input argument
x. The variable sqr contains a handle to the anonymous function. See
“Anonymous Functions” on page 5-3 for more information.

4 M-File Programming

4-28

Arrays of Function Handles
To store function handles in an array, use a cell array:

trigFun = {@sin, @cos, @tan};

plot(trigFun{2}(-pi:0.01:pi))

Invalid or Obsolete Function Handles
If you create a handle to a function that is not on the MATLAB path, or if you
load a handle to a function that is no longer on the path, MATLAB catches the
error only when the handle is invoked. You can assign an invalid handle and
use it in such operations as func2str. MATLAB catches and reports an error
only when you attempt to use it in a runtime operation.

Calling a Function Using Its Handle
To execute a function associated with a function handle, use the syntax shown
here, treating the function handle fhandle as if it were a function name:

fhandle(arg1, arg2, ..., argn)

If the function being called takes no input arguments, then use empty
parentheses after the function handle name:

fhandle()

Simple Function Handle Example
The following example calls a function plotFHandle, passing it a handle for the
MATLAB sin function. plotFHandle then calls the plot function, passing it
some data and the function handle to sin. The plot function calls the function
associated with the handle to compute its y-axis values:

function x = plotFHandle(fhandle, data)
plot(data, fhandle(data))

Call plotFhandle with a handle to the sin function and the value shown below:

plotFHandle(@sin, -pi:0.01:pi)

Function Handles

4-29

Functions That Operate on Function Handles
MATLAB provides the following functions for working with function handles.
See the reference pages for these functions for more information.

Additional Information on Function Handles
This section covers the following topics:

• “Maximum Length of a Function Name” on page 4-29

• “How MATLAB Constructs a Function Handle” on page 4-30

• “Saving and Loading Function Handles” on page 4-30

Maximum Length of a Function Name
Function names used in handles are unique up to N characters, where N is the
number returned by the function namelengthmax. If the function name exceeds
that length, MATLAB truncates the latter part of the name.

For function handles created for Java constructors, the length of any segment
of the package name or class name must not exceed namelengthmax characters.
(The term segment refers to any portion of the name that lies before, between,
or after a dot. For example, java.lang.String has three segments). The
overall length of the string specifying the package and class has no limit.

Function Description

functions Return information describing a function handle.

func2str Construct a function name string from a function handle.

str2func Construct a function handle from a function name string.

save Save a function handle from the current workspace to a
MAT-file.

load Load a function handle from a MAT-file into the current
workspace.

isa Determine if a variable contains a function handle.

isequal Determine if two function handles are handles to the same
function.

4 M-File Programming

4-30

How MATLAB Constructs a Function Handle
At the time you create a function handle, MATLAB maps the handle to one or
more implementations of the function specified in the constructor statement:

fhandle = @functionname

In selecting which function(s) to map to, MATLAB considers

• Scope — The function named must be on the MATLAB path at the time the
handle is constructed.

• Precedence — MATLAB selects which function(s) to map to according to the
function precedence rules described under “How MATLAB Determines
Which Method to Call” on page 8-67.

• Overloading — If additional M-files on the path overload the function for any
of the standard MATLAB data types, such as double or char, then MATLAB
maps the handle to these M-files as well.

M-files that overload a function for classes outside of the standard MATLAB
data types are not mapped to the function handle at the time it is constructed.
Function handles do operate on these types of overloaded functions, but
MATLAB determines which implementation to call at the time of evaluation in
this case.

Saving and Loading Function Handles
You can save and load function handles in a MAT-file using the MATLAB save
and load functions. If you load a function handle that you saved in an earlier
MATLAB session, the following conditions could cause unexpected behavior:

• Any of the M-files that define the function have been moved, and thus no
longer exist on the path stored in the handle.

• You load the function handle into an environment different from that in
which it was saved. For example, the source for the function either doesn’t
exist or is located in a different directory than on the system on which the
handle was saved.

In both of these cases, the function handle is now invalid because it no longer
maps to any existing function code. Although the handle is invalid, MATLAB
still performs the load successfully and without displaying a warning.
Attempting to invoke the handle, however, results in an error.

Calling Functions

4-31

Calling Functions
This section describes the following topics on how to make function calls:

• “What Happens When You Call a Function” on page 4-31

• “Determining Which Function Is Called” on page 4-31

• “MATLAB Calling Syntax” on page 4-34

• “Passing Certain Argument Types” on page 4-37

• “Passing Arguments in Structures or Cell Arrays” on page 4-39

• “Calling External Functions” on page 4-40

What Happens When You Call a Function
When you call a function M-file from either the command line or from within
another M-file, MATLAB parses the function into pseudocode and stores it in
memory. This prevents MATLAB from having to reparse a function each time
you call it during a session. The pseudocode remains in memory until you clear
it using the clear function, or until you quit MATLAB.

Clearing Functions from Memory
You can use clear in any of the following ways to remove functions from the
MATLAB workspace.

Determining Which Function Is Called
When more than one function has the same name, which one does MATLAB
call? This section explains the process that MATLAB uses to make this
decision. It covers the following topics:

• “Function Scope” on page 4-32

• “Precedence Order” on page 4-32

Syntax Description

clear functionname Remove specified function from workspace.

clear functions Remove all compiled M-functions.

clear all Remove all variables and functions.

4 M-File Programming

4-32

• “Multiple Implementation Types” on page 4-34

• “Querying Which Function MATLAB Will Call” on page 4-34

Function Scope
Any functions you call must first be within the scope of (i.e., visible to) the
calling function or your MATLAB session. MATLAB determines if a function is
in scope by searching for the function’s executable file according to a certain
order (see “Precedence Order” on page 4-32).

One key part of this search order is the MATLAB path. The path is an ordered
list of directories that MATLAB defines on startup. You can add or remove any
directories you want from the path. MATLAB searches the path for the given
function name, starting at the first directory in the path string and continuing
until either the function file is found or the list of directories is exhausted. If no
function of that name is found, then the function is considered to be out of scope
and MATLAB issues an error.

Precedence Order
The function precedence order determines the precedence of one function over
another based on the type of function and its location on the MATLAB path.
MATLAB selects the correct function for a given context by applying the
following function precedence rules in the order given here.

For items 3 through 7 in this list, the file MATLAB searches for can be any of
five types: an M- or built-in (.bi) file, preparsed M-file (P-Code), compiled C or
Fortran file (MEX-file), or Simulink® model (MDL-file). See “Multiple
Implementation Types” on page 4-34 for more on this.

1 Variable

Before assuming that a name should match a function, MATLAB checks the
current workspace to see if it matches a variable name. If MATLAB finds a
match, it stops the search.

2 Subfunction

Subfunctions take precedence over all other M-file functions and overloaded
methods that are on the path and have the same name. Even if the function
is called with an argument of type matching that of an overloaded method,
MATLAB uses the subfunction and ignores the overloaded method.

Calling Functions

4-33

3 Private function

Private functions are called if there is no subfunction of the same name
within the current scope. As with subfunctions, even if the function is called
with an argument of type matching that of an overloaded method, MATLAB
uses the private function and ignores the overloaded method.

4 Class constructor

Constructor functions (functions having names that are the same as the @
directory, for example @polynom/polynom.m) take precedence over other
MATLAB functions. Therefore, if you create an M-file called polynom.m and
put it on your path before the constructor @polynom/polynom.m version,
MATLAB will always call the constructor version.

5 Overloaded method

MATLAB calls an overloaded method if it is not superseded by a subfunction
or private function. Which overloaded method gets called depends on the
classes of the objects passed in the argument list.

6 Function in the current directory

A function in the current working directory is selected before one elsewhere
on the path.

7 Function elsewhere on the path

Finally, a function elsewhere on the path is selected. A function in a
directory that is toward the beginning of the path string is given higher
precedence.

Note Because variables have the highest precedence, if you have created a
variable of the same name as a function, MATLAB will not be able to run that
function until you clear the variable from memory.

4 M-File Programming

4-34

Multiple Implementation Types
There are five file precedence types. MATLAB uses file precedence to select
between identically named functions in the same directory. The order of
precedence for file types is

1 Built-in (.bi) file

2 MEX-files

3 MDL (Simulink® model) file

4 P-code file

5 M-file

For example, if MATLAB finds a P-code and an M-file version of a method in a
class directory, then the P-code version is used. It is, therefore, important to
regenerate the P-code version whenever you edit the M-file.

Querying Which Function MATLAB Will Call
You can determine which function MATLAB will call using the which
command. For example,

which pie3
$matlabroot/toolbox/matlab/specgraph/pie3.m

However, if p is a portfolio object,

which pie3(p)
dir_on_your_path/@portfolio/pie3.m % portfolio method

The which command determines which version of pie3 MATLAB will call if you
passed a portfolio object as the input argument. To see a list of all versions of a
particular function that are on your MATLAB path, use the −all option. See
the which reference page for more information on this command.

MATLAB Calling Syntax
This section explains how to use the MATLAB command and function syntax:

• “MATLAB Command Syntax” on page 4-35

• “MATLAB Function Syntax” on page 4-35

Calling Functions

4-35

• “Passing Arguments with Command and Function Syntax” on page 4-36

You can call function M-files from either the MATLAB command line or from
within other M-files. Be sure to include all necessary arguments, enclosing
input arguments in parentheses and output arguments in square brackets.

Note Function names are sensitive to case. When you call a function, use the
correct combination of upper and lowercase letters so that the name is an
exact match. Otherwise, you risk calling a different function that does match
but is elsewhere on the path.

You often have the choice of using one of two syntaxes for a function call. You
can use either a command or a function type of syntax. This is referred to in
MATLAB as command/function duality.

MATLAB Command Syntax
A function call made in command syntax consists of the function name followed
by one or more arguments separated by spaces:

functionname in1 in2 ... inN

While the command syntax is simpler to write, it has the restriction that you
may not assign any return values the function might generate. Attempting to
do so generates an error.

Two examples of command syntax are

save mydata.mat x y z
clear length width depth

In the command syntax, MATLAB treats all arguments as string literals.

MATLAB Function Syntax
Function calls written in the function syntax look essentially the same as those
in many other programming languages. One difference is that, in MATLAB,
functions can return more than one output value.

A function call with a single return value looks like this:

out = functionname(in1, in2, ..., inN)

4 M-File Programming

4-36

If the function returns more than one value, separate the output variables with
commas or spaces, and enclose them all in square brackets ([]):

[out1, out2, ..., outN] = functionname(in1, in2, ..., inN)

Here are two examples:

copyfile(srcfile, '..\mytests', 'writable')
[x1, x2, x3, x4] = deal(A{:})

In the function syntax, MATLAB passes arguments to the function by value.
See the examples under “Passing Arguments with Command and Function
Syntax” on page 4-36.

Passing Arguments with Command and Function Syntax
When you call a function using function syntax, MATLAB passes the values
assigned to each variable in the argument list. For example, this expression
passes the values assigned to A0, A1, and A2 to the polyeig function:

e = polyeig(A0, A1, A2)

Function calls written in command syntax pass all arguments as string
literals. This expression passes the strings 'mydata.mat', 'x', 'y', and 'z' to
the save function:

save mydata.mat x y z

The following examples show the difference between passing arguments in the
two syntaxes.

Passing Arguments — Example 1. Calling disp with the function syntax, disp(A),
passes the value of variable A to the disp function:

A = pi;

disp(A) % Function syntax
 3.1416

Calling it with the command syntax, disp A, passes the string 'A':

A = pi;

disp A % Command syntax
 A

Calling Functions

4-37

Passing Arguments — Example 2. Passing two variables representing equal strings
to the strcmp function using function and command syntaxes gives different
results. The function syntax passes the values of the arguments. strcmp
returns a 1, which means they are equal:

str1 = 'one'; str2 = 'one';

strcmp(str1, str2) % Function syntax
ans =
 1 (equal)

The command syntax passes the names of the variables, 'str1' and 'str2',
which are unequal:

str1 = 'one'; str2 = 'one';

strcmp str1 str2 % Command syntax
ans =
 0 (unequal)

Passing Certain Argument Types
This section explains how to pass the following types of data in a function call:

• “Passing Strings” on page 4-37

• “Passing Filenames” on page 4-38

• “Passing Function Handles” on page 4-38

Passing Strings
When using the function syntax to pass a string literal to a function, you must
enclose the string in single quotes, ('string'). For example, to create a new
directory called myapptests, use

mkdir('myapptests')

On the other hand, variables that contain strings do not need to be enclosed in
quotes:

dirname = 'myapptests';
mkdir(dirname)

4 M-File Programming

4-38

Passing Filenames
You can specify a filename argument using the MATLAB command or function
syntax. For example, either of the following are acceptable. (The .mat file
extension is optional for save and load):

load mydata.mat % Command syntax
load('mydata.mat') % Function syntax

If you assign the output to a variable, you must use the function syntax:

savedData = load('mydata.mat')

Specify ASCII files as shown here. In this case, the file extension is required:

load mydata.dat -ascii % Command syntax
load('mydata.dat','-ascii') % Function syntax

Determining Filenames at Run-Time. There are several ways that your function code
can work on specific files without your having to hard-code their filenames into
the program. You can

• Pass the filename as an argument:
 function myfun(datafile)

• Prompt for the filename using the input function:
 filename = input('Enter name of file: ', 's');

• Browse for the file using the uigetfile function:
 [filename, pathname] = uigetfile('*.mat', 'Select MAT-file');

Passing Function Handles
The MATLAB function handle has several uses, the most common being a
means of immediate access to the function it represents. You can pass function
handles in argument lists to other functions, enabling the receiving function to
make calls by means of the handle.

To pass a function handle, include its variable name in the argument list of the
call:

fhandle = @humps;
x = fminbnd(fhandle, 0.3, 1);

Calling Functions

4-39

The receiving function invokes the function being passed using the usual
MATLAB calling syntax:

function [xf, fval, exitflag, output] = ...
 fminbnd(fhandle, ax, bx, options, varargin)
 .
 .
 .
113 fx = fhandle(x, varargin{:});

Passing Arguments in Structures or Cell Arrays
Instead of requiring an additional argument for every value you want to pass
in a function call, you can package them in a MATLAB structure or cell array.

Passing Arguments in a Structure
Make each input you want to pass a separate field in the structure argument,
using descriptive names for the fields. Structures allow you to change the
number, contents, or order of the arguments without having to modify the
function. They can also be useful when you have a number of functions that
need similar information.

This example updates weather statistics from information in the following
chart.

City Temp. Heat Index Wind Speed Wind Chill

Boston 43 32 8 37

Chicago 34 27 3 30

Lincoln 25 17 11 16

Denver 15 -5 9 0

Las Vegas 31 22 4 35

San Francisco 52 47 18 42

4 M-File Programming

4-40

The information is stored in structure W. The structure has one field for each
column of data:

W = struct('city', {'Bos','Chi','Lin','Dnv','Vgs','SFr'}, ...
'temp', {43, 34, 25, 15, 31, 52}, ...
'heatix', {32, 27, 17, -5, 22, 47}, ...
'wspeed', {8, 3, 11, 9, 4, 18}, ...
'wchill', {37, 30, 16, 0, 35, 42});

To update the data base, you can pass the entire structure, or just one field with
its associated data. In the call shown here, W.wchill is a comma separated list:

updateStats(W.wchill);

Passing Arguments in a Cell Array
You can also group arguments into cell arrays. The advantage over structures
is that cell arrays are referenced by index, allowing you to loop through a cell
array and access each argument passed in or out of the function. The
disadvantage is that you don't have field names to describe each variable.

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));

C{1,1} = 'LineWidth'; C{2,1} = 2;
C{1,2} = 'MarkerEdgeColor'; C{2,2} = 'k';
C{1,3} = 'MarkerFaceColor'; C{2,3} = 'g';

plot(X, Y, '--rs', C{:})

Calling External Functions
The MATLAB external interface offers a number of ways to run external
functions from MATLAB. This includes programs written in C or Fortran,
methods invoked on Java or COM (Component Object Model) objects, functions
that interface with serial port hardware, and functions stored in shared
libraries. The MATLAB External Interfaces documentation describes these
various interfaces and how to call these external functions.

5

Types of Functions

The basic function types that you can work with in MATLAB are

Overview of MATLAB Function
Types (p. 5-2)

An introduction to the basic types of functions available with
MATLAB

Anonymous Functions (p. 5-3) Functions defined from a MATLAB expression and without
requiring an M-file

Primary M-File Functions (p. 5-14) The first, and often the main, function in an M-file

Nested Functions (p. 5-15) Functions defined within the body of another function

Subfunctions (p. 5-31) Any functions that follow the primary function in an M-file

Private Functions (p. 5-33) Functions with restricted access, callable only from an M-file
function in the parent directory

Overloaded Functions (p. 5-34) Functions with multiple implementations that respond to
different types of inputs accordingly

5 Types of Functions

5-2

Overview of MATLAB Function Types
There are essentially two ways to create a new function in MATLAB: in a
command entered at run-time, or in a file saved to permanent storage.

The command-oriented function, called an anonymous function, is relatively
brief in its content. It consists of a single MATLAB statement that can interact
with multiple input and output arguments. The benefit of using anonymous
functions is that you do not have to edit and maintain a file for functions that
require only a brief definition.

There are several types of functions that are stored in files (called M-files). The
most basic of these are primary functions and subfunctions. Primary functions
are visible to other functions outside of their M-file, while subfunctions,
generally speaking, are not. That is, you can call a primary function from an
anonymous function or from a function defined in a separate M-file, whereas
you can call a subfunction only from functions within the same M-file. (See the
Description section of the function_handle reference page for information on
making a subfunction externally visible.)

Two specific types of primary M-file functions are the private and overloaded
function. Private functions are visible only to a limited group of other functions.
This type of function can be useful if you want to limit access to a function, or
when you choose not to expose the implementation of a function. Overloaded
functions act the same way as overloaded functions in most computer
languages. You can create multiple implementations of a function so that each
responds accordingly to different types of inputs.

The last type of MATLAB function is the nested function. Nested functions are
not an independent function type; they exist within the body of one of the other
types of functions discussed here (with the exception of anonymous functions),
and also within other nested functions.

One type of function that is not discussed in this chapter is the MATLAB
built-in function. Built-ins are defined only as executables internal to
MATLAB. See “Built-In Functions” on page 3-82 for more information.

Anonymous Functions

5-3

Anonymous Functions
Anonymous functions give you a quick means of creating simple functions
without having to create M-files each time. You can construct an anonymous
function either at the MATLAB command line or in any M-file function or
script.

This section covers

• “Constructing an Anonymous Function” on page 5-3

• “Arrays of Anonymous Functions” on page 5-5

• “Variables Used in the Expression” on page 5-8

• “Examples of Anonymous Functions” on page 5-11

Constructing an Anonymous Function
The syntax for creating an anonymous function from an expression is

fhandle = @(arglist) expr

Starting from the right of this syntax statement, the term expr represents the
body of the function: the code that performs the main task your function is to
accomplish. This consists of any single, valid MATLAB expression. Next is
arglist, which is a comma-separated list of input arguments to be passed to
the function. These two components are similar to the body and argument list
components of any function.

Leading off the entire right side of this statement is an @ sign. The @ sign is the
MATLAB operator that constructs a function handle. Creating a function
handle for an anonymous function gives you a means of invoking the function.
It is also useful when you want to pass your anonymous function in a call to
some other function. The @ sign is a required part of an anonymous function
definition.

Note Function handles not only provide access to anonymous functions. You
can create a function handle to any MATLAB function. The constructor uses a
different syntax: fhandle = @functionname (e.g., fhandle = @sin). To find
out more about function handles, see “Function Handles” on page 4-27.

5 Types of Functions

5-4

The syntax statement shown above constructs the anonymous function,
returns a handle to this function, and stores the value of the handle in variable
fhandle. You can use this function handle in the same way as any other
MATLAB function handle.

Simple Example
The statement below creates an anonymous function that finds the square of a
number. When you call this function, MATLAB assigns the value you pass in
to variable x, and then uses x in the equation x.^2:

sqr = @(x) x.^2;

The @ operator constructs a function handle for this function, and assigns the
handle to the output variable sqr. As with any function handle, you execute the
function associated with it by specifying the variable that contains the handle,
followed by a comma-separated argument list in parentheses. The syntax is

fhandle(arg1, arg2, ..., argN)

To execute the sqr function defined above, type

a = sqr(5)
a =
 25

Because sqr is a function handle, you can pass it in an argument list to other
functions. The code shown here passes the sqr anonymous function to the
MATLAB quad function to compute its integral from zero to one:

quad(sqr, 0, 1)
ans =
 0.3333

A Two-Input Example
As another example, you could create the following anonymous function that
uses two input arguments, x and y. (The example assumes that variables A and
B are already defined):

sumAxBy = @(x, y) (A*x + B*y);

Anonymous Functions

5-5

whos sumAxBy
Name Size Bytes Class

sumAxBy 1x1 16 function_handle

To call this function, assigning 5 to x and 7 to y, type

sumAxBy(5, 7)

Evaluating With No Input Arguments
For anonymous functions that do not take any input arguments, construct the
function using empty parentheses for the input argument list:

t = @() datestr(now);

Also use empty parentheses when invoking the function:

t()

ans =
04-Sep-2003 10:17:59

You must include the parentheses. If you type the function handle name with
no parentheses, MATLAB just identifies the handle; it does not execute the
related function:

t

t =
 @() datestr(now)

Arrays of Anonymous Functions
To store multiple anonymous functions in an array, use a cell array. The
example shown here stores three simple anonymous functions in cell array A:

A = {@(x)x.^2, @(y)y+10, @(x,y)x.^2+y+10}
A =
 [@(x)x.^2] [@(y)y+10] [@(x,y)x.^2+y+10]

5 Types of Functions

5-6

Execute the first two functions in the cell array by referring to them with the
usual cell array syntax, A{1} and A{2}:

A{1}(4) + A{2}(7)
ans =
 33

Do the same with the third anonymous function that takes two input
arguments:

A{3}(4, 7)
ans =
 33

Space Characters in Anonymous Function Elements
Note that while using space characters in the definition of any function can
make your code easier to read, spaces in the body of an anonymous function
that is defined in a cell array can sometimes be ambiguous to MATLAB. To
ensure accurate interpretation of anonymous functions in cell arrays, you can
do any of the following:

• Remove all spaces from at least the body (not necessarily the argument list)
of each anonymous function:
A = {@(x)x.^2, @(y)y+10, @(x, y)x.^2+y+10};

• Enclose in parentheses any anonymous functions that include spaces:
A = {(@(x)x .^ 2), (@(y) y +10), (@(x, y) x.^2 + y+10)};

• Assign each anonymous function to a variable, and use these variable names
in creating the cell array:
A1 = @(x)x .^ 2; A2 = @(y) y +10; A3 = @(x, y)x.^2 + y+10;
A = {A1, A2, A3};

Outputs from Anonymous Functions
As with other MATLAB functions, the number of outputs returned by an
anonymous function depends mainly on how many variables you specify to the
left of the equals (=) sign when you call the function.

Anonymous Functions

5-7

For example, consider an anonymous function getPersInfo that returns a
person’s address, home phone, business phone, and date of birth, in that order.
To get someone’s address, you can call the function specifying just one output:

address = getPersInfo(name);

To get more information, specify more outputs:

[address, homePhone, busPhone] = getPersInfo(name);

Of course, you cannot specify more outputs than the maximum number
generated by the function, which is four in this case.

Example
The anonymous getXLSData function shown here calls the MATLAB xlsread
function with a preset spreadsheet filename (records.xls) and a variable
worksheet name (worksheet):

getXLSData = @(worksheet) xlsread('records.xls', worksheet);

The records.xls worksheet used in this example contains both numeric and
text data. The numeric data is taken from instrument readings, and the text
data describes the category that each numeric reading belongs to.

Because the MATLAB xlsread function is defined to return up to three values
(numeric, text, and raw data), getXLSData can also return this same number of
values, depending on how many output variables you specify to the left of the
equals sign in the call. Call getXLSData a first time, specifying only a single
(numeric) output, dNum:

dNum = getXLSData('Week 12');

Display the data that is returned using a for loop. You have to use generic
names (v1, v2, v3) for the categories, due to the fact that the text of the real
category names was not returned in the call:

for k = 1:length(dNum)
 disp(sprintf('%s v1: %2.2f v2: %d v3: %d', ...
 datestr(clock, 'HH:MM'), dNum(k,1), dNum(k,2), ...
 dNum(k,3)));
 end

5 Types of Functions

5-8

Here is the output from the first call:

12:55 v1: 78.42 v2: 32 v3: 37
13:41 v1: 69.73 v2: 27 v3: 30
14:26 v1: 77.65 v2: 17 v3: 16
15:10 v1: 68.19 v2: 22 v3: 35

Now try this again, but this time specifying two outputs, numeric (dNum) and
text (dTxt):

[dNum, dTxt] = getXLSData('Week 12');

for k = 1:length(dNum)
 disp(sprintf('%s %s: %2.2f %s: %d %s: %d', ...
 datestr(clock, 'HH:MM'), dTxt{1}, dNum(k,1), ...
 dTxt{2}, dNum(k,2), dTxt{3}, dNum(k,3)));
 end

This time, you can display the category names returned from the spreadsheet:

12:55 Temp: 78.42 HeatIndex: 32 WindChill: 37
13:41 Temp: 69.73 HeatIndex: 27 WindChill: 30
14:26 Temp: 77.65 HeatIndex: 17 WindChill: 16
15:10 Temp: 68.19 HeatIndex: 22 WindChill: 35

Variables Used in the Expression
Anonymous functions commonly include two types of variables:

• Variables specified in the argument list. These often vary with each function
call.

• Variables specified in the body of the expression. MATLAB captures these
variables and holds them constant throughout the lifetime of the function
handle.

The latter variables must have a value assigned to them at the time you
construct an anonymous function that uses them. Upon construction,
MATLAB captures the current value for each variable specified in the body of
that function. The function will continue to associate this value with the
variable even if the value should change in the workspace or go out of scope.

Anonymous Functions

5-9

The fact that MATLAB captures the values of these variables when the handle
to the anonymous function is constructed enables you to execute an anonymous
function from anywhere in the MATLAB environment, even outside the scope
in which its variables were originally defined. But it also means that to supply
new values for any variables specified within the expression, you must
reconstruct the function handle.

Changing Variables Used in an Anonymous Function
The second statement shown below constructs a function handle for an
anonymous function called parabola that uses variables a, b, and c in the
expression. Passing the function handle to the MATLAB fplot function plots
it out using the initial values for these variables:

a = 1.3; b = .2; c = 30;
parabola = @(x) a*x.^2 + b*x + c;
fplot(parabola, [-25 25])

If you change the three variables in the workspace and replot the figure, the
parabola remains unchanged because the parabola function is still using the
initial values of a, b, and c:

a = -3.9; b = 52; c = 0;

5 Types of Functions

5-10

fplot(parabola, [-25 25])

To get the function to use the new values, you need to reconstruct the function
handle, causing MATLAB to capture the updated variables. Replot using the
new construct, and this time the parabola takes on the new values:

a = -3.9; b = 52; c = 0;
parabola = @(x) a*x.^2 + b*x + c;
fplot(parabola, [-25 25])

For the purposes of this example, there is no need to store the handle to the
anonymous function in a variable (parabola, in this case). You can just
construct and pass the handle right within the call to fplot. In this way, you
update the values of a, b, and c on each call:

fplot(@(x) a*x.^2 + b*x + c, [-25 25])

Anonymous Functions

5-11

Examples of Anonymous Functions
This section shows a few examples of how you can use anonymous functions.
These examples are intended to show you how to program with this type of
function. For more mathematically oriented examples, see the MATLAB
Mathematics documentation.

The examples in this section include

• “Example 1 — Passing a Function to quad” on page 5-11

• “Example 2 — Multiple Anonymous Functions” on page 5-12

Example 1 — Passing a Function to quad
The equation shown here has one variable t that can vary each time you call
the function, and two additional variables, g and omega. Leaving these two
variables flexible allows you to avoid having to hardcode values for them in the
function definition:

x = g * cos(omega * t)

One way to program this equation is to write an M-file function, and then
create a function handle for it so that you can pass the function to other
functions, such as the MATLAB quad function as shown here. However, this
requires creating and maintaining a new M-file for a purpose that is likely to
be temporary, using a more complex calling syntax when calling quad, and
passing the g and omega parameters on every call. Here is the function M-file:

function f = vOut(t, g, omega)
f = g * cos(omega * t);

This code has to specify g and omega on each call:

g = 2.5; omega = 10;

quad(@vOut, 0, 7, [], [], g, omega)
ans =
 0.1935

quad(@vOut, -5, 5, [], [], g, omega)
ans =
 -0.1312

5 Types of Functions

5-12

You can simplify this procedure by setting the values for g and omega just once
at the start, constructing a function handle to an anonymous function that only
lasts the duration of your MATLAB session, and using a simpler syntax when
calling quad:

g = 2.5; omega = 10;

quad(@(t) (g * cos(omega * t)), 0, 7)
ans =
 0.1935

quad(@(t) (g * cos(omega * t)), -5, 5)
ans =
 -0.1312

To preserve an anonymous function from one MATLAB session to the next,
save the function handle to a MAT-file

save anon.mat f

and then load it into the MATLAB workspace in a later session:

load anon.mat f

Example 2 — Multiple Anonymous Functions
This example solves the following equation by combining two anonymous
functions:

The equivalent anonymous function for this expression is

g = @(c) (quad(@(x) (x.^2 + c*x + 1), 0, 1));

This was derived as follows. Take the parenthesized part of the equation (the
integrand) and write it as an anonymous function. You don’t need to assign the
output to a variable as it will only be passed as input to the quad function:

@(x) (x.^2 + c*x + 1)

g c() x2 cx 1+ +() xd

0

1

∫=

Anonymous Functions

5-13

Next, evaluate this function from zero to one by passing the function handle,
shown here as the entire anonymous function, to quad:

quad(@(x) (x.^2 + c*x + 1), 0, 1)

Supply the value for c by constructing an anonymous function for the entire
equation and you are done:

g = @(c) (quad(@(x) (x.^2 + c*x + 1), 0, 1));

g(2)
ans =
 2.3333

5 Types of Functions

5-14

Primary M-File Functions
The first function in any M-file is called the primary function. Following the
primary function can be any number of subfunctions, which can serve as
subroutines to the primary function.

Under most circumstances, the primary function is the only function in an
M-file that you can call from the MATLAB command line or from another
M-file function. You invoke this function using the name of the M-file in which
it is defined.

For example, the average function shown here resides in the file average.m:

function y = average(x)
% AVERAGE Mean of vector elements.

y = sum(x)/length(x); % Actual computation

You can invoke this function from the MATLAB command line with this
command to find the average of three numbers:

average([12 60 42])

Note that it is customary to give the primary function the same name as the
M-file in which it resides. If the function name differs from the filename, then
you must use the filename to invoke the function.

Nested Functions

5-15

Nested Functions
You can define one or more functions within another function in MATLAB.
These inner functions are said to be nested within the function that contains
them. You can also nest functions within other nested functions.

This section covers the following topics on using nested functions in MATLAB:

• “Writing Nested Functions” on page 5-15

• “Calling Nested Functions” on page 5-17

• “Variable Scope in Nested Functions” on page 5-18

• “Using Function Handles with Nested Functions” on page 5-20

• “Examples of Nested Functions” on page 5-25

Writing Nested Functions
To write a nested function, simply define one function within the body of
another function in an M-file. Like any M-file function, a nested function
contains any or all of the components described in “Basic Parts of an M-File” on
page 4-8. In addition, you must always terminate a nested function with an end
statement:

function x = A(p1, p2)
...
 function y = B(p3)
 ...
 end
...
end

Note M-file functions don’t normally require a terminating end statement.
This rule does not hold, however, when you nest functions. If an M-file
contains one or more nested functions, you must terminate all functions
(including subfunctions) in the M-file with end, whether or not they contain
nested functions.

5 Types of Functions

5-16

Example — More Than One Nested Function
This example shows function A and two additional functions nested inside A at
the same level:

function x = A(p1, p2)
...
 function y = B(p3)
 ...
 end

 function z = C(p4)
 ...
 end
...
end

Example — Multiply Nested Functions
This example shows multiply nested functions, C nested inside B, and B in A:

function x = A(p1, p2)
...
 function y = B(p3)
 ...
 function z = C(p4)
 ...
 end
 ...
 end
...
end

Nested Functions

5-17

Calling Nested Functions
You can call a nested function

• From the level immediately above it. (In the following code, function A can
call B or D, but not C or E.)

• From a function nested at the same level within the same parent function.
(Function B can call D, and D can call B.)

• From a function at any lower level. (Function C can call B or D, but not E.)

function A(x, y) % Primary function
B(x, y);
D(y);

 function B(x, y) % Nested in A
 C(x);
 D(y);

 function C(x) % Nested in B
 D(x);
 end
 end

 function D(x) % Nested in A
 E(x);

 function E % Nested in E
 ...
 end
 end
end

You can also call a subfunction from any nested function in the same M-file.

Note If you construct a function handle for a nested function, you can call the
nested function from any MATLAB function that has access to the handle. See
“Using Function Handles with Nested Functions” on page 5-20.

5 Types of Functions

5-18

Variable Scope in Nested Functions
The scope of a variable is the range of functions that have direct access to the
variable to set, modify, or acquire its value. When you define a local (i.e.,
nonglobal) variable within a function, its scope is normally restricted to that
function alone. For example, subfunctions do not share variables with the
primary function or with other subfunctions. This is because each function and
subfunction stores its variables in its own separate workspace.

Like other functions, a nested function has its own workspace. But it also has
access to the workspaces of all functions in which it is nested. So, for example,
a variable that has a value assigned to it by the primary function can be read
or overwritten by a function nested at any level within the primary. Similarly,
a variable that is assigned in a nested function can be read or overwritten by
any of the functions containing that function.

In the following two examples, variable x is stored in the workspace of the outer
varScope function and can be read or written to by all functions nested within
it.

As a rule, a variable used or defined within a nested function resides in the
workspace of the outermost function that both contains the nested function and
accesses that variable. The scope of this variable is then the function to which
this workspace belongs, and all functions nested to any level within that
function.

function varScope1
x = 5;
nestfun1

function nestfun1
nestfun2

function nestfun2
x = x + 1

end
end

end

function varScope2
nestfun1

function nestfun1
nestfun2

function nestfun2
x = 5;

end
end

x = x + 1
end

Nested Functions

5-19

In the next example, the outer function, varScope3, does not access variable x.
Following the rule just stated, x is unknown to the outer function and thus is
not shared between the two nested functions. In fact, there are two separate x
variables in this example: one in the function workspace of nestfun1 and one
in the function workspace of nestfun2. When nestfun2 attempts to update x,
it fails because x does not yet exist in this workspace:

function varScope3
nestfun1
nestfun2

 function nestfun1
 x = 5;
 end

 function nestfun2
 x = x + 1
 end
end

The Scope of Output Variables
Variables containing values returned by a nested function are not in the scope
of outer functions. In the two examples shown here, the one on the left fails in
the second to last line because, although the value of y is returned by the nested
function, the variable y is local to the nested function, and unknown to the
outer function. The example on the right assigns the return value to a variable,
z, and then displays the value of z correctly.

Incorrect Correct

function varScope4
x = 5;
nestfun;

function y = nestfun
y = x + 1;

end

y
end

function varScope5
x = 5;
z = nestfun;

function y = nestfun
y = x + 1;

end

z
end

5 Types of Functions

5-20

Using Function Handles with Nested Functions
Every function has a certain scope, that is, a certain range of other functions to
which it is visible. A function’s scope determines which other functions can call
it. You can call a function that is out of scope by providing an alternative means
of access to it in the form of a function handle. (The function handle, however,
must be within the scope of its related function when you construct the handle.)
Any function that has access to a function handle can call the function with
which the handle is associated.

Note Although you can call an out of scope function by means of a function
handle, the handle itself must be within the scope of its related function at the
time it is constructed.

The section on “Calling Nested Functions” on page 5-17 defines the scope of a
nested function. As with other types of functions, you can make a nested
function visible beyond its normal scope with a function handle. The following
function getCubeHandle constructs a handle for nested function findCube and
returns its handle, h, to the caller. The @ sign placed before a function name
(e.g., @findCube) is the MATLAB operator that constructs a handle for that
function:

function h = getCubeHandle
h = @findCube; % Function handle constructor

 function cube = findCube(X) % Nested function
 cube = X .^ 3;
 end
end

Call getCubeHandle to obtain the function handle to the nested function
findCube. Assign the function handle value returned by getCubeHandle to an
output variable, cubeIt in this case:

cubeIt = getCubeHandle;

Nested Functions

5-21

You can now use this variable as a means of calling findCube from outside of
its M-file:

cubeIt(8)
ans =
 512

Note When calling a function by means of its handle, use the same syntax as
if you were calling a function directly. But instead of calling the function by its
name (e.g., strcmp(S1, S2)), use the variable that holds the function handle
(e.g., fhandle(S1, S2)).

Function Handles and Nested Function Variables
One characteristic of nested functions that makes them different from other
MATLAB functions is that they can share nonglobal variables with certain
other functions within the same M-file. A nested function nFun can share
variables with any outer function that contains nFun, and with any function
nested within nFun. This characteristic has an impact on how certain variables
are stored when you construct a handle for a nested function.

Defining Variables When Calling Via Function Handle. The example below shows a
primary function getHandle that returns a function handle for the nested
function nestFun. The nestFun function uses three different types of variables.
The VLoc variable is local to the nested function, VInp is passed in when the
nested function is called, and VExt is defined by the outer function:

function h = getHandle(X)
h = @nestFun;
VExt = someFun(X);

 function nestFun(VInp)
 VLoc = 173.5;
 doSomeTask(VInp, VLoc, VExt);
 end
end

5 Types of Functions

5-22

As with any function, when you call nestFun, you must ensure that you supply
the values for any variables it uses. This is a straightforward matter when
calling the nested function directly (that is, calling it from getHandle). VLoc
has a value assigned to it within nestFun, VInp has its value passed in, and
VExt acquires its value from the workspace it shares with getHandle.

However, when you call nestFun using a function handle, only the nested
function executes; the outer function, getHandle, does not. It might seem at
first that the variable VExt, otherwise given a value by getHandle, has no value
assigned to it in the case. What in fact happens though is that MATLAB stores
variables such as VExt inside the function handle itself when it is being
constructed. These variables are available for as long as the handle exists.

The VExt variable in this example is considered to be externally scoped with
respect to the nested function. Externally scoped variables that are used in
nested functions for which a function handle exists are stored within the
function handle. So, function handles not only contain information about
accessing a function. For nested functions, a function handle also stores the
values of any externally scoped variables required to execute the function.

Example Using Externally Scoped Variables
The sCountFun and nCountFun functions shown below return function handles
for subfunction subCount and nested function nestCount, respectively. These
two inner functions store a persistent value in memory (the value is retained
in memory between function calls), and then increment this value on every
subsequent call. subCount makes its count value persistent with an explicit
persistent declaration. In nestCount, the count variable is externally scoped
and thus is maintained in the function handle:

Nested Functions

5-23

When sCountFun executes, it passes the initial value for count to the subCount
subfunction. Keep in mind that the count variable in sCountFun is not the same
as the count variable in subCount; they are entirely independent of each other.
Whenever subCount is called via its function handle, the value for count comes
from its persistent place in memory.

In nestCount, the count variable again gets its value from the primary
function when called from within the M-file. However, in this case the count
variable in the primary and nested functions are one and the same. When
nestCount is called by means of its function handle, the value for count is
assigned from its storage within the function handle.

Running the Example. The subCount and nestCount functions increment a value
in memory by another value that you pass as an input argument. Both of these
functions give the same results.

Using a Subfunction Using a Nested Function

function h = sCountFun(X)
h = @subCount;
count = X

subCount(0, count);

function subCount(incr, ini)
persistent count;
initializing = nargin > 1;

if initializing
count = ini;

else
count = count + incr

end

function h = nCountFun(X)
h = @nestCount;
count = X

function nestCount(incr)
count = count + incr

end

end

5 Types of Functions

5-24

Get the function handle to nestCount, and initialize the count value to a
four-element vector:

h = nCountFun([100 200 300 400])
count =
 100 200 300 400

Increment the persistent vector by 25, and then by 42:

h(25)
count =
 125 225 325 425

h(42)
count =
 167 267 367 467

Now do the same using sCountFun and subCount, and verify that the results
are the same.

Note If you construct a new function handle to subCount or nestCount, the
former value for count is no longer retained in memory. It is replaced by the
new value.

Separate Instances of Externally Scoped Variables
The code shown below constructs two separate function handles to the same
nested function, nestCount, that was used in the last example. It assigns the
handles to fields counter1 and counter2 of structure s. These handles
reference different instances of the nestCount function. Each handle also
maintains its own separate value for the externally scoped count variable.

Call nCountFun twice to get two separate function handles to nestCount.
Initialize the two instances of count to two different vectors:

s.counter1 = nCountFun([100 200 300 400]);
count =
 100 200 300 400

Nested Functions

5-25

s.counter2 = nCountFun([-100 -200 -300 -400]);
count =
 -100 -200 -300 -400

Now call nestCount by means of each function handle to demonstrate that
MATLAB increments the two count variables individually.

Increment the first counter:

s.counter1(25)
count =
 125 225 325 425
s.counter1(25)
count =
 150 250 350 450

Now increment the second counter:

s.counter2(25)
count =
 -75 -175 -275 -375
s.counter2(25)
count =
 -50 -150 -250 -350

Go back to the first counter and you can see that it keeps its own value for
count:

s.counter1(25)
count =
 175 275 375 475

Examples of Nested Functions
This section shows a few examples of how you can use nested functions. These
examples are intended to show you how to program with this type of function.
For more mathematically oriented examples, see the MATLAB Mathematics
documentation.

5 Types of Functions

5-26

The examples in this section include

• “Example 1 — Creating a Function Handle for a Nested Function” on
page 5-26

• “Example 2 — Function-Generating Functions” on page 5-27

Example 1 — Creating a Function Handle for a Nested Function
The following example constructs a function handle for a nested function and
then passes the handle to the MATLAB fplot function to plot the parabola
shape. The makeParabola function shown here constructs and returns a
function handle fhandle for the nested parabola function. This handle gets
passed to fplot:

function fhandle = makeParabola(a, b, c)
% MAKEPARABOLA returns a function handle with parabola
% coefficients.

fhandle = @parabola; % @ is the function handle constructor

 function y = parabola(x)
 y = a*x.^2 + b*x + c;
 end
end

Assign the function handle returned from the call to a variable (h) and evaluate
the function at points 0 and 25:

h = makeParabola(1.3, .2, 30)
h =
 @makeParabola/parabola

h(0)
ans =
 30

h(25)
ans =
 847.5000

Nested Functions

5-27

Now pass the function handle h to the fplot function, evaluating the parabolic
equation from x = -25 to x = +25:

fplot(h, [-25 25])

Example 2 — Function-Generating Functions
The fact that a function handle separately maintains a unique instance of the
function from which it is constructed means that you can generate multiple
handles for a function, each operating independently from the others. The
function in this example makes IIR filtering functions by constructing function
handles from nested functions. Each of these handles maintains its own
internal state independent of the others.

The function makeFilter takes IIR filter coefficient vectors a and b and returns
a filtering function in the form of a function handle. Each time a new input
value xn is available, you can call the filtering function to get the new output
value yn. Each filtering function created by makeFilter keeps its own private
a and b vectors, in addition to its own private state vector, in the form of a
transposed direct form II delay line:

function [filtfcn, statefcn] = makeFilter(b, a)
% FILTFCN = MAKEFILTER(B, A) creates an IIR filtering
% function and returns it in the form of a function handle,
% FILTFCN. Each time you call FILTFCN with a new filter
% input value, it computes the corresponding new filter
% output value, updating its internal state vector at the
% same time.
%

5 Types of Functions

5-28

% [FILTFCN, STATEFCN] = MAKEFILTER(B, A) also returns a
% function (in the form of a function handle, STATEFCN)
% that can return the filter's internal state. The internal
% state vector is in the form of a transposed direct form
% II delay line.

% Initialize state vector. To keep this example a bit simpler,
% assume that a and b have the same length. Also assume that
% a(1) is 1.

v = zeros(size(a));

filtfcn = @iirFilter;
statefcn = @getState;

 function yn = iirFilter(xn)
 % Update the state vector
 v(1) = v(2) + b(1) * xn;
 v(2:end-1) = v(3:end) + b(2:end-1) * xn - a(2:end-1) * v(1);
 v(end) = b(end) * xn - a(end) * v(1);

 % Output is the first element of the state vector.
 yn = v(1);
 end

 function vOut = getState
 vOut = v;
 end
end

This sample session shows how makeFilter works. Make a filter that has a
decaying exponential impulse response and then call it a few times in
succession to see the output values change:

[filt1, state1] = makeFilter([1 0], [1 -.5]);

% First input to the filter is 1.
filt1(1)
ans =
 1

Nested Functions

5-29

% Second input to the filter is 0.
filt1(0)
ans =
 0.5000

filt1(0)
ans =
 0.2500

% Show the filter's internal state.
state1()
ans =
 0.2500 0.1250

% Hit the filter with another impulse.
filt1(1)
ans =
 1.1250

% How did the state change?
state1()
ans =
 1.1250 0.5625

% Make an averaging filter.
filt2 = makeFilter([1 1 1]/3, [1 0 0]);

% Put a step input into filt2.
filt2(1)
ans =
 0.3333

filt2(1)
ans =
 0.6667

filt2(1)
ans =
 1

5 Types of Functions

5-30

% The two filter functions can be used independently.
filt1(0)
ans =
 0.5625

As an extension of this example, suppose you were looking for a way to develop
simulations of different filtering structures and compare them. This might be
useful if you were interested in obtaining the range of values taken on by
elements of the state vector, and how those values compare with a different
filter structure. Here is one way you could capture the filter state at each step
and save it for later analysis:

Call makeFilter with inputs v1 and v2 to construct function handles to the
iirFilter and getState subfunctions:

[filtfcn, statefcn] = makeFilter(v1, v2);

Call the iirFilter and getState functions by means of their handles, passing
in random values:

x = rand(1, 20);
for k = 1:20
 y(k) = filtfcn(x(k));
 states{k} = statefcn(); % Save the state at each step.
end

Subfunctions

5-31

Subfunctions
M-files can contain code for more than one function. Additional functions
within the file are called subfunctions, and these are only visible to the primary
function or to other subfunctions in the same file.

Each subfunction begins with its own function definition line. The functions
immediately follow each other. The various subfunctions can occur in any
order, as long as the primary function appears first:

function [avg, med] = newstats(u) % Primary function
% NEWSTATS Find mean and median with internal functions.
n = length(u);
avg = mean(u, n);
med = median(u, n);

function a = mean(v, n) % Subfunction
% Calculate average.
a = sum(v)/n;

function m = median(v, n) % Subfunction
% Calculate median.
w = sort(v);
if rem(n, 2) == 1
 m = w((n+1) / 2);
else
 m = (w(n/2) + w(n/2+1)) / 2;
end

The subfunctions mean and median calculate the average and median of the
input list. The primary function newstats determines the length of the list and
calls the subfunctions, passing to them the list length n.

Subfunctions cannot access variables used by other subfunctions, even within
the same M-file, or variables used by the primary function of that M-file, unless
you declare them as global within the pertinent functions, or pass them as
arguments.

5 Types of Functions

5-32

Calling Subfunctions
When you call a function from within an M-file, MATLAB first checks the file
to see if the function is a subfunction. It then checks for a private function
(described in the following section) with that name, and then for a standard
M-file or built-in function on your search path. Because it checks for a
subfunction first, you can override existing M-files using subfunctions with the
same name.

Accessing Help for a Subfunction
You can write help for subfunctions using the same rules that apply to primary
functions. To display the help for a subfunction, precede the subfunction name
with the name of the M-file that contains the subfunction (minus file extension)
and a forward slash.

For example, to get help on subfunction mysubfun in file myfun.m, type

help myfun/mysubfun

Private Functions

5-33

Private Functions
Private functions are functions that reside in subdirectories with the special
name private. These functions are called private because they are visible only
to M-file functions and M-file scripts that meet these conditions:

• A function that calls a private function must be defined in an M-file that
resides in the directory immediately above that private subdirectory.

• A script that calls a private function must itself be called from an M-file
function that has access to the private function according to the above rule.

For example, assume the directory newmath is on the MATLAB search path. A
subdirectory of newmath called private can contain functions that only the
functions in newmath can call.

Because private functions are invisible outside the parent directory, they can
use the same names as functions in other directories. This is useful if you want
to create your own version of a particular function while retaining the original
in another directory. Because MATLAB looks for private functions before
standard M-file functions, it will find a private function named test.m before
a nonprivate M-file named test.m.

Primary functions and subfunctions can also be implemented as private
functions.

Private Directories
You can create your own private directories simply by creating subdirectories
called private using the standard procedures for creating directories or folders
on your computer. Do not place these private directories on your path.

Accessing Help for a Private Function
You can write help for private functions using the same rules that apply to
primary functions. To display the help for a private function, precede the
private function name with private/.

For example, to get help on private function myprivfun, type

help private/myprivfun

5 Types of Functions

5-34

Overloaded Functions
Overloaded functions are useful when you need to create a function that
responds to different types of inputs accordingly. For instance, you might want
one of your functions to accept both double-precision and integer input, but to
handle each type somewhat differently. You can make this difference invisible
to the user by creating two separate functions having the same name, and
designating one to handle double types and one to handle integers.

See “Classes and Objects: An Overview” on page 8-2 for more information on
overloading functions in MATLAB.

Class Directories
MATLAB overloaded functions reside in subdirectories having a name starting
with the symbol @ and followed by the name of a recognized MATLAB data
type. For example, functions in the \@double directory execute when invoked
with arguments of MATLAB type double. Those in an \@int32 directory
execute when invoked with arguments of MATLAB type int32.

6

Data Import and Export

Overview (p. 6-3) Describes the import and export facilities for various data
formats.

Using the Import Wizard (p. 6-7) Shows how to import many types of binary data using
this GUI-based interface.

Supported File Formats (p. 6-16) Lists every file format and file extension supported for
MATLAB import and export and the functions used with
each type.

Saving and Loading MAT-Files
(p. 6-18)

Introduces the MAT-file, a binary data file designed
specifically to save and load MATLAB data.

Importing Text Data (p. 6-28) Describes how to import ASCII text data into MATLAB
using the Import Wizard as well as functions.

Exporting Text Data (p. 6-36) Describes how to export ASCII text data.

Working with Graphics Files (p. 6-41) Shows you how to import and export images stored in
many different types of graphics files.

Working with Audio and Video Data
(p. 6-44)

Describes how to import and export audio and video data.

Working with Spreadsheets (p. 6-48) Explains how to interact with two popular types of
spreadsheets.

Working with Scientific Data Formats
(p. 6-54)

Shows you how to access data stored in scientific formats
such as HDF4, HDF5, CDF, FITS, and multiband.

Importing HDF4 and HDF-EOS Data
(p. 6-69)

Shows you how to access data stored in the HDF4 and
HDF-EOS scientific formats using the MATLAB low-level
command line interface.

6 Data Import and Export

6-2

Exporting MATLAB Data to an HDF4
File (p. 6-96)

Shows you how to export data from the MATLAB
workspace into a file in the HDF4 scientific format using
the MATLAB low-level command line interface.

Using Low-Level File I/O Functions
(p. 6-105)

Describes how to use the MATLAB low-level file I/O
functions, such as fopen, fread, and fwrite.

Exchanging Files over the Internet
(p. 6-118)

Describes how to use the MATLAB URL, zip, and e-mail
functions to exchange files over the Internet.

Overview

6-3

Overview
MATLAB provides many ways to load data from disk files or the clipboard into
the workspace, a process called importing data, and to save workspace
variables to a disk file, a process called exporting data. Your choice of which
import or export mechanism to use depends mainly on the format of the data
being transferred: text, binary, or a standard format such as HDF.

Note If MATLAB does not support a high-level function that works with a
data format, you can use the MATLAB low-level file I/O functions, if you know
how the binary data is formatted in the file. See “Using Low-Level File I/O
Functions” on page 6-105 for more information.

This overview covers the following topics:

• “Text Data” on page 6-3

• “Graphics Files” on page 6-4

• “Audio and Audio/Video Data” on page 6-4

• “Spreadsheets” on page 6-4

• “Scientific Formats” on page 6-4

• “The Internet” on page 6-5

• “Low-Level File I/O” on page 6-5

• “Large Data Sets” on page 6-5

• “Toolboxes for Importing Data” on page 6-6

For more information and examples on importing and exporting data, see
Technical Note 1602:

http://www.mathworks.com/support/tech-notes/1600/1602.html

Text Data
In text format, the data values are American Standard Code for Information
Interchange (ASCII) codes that represent alphabetic and numeric characters.
ASCII text data can be viewed in a text editor. For more information about
working with text data in MATLAB, see

6 Data Import and Export

6-4

• “Importing Text Data” on page 6-28

• “Exporting Text Data” on page 6-36

These sections also describe how to import and export to XML documents.

Graphics Files
MATLAB imports and exports images from many standard graphics file
formats, including the Tagged Image File Format (TIFF), Graphics
Interchange Format (GIF), Joint Photographic Experts Group (JPEG), and
Portable Network Graphics (PNG) formats.

Audio and Audio/Video Data
MATLAB provides functions to enable you to interact with the following types
of audio and audio/video files:

• NeXT/SUN SPARCstation sound

• Microsoft WAVE sound

• Audio/Video Interleaved (AVI)

• Windows-compatible sound devices

• Audio player and recorder objects

• Linear audio signals

Spreadsheets
You can use MATLAB to import and export data to the following types of
spreadsheets:

• Microsoft Excel spreadsheets

• Lotus 123 spreadsheets

Scientific Formats
Scientific data formats supported by MATLAB are

• Hierarchical Data Format (HDF)

• Common Data Format (CDF)

• Flexible Image Transport System (FITS)

Overview

6-5

• Band-Interleaved Data

The Internet
From your MATLAB session, you can

• Send e-mail

• Download from the Internet

• Compress (zip) and uncompress (unzip) files

• Connect to an FTP server to perform remote file operations

Low-Level File I/O
MATLAB also supports C-style, low-level I/O functions that you can use with
any data format. For more information, see “Using Low-Level File I/O
Functions” on page 6-105.

Large Data Sets
An efficient way to read files with large data sets is to read the file in segments
and process the data as you go. This method requires significantly less memory
than if you were to try reading in the entire file at once. Using the textscan
function, you can read a specified amount of data from a file, and maintain a
pointer to the location in the file where your last read operation ended and your
next read is to begin.

This example opens a large data file and reads the file a segment at a time in
a for loop. The code calls textscan to read a particular pattern of data (as
specified by format) 10,000 times for each segment. Following each read, the
subfunction process_data processes the data collected in cell array segarray:

format = '%s %n %s %8.2f %8.2f %8.2f %8.2f %u8';
file_id = fopen('largefile.dat', 'r');

for k = 1:segcount
 segarray = textscan(file_id, format, 10000);
 process_data(segarray);
end

fclose(file_id);

6 Data Import and Export

6-6

Toolboxes for Importing Data
In addition to MATLAB import functions, you can perform specialized import
features using toolboxes. For example, use the Database Toolbox for importing
data from relational databases. Refer to the documentation on the specific
toolbox to see what import features are offered.

Using the Import Wizard

6-7

Using the Import Wizard
The easiest way to import data into MATLAB is to use the Import Wizard. You
do not need to know the format of the data to use this tool. You simply specify
the file that contains the data and the Import Wizard processes the file
contents automatically.

This section discusses how to import these types of data using the wizard:

• “Using the Import Wizard with Text Data” on page 6-7

• “Using the Import Wizard with Binary Data” on page 6-13

You can also use the Import Wizard to import HDF data. See “Using the HDF
Import Tool” on page 6-69 for more information.

Using the Import Wizard with Text Data
To import text data using the Import Wizard, perform these steps:

1 Start the Import Wizard by selecting the Import Data option on the
MATLAB File menu. MATLAB displays a file selection dialog box. You can
also use the uiimport function to start the Import Wizard.

To use the Import Wizard to import data from the clipboard, select the Paste
Special option on the MATLAB Edit menu. Skip to step 3 to continue
importing from the clipboard.

2 Specify the file you want to import in the file selection dialog box and click
Open. The Import Wizard opens the file and attempts to process its
contents.

3 Specify the character used to separate the individual data items. This
character is called the delimiter or column separator. In many cases, the
Import Wizard determines the delimiter automatically. However, you might
need to specify the character used in your text file. For more information, see
“Specifying the Delimiter” on page 6-8. Once the Import Wizard has
correctly processed the data, click Next.

6 Data Import and Export

6-8

4 Select the variables that you want to import. By default, the Import Wizard
puts all the numeric data in one variable and all the text data in other
variables, but you can choose other options. For more information, see
“Selecting the Variables to Import” on page 6-10.

5 Click Finish to import the data into the workspace.

Specifying the Delimiter
When the Import Wizard opens a text file, or copies data from the clipboard, it
displays a portion of the raw data in the preview pane of the dialog box. You
can use this display to verify that the file contains the data you expected.

The Import Wizard also attempts to process the data, identifying the delimiter
used in the data. The Import Wizard displays the variables it has created based
on its interpretation of the delimiter, using tabbed panels to display multiple
variables.

For example, in the following figure, the Import Wizard has opened this sample
file, grades.txt:

John 85 90 95
Ann 90 92 98
Martin 100 95 97
Rob 77 86 93

Using the Import Wizard

6-9

In the figure, note how the Import Wizard has correctly identified the space
character as the delimiter used in the file and has created three tabs from the
data:

• data contains all the numeric data in the file.

• textdata contains all the text found in the file.

• rowheaders contains the names in the left-most column of data.

Handling Alphabetic Data. The Import Wizard recognizes data files that use row
or column headers and extracts these headers into separate variables. It can
also ignore any text header lines that might precede the data in a file.

Preview of the data in
the file.

Delimiter found in file.

Number of lines of
header text ignored.

6 Data Import and Export

6-10

Specifying Other Delimiters. If the Import Wizard cannot determine the delimiter
used in the data, it displays a preview of the raw data, as before, but the
variables it displays are not correct. If your data uses a character other than a
comma, space, tab, or semicolon as a delimiter, you must specify it by clicking
the Other button and entering the character in the text box. The Import
Wizard immediately reprocesses the data, displaying the new variables it
creates.

Selecting the Variables to Import
The Import Wizard displays a list of the variables it has created from your data.
To select a variable to import, click in the check box next to its name. By
default, all variables are selected.

The Import Wizard displays the contents of the variable that is highlighted in
the list in the right pane of the dialog box. To view the contents of one of the
other variables, click it. Choose the variables you want to import and click
Next.

List of variables
to be imported.

Import Wizard
displays content
of the variable
highlighted in the
list.

Using the Import Wizard

6-11

Changing the Variable Selection. By default, the Import Wizard puts all the
numeric data in the file into one variable. If the file contains text data, the
Import Wizard puts it in a separate variable. If the file contains row or column
headers, the Import Wizard puts them in separate variables, called
rowheaders or colheaders, respectively.

In some cases, it might be more convenient to create a vector from each row or
column of data and use the row header or column header text as the name of
each variable. To do this, click the appropriate button from the list of buttons
at the top of the dialog box.

For example, it eases calculation of the student averages if you create a
separate vector for each student that contains that student’s grades. To create
these variables, click the Create vectors from each row using row names
button. When you click this option, the Import Wizard reprocesses the file,
creating these new vectors.

6 Data Import and Export

6-12

.

When you are satisfied with the list of vectors to be imported, click Next to
bring the data into the MATLAB workspace. This button also dismisses the
Import Wizard. The MATLAB workspace now contains the vectors.

List contains
variables by row
header.

Select this option to
create vectors from
row header.

Using the Import Wizard

6-13

Using the Import Wizard with Binary Data
To import binary data using the Import Wizard, perform these steps:

1 Start the Import Wizard by selecting the Import Data option on the
MATLAB File menu. MATLAB displays a file selection dialog box. You can
also use the uiimport function to start the Import Wizard.

To use the Import Wizard to import data from the clipboard, select the Paste
Special option on the MATLAB Edit menu. You can also right-click in the
MATLAB Command Window and choose Paste Special from the context
menu. Skip to step 3 to continue importing from the clipboard.

2 Specify the file you want to import in the file selection dialog box and click
Open. The Import Wizard opens the file and attempts to process its
contents. See “Viewing the Variables” below for more information.

3 Select the variables that you want to import. (See “Selecting the Variables
to Import” on page 6-10) By default, the Import Wizard creates variables
depending on the type of data in the file.

4 Click Finish to import the data into the workspace.

Viewing the Variables
When the Import Wizard opens a binary data file, it attempts to process the
data in the file, creating variables from the data it finds in the file.

For example, if you use the Import Wizard to import this sample MAT-file,
my_data.mat,

C =
1 2 3 4 5
6 7 8 9 10

D =
a test string

6 Data Import and Export

6-14

it creates two variables, listed in the preview pane. To select a variable to
import, click in the check box next to its name. All variables are preselected by
default.

For other binary data types, such as images and sound files, the Import Wizard
displays information about the data in the left pane and provides a preview
button in the right pane of the dialog box. Click the preview button to view (or
listen to) the data.

Preview of the
data in each
variable.

Preview of the
variables in the
file.

Using the Import Wizard

6-15

For example, when used to import a movie in Audio/Video Interleaved (AVI)
format, the Import Wizard displays this dialog box.

Information
about the data.

Preview of the
variables in the
file.

6 Data Import and Export

6-16

Supported File Formats
The table below shows the file formats that you can read or write from
MATLAB along with the functions that support each format.

File Format File Content Extension Functions

MATLAB
formatted

Saved MATLAB
workspace

.mat load, save

Text Text any textscan

Text any textread

Delimited text any dlmread,
dlmwrite

Comma-separated
numbers

.csv csvread,
csvwrite

Extended
Markup
Language

XML-formatted text .xml xmlread,
xmlwrite

Audio NeXT/SUN sound .au auread,
auwrite

Microsoft WAVE sound .wav wavread,
wavwrite

Movie Audio/video .avi aviread

Scientific
data

Data in Common Data
Format

.cdf cdfread,
cdfwrite

Flexible Image
Transport System data

.fits fitsread

Data in Hierarchical
Data Format

.hdf hdfread

Supported File Formats

6-17

Spreadsheet Excel worksheet .xls xlsread,
xlswrite

Lotus 123 worksheet .wk1 wk1read,
wk1write

Graphics TIFF image .tiff imread,
imwrite

PNG image .png same

HDF image .hdf same

BMP image .bmp same

JPEG image .jpeg same

GIF image .gif same

PCX image .pcx same

XWD image .xwd same

Cursor image .cur same

Icon image .ico same

File Format File Content Extension Functions

6 Data Import and Export

6-18

Saving and Loading MAT-Files
This section explains how to save the variables in your MATLAB session to a
binary file called a MAT-file, and how to load them back into your MATLAB
workspace. It covers the following:

• “Exporting Data to MAT-Files” on page 6-18

• “Importing Data from MAT-Files” on page 6-24

MAT-files are double-precision, binary, MATLAB format files. They can be
created on one machine and later read by MATLAB on another machine with
a different floating-point format, retaining as much accuracy and range as the
different formats allow. They can also be manipulated by other programs
external to MATLAB.

Exporting Data to MAT-Files
This section covers

• “Using the save Function” on page 6-18

• “Saving Structures” on page 6-19

• “Appending to an Existing File” on page 6-20

• “Data Compression” on page 6-20

• “Unicode Character Encoding” on page 6-22

• “Optional Output Formats” on page 6-22

• “Storage Requirements” on page 6-23

• “Saving from External Programs” on page 6-24

Using the save Function
To export workspace variables to a binary or ASCII file, use the save function.
You can save all variables from the workspace in a single operation (if you omit
the filename, MATLAB uses the name matlab.mat):

save filename

or save just those variables that you specify:

save filename var1 var2 ... varN

Saving and Loading MAT-Files

6-19

Use the wildcard character (*) in the variable name to save those variables that
match a specific pattern. For example, the following command saves all
variables that start with str.

save strinfo str*

Use whos -file to examine what has been written to the MAT-file:

whos -file strinfo
 Name Size Bytes Class

 str2 1x15 30 char array
 strarray 2x5 678 cell array
 strlen 1x1 8 double array

Saving Structures
When saving a MATLAB structure, you have the option of saving the entire
structure, saving each structure field as an individual variable in the MAT-file,
or saving specific fields as individual variables.

For structure S,

S.a = 12.7; S.b = {'abc', [4 5; 6 7]}; S.c = 'Hello!';

Save the entire structure to newstruct.mat with the usual syntax:

save newstruct.mat S;

whos -file newstruct
 Name Size Bytes Class

 S 1x1 550 struct array

Save the fields individually with the -struct option:

save newstruct.mat -struct S;

whos -file newstruct
 Name Size Bytes Class

 a 1x1 8 double array
 b 1x2 158 cell array
 c 1x6 12 char array

6 Data Import and Export

6-20

Or save only selected fields using -struct and specifying each field name:

save newstruct.mat -struct S a c;

whos -file newstruct
 Name Size Bytes Class

 a 1x1 8 double array
 c 1x6 12 char array

Appending to an Existing File
You can add new variables to those already stored in an existing MAT-file by
using save -append. When you append to a MAT-file, MATLAB first looks in
the designated file for each variable name specified in the argument list, or for
all variables if no specific variable names are specified. Based on that
information, MATLAB does both of the following:

• For each variable that already exists in the MAT-file, MATLAB overwrites
its saved value with the new value taken from the workspace.

• For each variable not found in the MAT-file, MATLAB adds that variable to
the file and stores its value from the workspace.

Note Saving with the -append option does not append additional elements to
any arrays that are already saved in the MAT-file.

Data Compression
MATLAB compresses the data that you save to a MAT-file. Data compression
can save you a significant amount of storage space when you are working with
large files or working over a network.

Data compression is optional, however, and you can disable it either for an
individual save operation, or for all of your MATLAB sessions. Use the -v6
option with the save function to turn off compression on a per-command basis:

save filename -v6

Saving and Loading MAT-Files

6-21

To disable data compression for all of your MATLAB sessions, open the
Preferences dialog, select General and then MAT-Files, and click Save
uncompressed. See “General Preferences for MATLAB” in the Desktop Tools
and Development Environment documentation for more information.

Note You cannot read a compressed MAT-file with MATLAB Version 6 or 6.5.
To write a MAT-file that you will be able to read with one of these versions,
save to the file with data compression disabled.

Information returned by the command whos -file is independent of whether
the variables in that file are compressed or not. The byte counts returned by
this command represent the number of bytes data occupies in the MATLAB
workspace, and not in the file the data was saved to.

Evaluating When to Compress. In general, data compression and decompression
does slow down save and load operations to some extent. In most cases,
however, the resulting reduction in file size is worth any additional time spent
on performing the compression or decompression. Both of these factors, time
and file size, are highly dependent on the type of data being saved and the size
of the data set.

Concerning the type of data being saved, random data does not compress well
and thus takes more time to store in a compressed format. Data that has more
constant value takes less time to compress the same number of bytes.

Concerning data set size, the impact of data compression is very small for users
who do not have large data sets. Users with large data sets need to be aware of
the trade-off between compression and speed. Such users should override the
default behavior, if necessary.

Note Compression and decompression during save and load is done
transparently without the use of temporary files on disk. This is of
significance to large dataset users in particular.

6 Data Import and Export

6-22

Unicode Character Encoding
MATLAB saves character data to a MAT-file using Unicode character data
encoding. As with data compression, Unicode encoding is optional. If you
disable it, MATLAB writes the MAT-file using the default character set for
your system. To disable Unicode character encoding on a per-command basis,
use the -v6 option with the save function:

save filename -v6

To disable Unicode encoding for all of your MATLAB sessions, open the
Preferences dialog, select General and then MAT-Files, and click Local
Character Set. See “General Preferences for MATLAB” in the Desktop Tools
and Development Environment documentation for more information.

Note You cannot read a Unicode encoded MAT-file with MATLAB Version 6
or 6.5. To write a MAT-file that you will be able to read with one of these
versions, save to the file with Unicode character encoding disabled.

For more information on how MATLAB saves specific ASCII data formats, and
on preventing loss or corruption of character data, see “Writing Character
Data” in the MATLAB External Interfaces documentation.

Optional Output Formats
You can choose from any of the following formats for your output file. If you do
not specify a format, MATLAB uses the binary MAT-file format.

Output File Format Command

Binary MAT-file (default) save filename

8-digit ASCII save filename -ascii

8-digit ASCII, tab delimited save filename -ascii -tabs

16-digit ASCII save filename -ascii -double

16-digit ASCII, tab delimited save filename -ascii -double -tabs

MATLAB Version 4 compatible save filename -v4

Saving and Loading MAT-Files

6-23

Saving in ASCII Format. When saving in any of the ASCII formats, consider the
following:

• Each variable to be saved must be either a two-dimensional double array or
a two-dimensional character array. Saving a complex double array causes
the imaginary part of the data to be lost, as MATLAB cannot load
nonnumeric data ('i').

• To read the file with the MATLAB load function, make sure all the variables
have the same number of columns. If you are using a program other than
MATLAB to read the saved data, this restriction can be relaxed.

• Each MATLAB character in a character array is converted to a floating-point
number equal to its internal ASCII code and written out as a floating-point
number string. There is no information in the saved file that indicates
whether the value was originally a number or a character.

• The values of all variables saved merge into a single variable that takes the
name of the ASCII file (minus any extension). Therefore, it is advisable to
save only one variable at a time.

Saving in Version 4 Format. With the -v4 option, you can save only those data
constructs that are compatible with MATLAB Version 4. Therefore, you cannot
save structures, cell arrays, multidimensional arrays, or objects. Variable
names cannot exceed 19 characters in length. In addition, you must use
filenames that are supported by MATLAB Version 4.

Storage Requirements
The binary formats used by save depend on the size and type of each array.
Arrays with any noninteger entries and arrays with 10,000 or fewer elements
are saved in floating-point formats requiring 8 bytes per real element. Arrays
with all integer entries and more than 10,000 elements are saved in the
formats shown, requiring fewer bytes per element.

Element Range Bytes per Element

0 to 255 1

0 to 65535 2

-32767 to 32767 2

6 Data Import and Export

6-24

Saving from External Programs
The MATLAB External Interfaces documentation provides details on reading
and writing MAT-files from external C or Fortran programs. It is important to
use recommended access methods, rather than rely upon the specific MAT-file
format, which is likely to change in the future.

Importing Data from MAT-Files
This section covers

• “Using the load Function” on page 6-24

• “Previewing MAT-File Contents” on page 6-25

• “Loading into a Structure” on page 6-25

• “Loading Binary Data” on page 6-26

• “Loading ASCII Data” on page 6-26

Using the load Function
To import variables from a binary or ASCII file on your disk to your workspace,
use the load function. You can load all variables from the workspace in a single
operation (if you omit the filename, MATLAB loads from file matlab.mat):

load filename

or load just those variables that you specify:

load filename var1 var2 ... varN

Use the wildcard character (*) in the variable name to load those variables that
match a specific pattern. (This works for MAT-files only.) For example, the
following command loads all variables that start with str from file
strinfo.mat:

load strinfo str*

-231 to 231-1 4

Other 8

Saving and Loading MAT-Files

6-25

Caution When you import data into the MATLAB workspace, it overwrites
any existing variable in the workspace with the same name.

Previewing MAT-File Contents
To see what variables are stored in a MAT-file before actually loading the file
into your workspace, use whos -file filename. This command returns the
name, dimensions, size, and data type of all variables in the specified MAT-file.

You can use whos -file on binary MAT-files only:

whos -file mydata.mat
 Name Size Bytes Class

 javArray 10x1 java.lang.Double[][]
 spArray 5x5 84 double array (sparse)
 strArray 2x5 678 cell array
 x 3x2x2 96 double array
 y 4x5 1230 cell array

Loading into a Structure
To load MAT-file data into a MATLAB structure, specify an output variable in
your load command. This example reads the data in mydata.mat into the fields
of structure S:

S = load('mydata.mat')
S =
 x: [3x2x2 double]
 y: {4x5 cell}
 spArray: [5x5 double]
 strArray: {2x5 cell}
 javArray: [10x1 java.lang.Double[][]]

whos S
 Name Size Bytes Class

 S 1x1 2840 struct array

6 Data Import and Export

6-26

Loading Binary Data
MAT-files are double-precision binary MATLAB format files created by the
save function and readable by the load function. They can be created on one
machine and later read by MATLAB on another machine with a different
floating-point format, retaining as much accuracy and range as the different
formats allow. They can also be manipulated by other programs, external to
MATLAB.

MAT-files can contain data in an uncompressed or a compressed form, or both.
MATLAB knows which variables in the file have been compressed by looking
at a tag that it attaches to each variable during the save operation. When
loading data from a MAT-file into the workspace, MATLAB automatically
handles the decompression of the appropriate data.

The External Interface libraries contain C- and Fortran-callable routines to
read and write MAT-files from external programs.

Loading ASCII Data
ASCII files must be organized as a rectangular table of numbers, with each
number in a row separated by a blank or tab character, and with an equal
number of elements in each row. MATLAB generates an error if the number of
values differs between any two rows. ASCII files can contain MATLAB
comments (lines that begin with %).

MATLAB returns all the data in the file as a single two-dimensional array of
type double. The number of rows in the array is equal to the number of lines
in the file, and the number of columns is equal to the number of values on a
line.

In the workspace, MATLAB assigns the array to a variable named after the file
being loaded (minus any file extension). For example, the command

load mydata.dat

reads all of the data from mydata.dat into the MATLAB workspace as a single
array, and assigns it to a variable called mydata. In naming the variable, load
precedes any leading underscores or digits in filename with an X and replaces
any other nonalphabetic characters with underscores.

Saving and Loading MAT-Files

6-27

For example, the command

load 10-May-data.dat

assigns the data in file 10-May-data.dat to a new workspace variable called
X10_May_data.

6 Data Import and Export

6-28

Importing Text Data

The section describes various ways to import text data into MATLAB. It covers
these topics:

• “The MATLAB Import Wizard” on page 6-28

• “Using Import Functions with Text Data” on page 6-28

• “Importing Numeric Text Data” on page 6-31

• “Importing Delimited ASCII Data Files” on page 6-32

• “Importing Numeric Data with Text Headers” on page 6-32

• “Importing Mixed Alphabetic and Numeric Data” on page 6-33

• “Importing from XML Documents” on page 6-35

Caution When you import data into the MATLAB workspace, you overwrite
any existing variable in the workspace with the same name.

The MATLAB Import Wizard
The easiest way to import data into MATLAB is to use the Import Wizard. You
do not need to know the format of the data to use this tool. You simply specify
the file that contains the data and the Import Wizard processes the file
contents automatically.

For more information, see “Using the Import Wizard with Text Data” on
page 6-7.

Using Import Functions with Text Data
To import text data from the command line or in an M-file, you must use one of
the MATLAB import functions. Your choice of function depends on how the
data in the text file is formatted.

The text data must be formatted in a uniform pattern of rows and columns,
using a text character, called a delimiter or column separator, to separate each
data item. The delimiter can be a space, comma, semicolon, tab, or any other
character. The individual data items can be alphabetic or numeric characters
or a mix of both.

Importing Text Data

6-29

The text file can also contain one or more lines of text, called header lines, or
can use text headers to label each column or row. The following example
illustrates a tab-delimited text file with header text and row and column
headers.

To find out how your data is formatted, view it in a text editor. After you
determine the format, find the sample in the table below that most closely
resembles the format of your data. Then read the topic referred to in the table
for information on how to import that format.

 Column headers
Class Grades for Spring Term

Grade1 Grade2 Grade3
John 85 90 95
Ann 90 92 98
Martin 100 95 97
Rob 77 86 93

 Row headers

Tab-delimited data

Text header line

Table 6-1: ASCII Data File Formats

Data Format Sample File
Extension

Description

1 2 3 4 5
6 7 8 9 10

.txt

.dat
or other

See “Importing Numeric Text Data” on page 6-31 or
“Using the Import Wizard with Text Data” on
page 6-7 for information.

1; 2; 3; 4; 5
6; 7; 8; 9; 10
or
1, 2, 3, 4, 5
6, 7, 8, 9, 10

.txt

.dat

.csv
or other

See “Importing Delimited ASCII Data Files” on
page 6-32 or “Using the Import Wizard with Text
Data” on page 6-7 for information.

6 Data Import and Export

6-30

If you are familiar with MATLAB import functions but are not sure when to use
them, see the following table, which compares the features of each function.

Ann Type1 12.34 45 Yes
Joe Type2 45.67 67 No

.txt

.dat
or other

See “Importing Numeric Data with Text Headers” on
page 6-32 for information.

Grade1 Grade2 Grade3
91.5 89.2 77.3
88.0 67.8 91.0
67.3 78.1 92.5

.txt

.dat
or other

See “Importing Numeric Data with Text Headers” on
page 6-32 or “Using the Import Wizard with Text
Data” on page 6-7 for information.

Table 6-1: ASCII Data File Formats (Continued)

Data Format Sample File
Extension

Description

Table 6-2: ASCII Data Import Function Features

Function Data Type Delimiters Number of
Return Values

Notes

csvread Numeric data Commas
only

One Primarily used with
spreadsheet data. See
“Working with
Spreadsheets” on
page 6-48.

dlmread Numeric data Any
character

One Flexible and easy to use.

fscanf Alphabetic and
numeric;
however, both
types returned
in a single
return variable

Any
character

One Part of low-level file I/O
routines. Requires use of
fopen to obtain file
identifier and fclose
after read.

load Numeric data Spaces only One Easy to use. Use the
functional form of load
to specify the name of
the output variable.

Importing Text Data

6-31

Importing Numeric Text Data
If your data file contains only numeric data, you can use many of the MATLAB
import functions (listed in Table 6-2), depending on how the data is delimited.
If the data is rectangular, that is, each row has the same number of elements,
the simplest command to use is the load command. (The load function can also
be used to import MAT-files, the MATLAB binary format for saving the
workspace.)

For example, the file named my_data.txt contains two rows of numbers
delimited by space characters:

1 2 3 4 5
6 7 8 9 10

When you use load as a command, it imports the data and creates a variable
in the workspace with the same name as the filename, minus the file extension:

load my_data.txt;
whos

Name Size Bytes Class

my_data 2x5 80 double array

my_data

my_data =
1 2 3 4 5
6 7 8 9 10

textread Alphabetic and
numeric

Any
character

Multiple values
in cell arrays

Flexible, powerful, and
easy to use. Use format
string to specify
conversions.

textscan Alphabetic and
numeric

Any
character

Multiple values
returned to one
cell array

More flexible than
textread. Also more
format options.

Table 6-2: ASCII Data Import Function Features (Continued)

Function Data Type Delimiters Number of
Return Values

Notes

6 Data Import and Export

6-32

If you want to name the workspace variable something other than the file
name, use the functional form of load. In the following example, the data from
my_data.txt is loaded into the workspace variable A:

A = load('my_data.txt');

Importing Delimited ASCII Data Files
If your data file uses a character other than a space as a delimiter, you have a
choice of several import functions you can use. (See Table 6-2 for a complete
list.) The simplest to use is the dlmread function.

For example, consider a file named ph.dat whose contents are separated by
semicolons:

7.2;8.5;6.2;6.6
5.4;9.2;8.1;7.2

To read the entire contents of this file into an array named A, enter

A = dlmread('ph.dat', ';');

You specify the delimiter used in the data file as the second argument to
dlmread. Note that, even though the last items in each row are not followed by
a delimiter, dlmread can still process the file correctly. dlmread ignores space
characters between data elements. So, the preceding dlmread command works
even if the contents of ph.dat are

7.2; 8.5; 6.2;6.6
5.4; 9.2 ;8.1;7.2

Importing Numeric Data with Text Headers
To import an ASCII data file that contains text headers, use the textscan
function, specifying the headerlines parameter. textscan accepts a set of
predefined parameters that control various aspects of the conversion. (For a
complete list of these parameters, see the textscan reference page.) Using the
headerlines parameter, you can specify the number of lines at the head of the
file that textscan should ignore.

Importing Text Data

6-33

For example, the file grades.dat contains formatted numeric data with a
one-line text header:

Grade1 Grade2 Grade3
 78.8 55.9 45.9
 99.5 66.8 78.0
 89.5 77.0 56.7

To import this data, first open the file and then use this textscan command to
read the contents:

fid = fopen('grades.dat', 'r');
grades = textscan(fid, '%f %f %f', 3, 'headerlines', 1);

grades{:}
ans =
 78.8000
 99.5000
 89.5000

ans =
 55.9000
 66.8000
 77.0000

ans =
 45.9000
 78.0000
 56.7000

fclose(fid);

Importing Mixed Alphabetic and Numeric Data
If your data file contains a mix of alphabetic and numeric ASCII data, use the
textscan or textread function to import the data. textscan returns its output
in a single cell array, while textread returns its output in separate variables
and you can specify the data type of each variable. The textscan function offers
better performance than textread, making it a better choice when reading
large files.

6 Data Import and Export

6-34

This example uses textread to import the file mydata.dat that contains a mix
of alphabetic and numeric data:

Sally Type1 12.34 45 Yes
Larry Type2 34.56 54 Yes
Tommy Type1 67.89 23 No

Note To read an ASCII data file that contains numeric data with text column
headers, see “Importing Numeric Data with Text Headers” on page 6-32.

To read the entire contents of the file mydata.dat into the workspace, specify
the name of the data file and the format string as arguments to textread. In
the format string, you include conversion specifiers that define how you want
each data item to be interpreted. For example, specify %s for string data, %f for
floating-point data, and so on. (For a complete list of format specifiers, see the
textread reference page.)

For each conversion specifier in your format string, you must specify a separate
output variable. textread processes each data item in the file as specified in
the format string and puts the value in the output variable. The number of
output variables must match the number of conversion specifiers in the format
string.

In this example, textread reads the file mydata.dat, applying the format
string to each line in the file until the end of the file:

[names, types, x, y, answer] = ...
 textread('mydata.dat', '%s %s %f %d %s', 3)
names =

'Sally'
'Larry'
'Tommy'

types =
'Type1'
'Type2'
'Type1'

Importing Text Data

6-35

x =
12.3400

 34.5600
 67.8900

y =
45

 54
 23

answer =
'Yes'
'Yes'
'No'

If your data uses a character other than a space as a delimiter, you must use
the textread parameter 'delimiter' to specify the delimiter. For example, if
the file mydata.dat used a semicolon as a delimiter, you would use this
command:

[names, types, x, y, answer]= ...
 textread('mydata.dat', '%s %s %f %d %s', 'delimiter', ';')

See the textread reference page for more information about these optional
parameters.

Importing from XML Documents
With the xmlread function, you can read from a given URL or file, generating
a Document Object Model (DOM) node to represent the parsed document.

MATLAB also provides these other XML functions:

• xmlwrite — Serializes a Document Object Model node to a file

• xslt — Transforms an XML document using an XSLT engine

See the reference pages for these functions for more information.

6 Data Import and Export

6-36

Exporting Text Data

This section describes how to use MATLAB functions to export data in several
common ASCII formats. For example, you can use these functions to export a
MATLAB matrix as a text file where the rows and columns are represented as
space-separated, numeric values. The function you use depends on the amount
of data you want to export and its format. Topics covered include

• “Exporting Delimited ASCII Data Files” on page 6-37

• “Using the diary Function to Export Data” on page 6-39

• “Exporting to XML Documents” on page 6-40

If you are not sure which section describes your data, find the sample in the
table below that most nearly matches the data format you want to create. Then
read the section referred to in the table.

If you are familiar with MATLAB export functions but are not sure when to use
them, see Table 6-4, which compares the features of each function.

Note If C or Fortran routines for writing data files in the form needed by
other applications exist, create a MEX-file to write the data. See the MATLAB
External Interfaces documentation for more information.

Table 6-3: ASCII Data File Formats

Data Format Sample MATLAB Export Function

1 2 3 4 5
6 7 8 9 10

See “Exporting Delimited ASCII Data Files” on page 6-37 and
“Using the diary Function to Export Data” on page 6-39 for
information about these options.

1; 2; 3; 4; 5;
6; 7; 8; 9; 10;

See “Exporting Delimited ASCII Data Files” on page 6-37 for
information. The example shows a semicolon-delimited file, but you
can specify another character as the delimiter.

Exporting Text Data

6-37

Exporting Delimited ASCII Data Files
To export an array as a delimited ASCII data file, you can use either the save
function, specifying the -ASCII qualifier, or the dlmwrite function. The save
function is easy to use; however, the dlmwrite function provides more
flexibility, allowing you to specify any character as a delimiter and to export
subsets of an array by specifying a range of values.

Using the save Function
To export the array A,

A = [1 2 3 4 ; 5 6 7 8];

use the save function, as follows:

save my_data.out A -ASCII

Table 6-4: ASCII Data Export Function Features

Function Use With Delimiters Notes

csvwrite Numeric data Commas
only

Primarily used with spreadsheet data.
See “Working with Spreadsheets” on
page 6-48.

diary Numeric data or
cell array

Spaces only Can be used for small arrays. Requires
editing of data file to remove extraneous
text.

dlmwrite Numeric data Any
character

Easy to use, flexible.

fprintf Alphabetic and
numeric data

Any
character

Part of low-level file I/O routines. This
function is the most flexible but also the
most difficult to use. You must use fopen
to obtain a file identifier before writing
the data and fclose to close the file after
writing the data.

save Numeric data Tabs or
spaces

Easy to use; output values are high
precision.

6 Data Import and Export

6-38

If you view the created file in a text editor, it looks like this:

1.0000000e+000 2.0000000e+000 3.0000000e+000 4.0000000e+000
5.0000000e+000 6.0000000e+000 7.0000000e+000 8.0000000e+000

By default, save uses spaces as delimiters but you can use tabs instead of
spaces by specifying the -tabs option.

When you use save to write a character array to an ASCII file, it writes the
ASCII equivalent of the characters to the file. If you write the character string
'hello' to a file, save writes the values

104 101 108 108 111

Using the dlmwrite Function
To export an array in ASCII format and specify the delimiter used in the file,
use the dlmwrite function.

For example, to export the array A,

A = [1 2 3 4 ; 5 6 7 8];

as an ASCII data file that uses semicolons as a delimiter, use this command:

dlmwrite('my_data.out',A, ';')

If you view the created file in a text editor, it looks like this:

1;2;3;4
5;6;7;8

Note that dlmwrite does not insert delimiters at the end of rows.

By default, if you do not specify a delimiter, dlmwrite uses a comma as a
delimiter. You can specify a space (' ') as a delimiter or, if you specify empty
quotes (''), no delimiter.

Exporting Text Data

6-39

Using the diary Function to Export Data
To export small numeric arrays or cell arrays, you can use the diary function.
diary creates a verbatim copy of your MATLAB session in a disk file (excluding
graphics).

For example, if you have the array A in your workspace,

A = [1 2 3 4; 5 6 7 8];

execute these commands at the MATLAB prompt to export this array using
diary:

1 Turn on the diary function. You can optionally name the output file diary
creates.

diary my_data.out

2 Display the contents of the array you want to export. This example displays
the array A. You could also display a cell array or other MATLAB data type.

A =
1 2 3 4
5 6 7 8

3 Turn off the diary function.

diary off

diary creates the file my_data.out and records all the commands executed
in the MATLAB session until it is turned off.

A =

 1 2 3 4
 5 6 7 8

diary off

4 Open the diary file my_data.out in a text editor and remove all the
extraneous text.

6 Data Import and Export

6-40

Exporting to XML Documents
With the xmlwrite function, you can serialize a Document Object Model (DOM)
node to an XML file.

MATLAB also provides these other XML functions:

• xmlread — Imports from a given URL or file to a Document Object Model
node

• xslt — Transforms an XML document using an XSLT engine

See the reference pages for these functions for more information.

Working with Graphics Files

6-41

Working with Graphics Files
This section describes how to use MATLAB functions to import and export data
in many standard graphics file formats. Topics covered include

• “Getting Information About Graphics Files” on page 6-41

• “Importing Graphics Data” on page 6-42

• “Exporting Graphics Data” on page 6-42

Getting Information About Graphics Files
If you have a file in a standard graphics format, use the imfinfo function to get
information about its contents. The imfinfo function returns a structure
containing information about the file. The fields in the structure vary with the
file format but imfinfo always returns some basic information including file
name, last modification date, file size, and format.

This example returns information about a file in Joint Photographic Experts
Group (JPEG) format:

info = imfinfo('ngc6543a.jpg')

info =

 Filename: [1x57 char]
 FileModDate: '01-Oct-1996 16:19:44'
 FileSize: 27387
 Format: 'jpg'
 FormatVersion: ''
 Width: 600
 Height: 650
 BitDepth: 24
 ColorType: 'truecolor'
 FormatSignature: ''
 NumberOfSamples: 3
 CodingMethod: 'Huffman'
 CodingProcess: 'Sequential'
 Comment: {[1x69 char]}

6 Data Import and Export

6-42

Importing Graphics Data
To import data into the MATLAB workspace from a graphics file, use the
imread function. Using this function, you can import data from files in many
standard file formats, including the Tagged Image File Format (TIFF),
Graphics Interchange Format (GIF), Joint Photographic Experts Group
(JPEG), and Portable Network Graphics (PNG) formats. For a complete list of
supported formats, see the imread reference page.

This example reads the image data stored in a file in JPEG format into the
MATLAB workspace as the array I:

I = imread('ngc6543a.jpg');

imread represents the image in the workspace as a multidimensional array of
class uint8. The dimensions of the array depend on the format of the data. For
example, imread uses three dimensions to represent RGB color images:

whos I
 Name Size Bytes Class

 I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes

Exporting Graphics Data
To export data from the MATLAB workspace using one of the standard
graphics file formats, use the imwrite function. Using this function, you can
export data in formats such as the Tagged Image File Format (TIFF), Joint
Photographic Experts Group (JPEG), and Portable Network Graphics (PNG).
For a complete list of supported formats, see the imwrite reference page.

Working with Graphics Files

6-43

The following example writes a multidimensional array of uint8 data I from
the MATLAB workspace into a file in TIFF format. The class of the output
image written to the file depends on the format specified. For most formats, if
the input array is of class uint8, imwrite outputs the data as 8-bit values. See
the imwrite reference page for details.

whos I
 Name Size Bytes Class

 I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes

imwrite(I, 'my_graphics_file.tif','tif');

Note imwrite supports different syntaxes for several of the standard
formats. For example, with TIFF file format, you can specify the type of
compression used to store the image. See the imwrite reference page for
details.

6 Data Import and Export

6-44

Working with Audio and Video Data
This section describes the MATLAB functions that you can use to read, write,
and get information about files that contain audio data, video data, or both.
Topics covered include

• “Getting Information About Audio/Video Files” on page 6-44

• “Importing Audio/Video Data” on page 6-45

• “Exporting Audio/Video Data” on page 6-46

Getting Information About Audio/Video Files
MATLAB includes several functions that you can use to get information about
files that contain audio data, video data, or both. Some work only with specific
file formats. One function, the mmfileinfo function, can retrieve information
about many file formats.

Format-Specific Functions
MATLAB includes several functions that return information about files that
contain audio and video data in specific formats.

• aufinfo — Returns a text description of the contents of a sound (AU) file

• aviinfo — Returns a structure containing information about the contents of
an Audio/Video Interleaved (AVI) file

• wavfinfo — Returns a text description of the contents of a sound (WAV) file

Using the General Multimedia Information Function
MATLAB also includes a general-purpose, audio/video file information
function named mmfileinfo. The mmfileinfo function returns information
about both the audio data in a file as well as the video data in the file, if present.

Note mmfileinfo can be used only on Windows systems.

Working with Audio and Video Data

6-45

Importing Audio/Video Data
MATLAB includes several functions that you can use to bring audio or video
data into the MATLAB workspace. Some of these functions read audio or video
data from files. Another way to import audio data into the MATLAB workspace
is to record it using an audio input device, such as a microphone. The following
sections describe

• “Reading Audio and Video Data from a File” on page 6-45

• “Recording Audio Data” on page 6-45

Reading Audio and Video Data from a File
MATLAB includes several functions for reading audio or video data from a file.
These files are format-specific.

• auread — Returns sound data from a sound (AU) file

• aviread — Returns AVI data as a MATLAB movie

• wavread — Returns sound data from a sound (WAV) file

Recording Audio Data
To bring sound data into the MATLAB workspace by recording it from an audio
input device, use the audio recorder object. This object represents the
connection between MATLAB and an audio input device, such as a microphone,
that is connected to your system. You use the audiorecorder function to create
this object and then use methods and properties of the object to record the
audio data.

On PCs running Windows, you can also use the wavrecord function to bring
live audio data in WAV format into the MATLAB workspace.

Once you import audio data, MATLAB supports several ways to listen to the
data. You can use an audio player object to play the audio data. Use the
audioplayer function to create an audio player object.

You can also use the sound or soundsc function.

On PCs running Windows, you can use the wavplay function to listen to .wav
files.

6 Data Import and Export

6-46

Exporting Audio/Video Data
MATLAB includes several functions that you can use to export audio or video
data from the MATLAB workspace. These functions write audio data to a file
using specific file formats. The following sections describe

• “Exporting Audio Data” on page 6-46

• “Exporting Video Data in AVI Format” on page 6-46

This section also provides an example of writing video data to a file in
“Example: Creating an AVI file” on page 6-47.

Exporting Audio Data
In MATLAB, audio data is simply numeric data that you can export using
standard MATLAB data export functions, such as save.

MATLAB also includes several functions that write audio data to files in
specific file formats:

• auwrite — Exports sound data in AU file format

• wavwrite — Exports sound data in WAV file format

Exporting Video Data in AVI Format
You can export MATLAB video data as an Audio/Video Interleaved (AVI) file.
To do this, you use the avifile function to create an avifile object. Once you
have the object, you can use AVI file object methods and properties to control
various aspects of the data export process.

For example, in MATLAB, you can save a sequence of graphs as a movie that
can then be played back using the movie function. You can export a MATLAB
movie by saving it in MAT-file format, like any other MATLAB workspace
variable. However, anyone who wants to view your movie must have MATLAB.
(For more information about MATLAB movies, see the “Animation” section in
the MATLAB Graphics documentation.)

To export a sequence of MATLAB graphs in a format that does not require
MATLAB for viewing, save the figures in Audio/Video Interleaved (AVI)
format. AVI is a file format that allows animation and video clips to be played
on a PC running Windows or on UNIX systems.

Working with Audio and Video Data

6-47

Note To convert an existing MATLAB movie into an AVI file, use the
movie2avi function.

Example: Creating an AVI file
To export a sequence of MATLAB graphs as an AVI format movie, perform
these steps:

1 Create an AVI file object, using the avifile function.

aviobj = avifile('mymovie.avi','fps',5);

AVI file objects support properties that let you control various
characteristics of the AVI movie, such as colormap, compression, and
quality. (See the avifile reference page for a complete list.) avifile uses
default values for all properties, unless you specify a value. The example
sets the value of the frames per second (fps) property.

2 Capture the sequence of graphs and put them into the AVI file, using the
addframe function.

for k=1:25
h = plot(fft(eye(k+16)));
set(h,'EraseMode','xor');
axis equal;
frame = getframe(gca);
aviobj = addframe(aviobj,frame);

end

The example uses a for loop to capture the series of graphs to be included in
the movie. You typically use addframe to capture a sequence of graphs for
AVI movies. However, because this particular MATLAB animation uses XOR
graphics, you must call getframe to capture the graphs and then call
addframe to add the captured frame to the movie.

3 Close the AVI file, using the close function.

aviobj = close(aviobj);

6 Data Import and Export

6-48

Working with Spreadsheets
You can use MATLAB to import and export data to the following types of
spreadsheets:

• “Microsoft Excel Spreadsheets” on page 6-48

• “Lotus 123 Spreadsheets” on page 6-51

Microsoft Excel Spreadsheets
This section covers

• “Getting Information About the File” on page 6-48

• “Exporting to the File” on page 6-49

• “Importing from the File” on page 6-50

See the xlsfinfo, xlswrite, and xlsread reference pages for more detailed
information and examples.

Getting Information About the File
Use the xlsfinfo function to determine if a file contains a readable Microsoft
Excel spreadsheet.

Inputs to xlsfinfo are

• Name of the spreadsheet file

Outputs from xlsfinfo are

• String 'Microsoft Excel Spreadsheet' if the file contains an Excel
worksheet readable with the xlsread function. Otherwise, it contains an
empty string ('').

• Cell array of strings containing the names of each worksheet in the file.

Example — Querying an XLS File. This example returns information about
spreadsheet file tempdata.xls:

[type, sheets] = xlsfinfo('tempdata.xls')

type =
Microsoft Excel Spreadsheet

Working with Spreadsheets

6-49

sheets =
 'Locations' 'Rainfall' 'Temperatures'

Exporting to the File
Use the xlswrite function to export a matrix to an Excel spreadsheet file. With
xlswrite, you can export data from the workspace to any worksheet in the file,
and to any location within that worksheet.

Inputs to xlswrite are

• Name of the spreadsheet file

• Matrix to be exported

• Name of the worksheet to receive the data

• Range of cells on the worksheet in which to write the data

Outputs from xlswrite are

• Pass or fail status

• Any warning or error message generated along with its message identifier

Example — Writing To an XLS File. This example writes a mix of text and numeric
data to the file tempdata.xls. Call xlswrite, specifying a worksheet labeled
Temperatures, and the region within the worksheet to write the data to. The
4-by-2 matrix is written to the rectangular region that starts at cell E1 in its
upper-left corner:

d = {'Time', 'Temp'; 12 98; 13 99; 14 97}
d =
 'Time' 'Temp'
 [12] [98]
 [13] [99]
 [14] [97]

xlswrite('tempdata.xls', d, 'Temperatures', 'E1');

6 Data Import and Export

6-50

Adding a New Worksheet. If the worksheet being written to does not already exist
in the file, MATLAB displays the following warning:

Warning: Added specified worksheet.

You can disable these warnings with the command

warning off MATLAB:xlswrite:AddSheet

Importing from the File
Use xlsread to import a matrix from an Excel spreadsheet file into the
MATLAB workspace. You can import data from any worksheet in the file, and
from any location within that worksheet. You can also optionally have xlsread
open an Excel window showing the file and then interactively select the
worksheet and range of data to be read by the function.

Inputs to xlsread are

• Name of the spreadsheet file

• Matrix to be imported

• Name of the worksheet from which to read the data

• Range of cells on the worksheet from which to read the data

• Keyword that opens an Excel window, enabling you to interactively select
the worksheet and range of data to read

• Keyword that imports using basic import mode

Three separate outputs from xlsread are

• Numeric data

• String data

• Any unprocessed cell content

Example — Reading from an XLS File. Continuing with the previous example, to
import only the numeric data, use xlsread with a single return argument.
xlsread ignores any leading row or column of text in the numeric result:

ndata = xlsread('tempdata.xls', 'Temperatures')
ndata =
 12 98
 13 99
 14 97

Working with Spreadsheets

6-51

To import both numeric data and text data, specify two return values for
xlsread:

[ndata, headertext] = xlsread('tempdata.xls', 'Temperatures')

headertext =
 'Time' 'Temp'

ndata =
 12 98
 13 99
 14 97

Lotus 123 Spreadsheets
This section covers

• “Getting Information About the File” on page 6-51

• “Exporting to the File” on page 6-52

• “Importing from the File” on page 6-53

See the wk1finfo, wk1write, and wk1read reference pages for more detailed
information and examples.

Getting Information About the File
Use the wk1finfo function to determine if a file contains a Lotus WK1
spreadsheet:

Inputs to wk1finfo are

• Name of the spreadsheet file

Outputs from wk1finfo are

• String 'WK1' if the file is a Lotus spreadsheet readable with the wk1read
function. Otherwise, it contains an empty string ('').

• String 'Lotus 123 Spreadsheet'

6 Data Import and Export

6-52

Example — Querying a WK1 File. This example returns information about
spreadsheet file matA.wk1:

[extens, type] = wk1finfo('matA.wk1')

extens =
 WK1
type =
 Lotus 123 Spreadsheet

Exporting to the File
Use the wk1write function to export a matrix to a Lotus spreadsheet file. You
have the choice of positioning the matrix starting at the first row and column
of the spreadsheet, or at any other location in the file.

To export to a specific location in the file, use the second syntax, indicating a
zero-based starting row and column.

Inputs to wk1write are

• Name of the spreadsheet file

• Matrix to be exported

• Location in the file in which to write the data

Example — Writing to a WK1 File. This example exports an 8-by-8 matrix to
spreadsheet file matA.wk1:

A = [1:8; 11:18; 21:28; 31:38; 41:48; 51:58; 61:68; 71:78];
A =
 1 2 3 4 5 6 7 8
 11 12 13 14 15 16 17 18
 21 22 23 24 25 26 27 28
 31 32 33 34 35 36 37 38
 41 42 43 44 45 46 47 48
 51 52 53 54 55 56 57 58
 61 62 63 64 65 66 67 68
 71 72 73 74 75 76 77 78

wk1write('matA.wk1', A);

Working with Spreadsheets

6-53

Importing from the File
To import data from the spreadsheet into the MATLAB workspace, use
wk1read. There are three ways to call wk1read. The first two shown here are
similar to wk1write. The third enables you to select a range of values from the
spreadsheet. You can specify the range argument with a one-based vector,
spreadsheet notation (e.g., 'A1..B7'), or using a named range (e.g., 'Sales').

Inputs to wk1read are

• Name of the spreadsheet file

• Spreadsheet location from which to read the data

• Range of cells from which to read the data

Outputs from wk1read are

• Requested data from the spreadsheet

Example — Reading from a WK1 File. Read in a limited block of the spreadsheet
data by specifying the upper-left row and column of the block using zero-based
indexing:

M = wk1read('matA.wk1', 3, 2)
M =
 33 34 35 36 37 38
 43 44 45 46 47 48
 53 54 55 56 57 58
 63 64 65 66 67 68
 73 74 75 76 77 78

6 Data Import and Export

6-54

Working with Scientific Data Formats
This section describes how to import and export data in several standard
scientific data formats. Topics covered include

• “Working with Common Data Format (CDF) Files” on page 6-54

• “Working with Flexible Image Transport System (FITS) Files” on page 6-57

• “Working with Hierarchical Data Format (HDF5) Files” on page 6-59

For information about working with Hierarchical Data Format (HDF) files, see
these sections:

• “Importing HDF4 and HDF-EOS Data” on page 6-69

• “Exporting MATLAB Data to an HDF4 File” on page 6-96

Working with Common Data Format (CDF) Files
MATLAB includes functions that let you import and export data using the
Common Data Format (CDF). CDF was created by the National Space Science
Data Center (NSSDC) to provide a self-describing data storage and
manipulation format that matches the structure of scientific data and
applications (i.e., statistical and numerical methods, visualization, and
management). The MATLAB CDF functions are described in the following
sections:

• “Getting Information About CDF Files” on page 6-54

• “Importing Data from a CDF File” on page 6-55

• “Exporting Data to a CDF File” on page 6-57

Getting Information About CDF Files
To get information about the contents of a CDF file, use the cdfinfo function.
The cdfinfo function returns a structure containing general information about
the file and detailed information about the variables and attributes in the file.

This example returns information about the sample CDF file included with
MATLAB. To determine the variables contained in the file, view the Variables
field. This field contains a cell array that lists all the variables in the file with
information that describes the variable, such as name, size, and data type. For
an example, see “Importing Data from a CDF File” on page 6-55.

Working with Scientific Data Formats

6-55

Note Before executing the cdfinfo function, make sure that your current
working directory is writable because cdfinfo creates temporary files.

info = cdfinfo('example.cdf')

info =

 Filename: 'example.cdf'
 FileModDate: '09-Mar-2001 16:45:22'
 FileSize: 1240
 Format: 'CDF'
 FormatVersion: '2.7.0'
 FileSettings: [1x1 struct]
 Subfiles: {}
 Variables: {5x6 cell}
 GlobalAttributes: [1x1 struct]
 VariableAttributes: [1x1 struct]

Importing Data from a CDF File
To import data into the MATLAB workspace from a CDF file, use the cdfread
function. Using this function, you can import all the data in the file, specific
variables, or subsets of the data in a specific variable. This example illustrates
how to use the cdfread function to read data associated with a particular
variable:

1 Determine the names of variables in the CDF file. The information returned
by cdfinfo indicates that the file contains five variables.

info = cdfinfo('example.cdf');

vars = info.Variables

vars =

 Columns 1 through 5

 'Time' [1x2 double] [24] 'epoch' 'T/'
 'Longitude' [1x2 double] [1] 'int8' 'F/FT'

6 Data Import and Export

6-56

 'Latitude' [1x2 double] [1] 'int8' 'F/TF'
 'Data' [1x3 double] [1] 'double' 'T/TTT'
 'multidimensional' [1x4 double] [1] 'uint8' 'T/TTTT'

 Column 6

 'Full'
 'Full'
 'Full'
 'Full'
 'Full'

2 Read the data associated with the Time variable. Variable names are case
sensitive.

data = cdfread('example.cdf','variable','Time');

The return value data is a 24-by-1 cell array, where each cell contains a CDF
epoch object.

Representing CDF Time Values
CDF represents time differently than MATLAB. CDF represents date and time
as the number of milliseconds since 1-Jan-0000. This is called an epoch in CDF
terminology. MATLAB represents date and time as a serial date number,
which is the number of days since 0-Jan-0000. To represent CDF dates,
MATLAB uses an object called a CDF epoch object. To access the time
information in a CDF object, use the object’s todatenum method.

For example, this code extracts the date information from a CDF epoch object:

1 Extract the date information from the CDF epoch object returned in the cell
array data (see “Importing Data from a CDF File” on page 6-55). Use the
todatenum method of the CDF epoch object to get the date information,
which is returned as a MATLAB serial date number.

m_date = todatenum(data{1});

Working with Scientific Data Formats

6-57

2 View the MATLAB serial date number as a string.

datestr(m_date)

ans =

01-Jan-2001

Exporting Data to a CDF File
To export data from the MATLAB workspace to a CDF file, use the cdfwrite
function. Using this function, you can write variables and attributes to the file,
specifying their names and associated values. See the cdfwrite reference page
for more information.

This example shows how to write date information to a CDF file. Note how the
example uses the CDF epoch object constructor, cdfepoch, to convert a
MATLAB serial date number into a CDF epoch.

cdfwrite('myfile',{'Time_val',cdfepoch(now)});

Working with Flexible Image Transport System
(FITS) Files
MATLAB includes functions that let you import and export data using the
Flexible Image Transport System (FITS) format. FITS is the standard data
format used in astronomy, endorsed by both NASA and the International
Astronomical Union (IAU). FITS is designed to store scientific data sets
consisting of multidimensional arrays (1-D spectra, 2-D images, or 3-D data
cubes) and two-dimensional tables containing rows and columns of data.

A data file in FITS format can contain multiple components, each marked by
an ASCII text header followed by binary data. The first component in a FITS
file is known as the primary, which can be followed by any number of other
components, called extensions, in FITS terminology. For more information
about the FITS standard, go to the official FITS Web site,
fits.gsfc.nasa.gov/.

The MATLAB FITS functions are described in the following sections:

• “Getting Information About CDF Files” on page 6-54

• “Importing Data from a CDF File” on page 6-55

6 Data Import and Export

6-58

Getting Information About FITS Files
To get information about the contents of a FITS file, use the fitsinfo function.
The fitsinfo function returns a structure containing the information about
the file and detailed information about the data in the file.

This example returns information about a sample FITS file included with
MATLAB. The structure returned contains fields for the primary component,
PrimaryData, and all the extensions in the file, such as the BinaryTable,
Image, and AsciiTable extensions.

info = fitsinfo('tst0012.fits')

info =

 Filename: 'tst0012.fits'
 FileModDate: '12-Mar-2001 18:37:46'
 FileSize: 109440
 Contents: {1x5 cell}
 PrimaryData: [1x1 struct]
 BinaryTable: [1x1 struct]
 Unknown: [1x1 struct]
 Image: [1x1 struct]
 AsciiTable: [1x1 struct]

Importing Data from a FITS File
To import data into the MATLAB workspace from a FITS file, use the fitsread
function. Using this function, you can import the data in the PrimaryData
section of the file or you can import the data in any of the extensions in the file,
such as the Image extension. This example illustrates how to use the fitsread
function to read data from a FITS file:

1 Determine which extensions the FITS file contains, using the fitsinfo
function.

info = fitsinfo('tst0012.fits')

info =

 Filename: 'tst0012.fits'
 FileModDate: '12-Mar-2001 18:37:46'
 FileSize: 109440

Working with Scientific Data Formats

6-59

 Contents: {1x5 cell}
 PrimaryData: [1x1 struct]
 BinaryTable: [1x1 struct]
 Unknown: [1x1 struct]
 Image: [1x1 struct]
 AsciiTable: [1x1 struct]

The info structure shows that the file contains several extensions including
the BinaryTable, AsciiTable, and Image extensions.

2 Read data from the file.

To read the PrimaryData in the file, specify the filename as the only
argument:

pdata = fitsread('tst0012.fits');

To read any of the extensions in the file, you must specify the name of the
extension as an optional parameter. This example reads the BinaryTable
extension from the FITS file:

bindata = fitsread('tst0012.fits','bintable');

Note To read the BinaryTable extension using fitsread, you must specify
the parameter 'bintable'. Similarly, to read the AsciiTable extension, you
must specify the parameter 'table'. See the fitsread reference page for
more information.

Working with Hierarchical Data Format (HDF5) Files
Hierarchical Data Format, Version 5, (HDF5) is a general-purpose,
machine-independent standard for storing scientific data in files, developed by
the National Center for Supercomputing Applications (NCSA). For more
information about the HDF5 file format, read the HDF5 documentation
available at the NCSA Web site (hdf.ncsa.uiuc.edu).

6 Data Import and Export

6-60

Note For information about importing HDF4 data, which is a completely
separate, incompatible format, see “Importing HDF4 and HDF-EOS Data” on
page 6-69.

This section describes how to import data or metadata from an HDF5 file.
Topics covered include

• “Determining the Contents of an HDF5 File” on page 6-60

• “Importing Data from an HDF5 File” on page 6-64

• “Mapping HDF5 Data Types to MATLAB Data Types” on page 6-65

Determining the Contents of an HDF5 File
HDF5 files can contain data and metadata. HDF5 files organize the data and
metadata, called attributes, in a hierarchical structure, similar to the
hierarchical structure of a file system.

In an HDF5 file, the directories in the hierarchy are called groups. A group can
contain other groups, data sets, attributes, links, and data types. A data set is
a collection of data, such as a multidimensional numeric array or string. An
attribute is any data that is associated with another entity, such as a data set.
A link is similar to a UNIX file system symbolic link. Links are a way to
reference data without having to make a copy of the data.

Data types are a description of the data in the data set or attribute. Data types
tell how to interpret the data in the data set. For example, a file might contain
a data type called “Reading” that is comprised of three elements: a longitude
value, a latitude value, and a temperature value.

To find the names of all the data sets and attributes contained in an HDF5 file,
use the hdf5info function. For example, to find out what the sample HDF5 file,
example.h5, contains, use this syntax:

fileinfo = hdf5info('example.h5');

hdf5info returns a structure that contains various information about the
HDF5 file, including the name of the file and the version of the HDF5 library
that MATLAB is using:

fileinfo =
Filename: 'example.h5'

Working with Scientific Data Formats

6-61

 LibVersion: '1.4.2'
 Offset: 0
 FileSize: 8172
 GroupHierarchy: [1x1 struct]

Exploring the Contents of an HDF5 File
To explore the hierarchical organization of the file, examine the
GroupHierarchy field in the structure returned by hdf5info. The
GroupHierarchy field is a structure that describes the top-level group in the
file, called the root group. HDF5 uses the UNIX convention and names this
top-level group / (forward slash).

The following example shows that the GroupHierarchy structure for the
sample HDF5 file contains two groups and two attributes. The root group does
not contain any data sets, data types, or links.

toplevel = fileinfo.GroupHierarchy

toplevel =

 Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/'
 Groups: [1x2 struct]
 Datasets: []
 Datatypes: []
 Links: []
 Attributes: [1x2 struct]

The following figure illustrates the organization of the root group.

Organization of the Root Group of the Sample HDF5 File

/

/g1 /g2/attr1 /attr2

= Data set

= Group

= Attribute

= Link

6 Data Import and Export

6-62

To explore the contents of the sample HDF5 file further, examine one of the two
structures in the Groups field of the GroupHierarchy structure. Each structure
in this field represents a group contained in the root group:

level2 = toplevel.Groups(2)

level2 =

 Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/g2'
 Groups: []
 Datasets: [1x2 struct]
 Datatypes: []
 Links: []
 Attributes: []

In the sample file, the group named /g2 contains two data sets. The following
figure illustrates this part of the sample HDF5 file organization.

Organization of the Data Set /g2 in the Sample HDF5 File

To get information about a data set, look at either of the structures returned in
the Datasets field. These structures provide information about the data set,
such as its name, dimensions, and data type.

dataset1 = level2.Datasets(1)

/

/g1 /g2

/g2/dset2.1 /g2/dset2.2

/attr1 /attr2

= Data set

= Group

= Attribute

= Link

Working with Scientific Data Formats

6-63

dataset1 =
 Filename: 'L:\matlab\toolbox\matlab\demos\example.h5'
 Name: '/g2/dset2.1'
 Rank: 1
 Datatype: [1x1 struct]
 Dims: 10
 MaxDims: 10
 Layout: 'contiguous'
 Attributes: []
 Links: []
 Chunksize: []
 Fillvalue: []

By examining the structures at each level of the hierarchy, you can traverse the
entire file. The following figure describes the hierarchical organization of the
sample file example.h5.

Hierarchical Structure of example.h5 HDF5 File

/

/g1 /g2

/g1/g1.1 /g1/g1.2

/g1/g1.1/dset1.1.1

/g2/dset2.1 /g2/dset2.2

/g1/g1.1/dset1.1.2 /g1/g1.2/g1.2.1

slink

/attr1 /attr2

= Data set

= Group

= Attribute

= Link

/g1/g1.1/dset1.1.1/attr1 /g1/g1.1/dset1.1.1/attr2

6 Data Import and Export

6-64

Importing Data from an HDF5 File
To read data or metadata from an HDF5 file, use the hdf5read function. As
arguments, you must specify the name of the HDF5 file and the name of the
data set. For information about finding the name of a data set, see
“Determining the Contents of an HDF5 File” on page 6-60.

For example, to read the data set, /g2/dset2.1 from the HDF5 file
example.h5, use this syntax:

data = hdf5read('example.h5','/g2/dset2.1');

The return value contains the values in the data set, in this case a 1-by-10
vector of single-precision values:

data =

 Columns 1 through 8

 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000

 Columns 9 through 10

 1.8000 1.9000

The hdf5read function maps HDF5 data types to appropriate MATLAB data
types, whenever possible. If the HDF5 file contains data types that cannot be
represented in MATLAB, hdf5write uses one of the predefined MATLAB
HDF5 data type objects to represent the data.

For example, if an HDF5 data set contains four array elements, hdf5read can
return the data as a 1-by-4 array of hdf5.h5array objects:

whos

Name Size Bytes Class

data 1x4 hdf5.h5array

Grand total is 4 elements using 0 bytes

For more information about the MATLAB HDF5 data type objects, see
“Mapping HDF5 Data Types to MATLAB Data Types” on page 6-65.

Working with Scientific Data Formats

6-65

Exporting Data to HDF5 Files
To write data or metadata from the MATLAB workspace to an HDF5 file, use
the hdf5write function. As arguments, specify:

• Name of an existing HDF5 file, or the name you want to assign to a new file.

• Name of an existing data set or attribute, or the name you want to assign to
a new data set or attribute. To learn how to determine the name of data sets
in an existing HDF5 file, see “Determining the Contents of an HDF5 File” on
page 6-60.

• Data or metadata you want to write to the file. hdf5write converts MATLAB
data types to the appropriate HDF5 data type automatically. For nonatomic
data types, you can also create HDF5 objects to represent the data.

This example creates a 5-by-5 array of uint8 values and then writes the array
to an HDF5 file. By default, hdf5write overwrites the file, if it already exists.
The example specifies an hdf5write mode option to append data to existing
file.

1 Create a MATLAB variable in the workspace. This example creates a 5-by-5
array of uint8 values.

testdata = uint8(magic(5))

2 Add the data to an existing HDF5 file. To add data to an existing file, you
must specify 'append' mode. The file must already exist and it cannot
already contain a data set with the same name.

hdf5write('myfile.h5', '/dataset1', testdata,...
'writemode','append')

Mapping HDF5 Data Types to MATLAB Data Types
When the hdf5read function reads data from an HDF5 file into the MATLAB
workspace, it maps HDF5 data types to MATLAB data types, depending on
whether the data in the dataset is in an atomic data type or a nonatomic
composite data type.

Atomic data types describe commonly used binary formats for numbers
(integers and floating point) and characters (ASCII). Because different
computing architectures and programming languages support different
number and character representations, the HDF5 library provides the
platform-independent data types, which it then maps to an appropriate data

6 Data Import and Export

6-66

type for each platform. For example, a computer may support 8-, 16-, 32-, and
64-bit signed integers, stored in memory in little endian byte order.

A composite data type is an aggregation of one or more atomic data types.
Composite data types include structures, multidimensional arrays, and
variable-length data types (one-dimensional arrays).

Mapping Atomic Data Types. If the data in the data set is stored in one of the HDF5
atomic data types, hdf5read uses the equivalent MATLAB data type to
represent the data. Each data set contains a Datatype field that names the
data type. For example, the data set /g2/dset2.2 in the sample HDF5 file
includes atomic data and data type information.

dtype = dataset1.Datatype
dtype =

 Name: []
 Class: 'H5T_IEEE_F32BE'
 Elements: []

The H5T_IEEE_F32BE class name indicates the data is a 4-byte, big endian,
IEEE floating-point data type. (See the HDF5 specification for more
information about atomic data types.)

HDF5 Nonatomic Data Types. If the data in the data set is stored in one of the
HDF5 nonatomic data types, hdf5read represents the data set in MATLAB as
an object. MATLAB supports the following objects to represent HDF5
nonatomic data types:

• hdf5.h5array
• hdf5.h5enum
• hdf5.h5vlen
• hdf5.h5compound
• hdf5.h5string

Working with Scientific Data Formats

6-67

To access the data in the data set in the MATLAB workspace, you must access
the Data field in the object. This example converts a simple MATLAB vector
into an h5array object and then displays the fields in the object:

vec = [1 2 3];

hhh = hdf5.h5array(vec);

hhh:

 Name: ''
 Data: [1 2 3]

hhh.Data

ans =

 1 2 3

Using HDF5 Data Type Objects. If you are writing simple data sets, such as scalars,
strings, or a simple compound data set, you can just pass the data directly to
hdf5write. The hdf5write function can automatically map the MATLAB data
types to appropriate HDF5 data types.

However, if your data is a complex data set, you must use one of the predefined
MATLAB HDF5 objects to pass to the hdf5write function. The HDF5 objects
are designed for situations where the mapping between MATLAB and HDF5
types is ambiguous.

For example, when passed a cell array of strings, the hdf5write function writes
a data set made up of strings, not a data set of arrays containing strings. If that
is not the mapping you intend, use HDF5 objects to specify the correct
mapping.

In addition, note that HDF5 makes a distinction between the size of a data set
and the size of a data type. In MATLAB, data types are always scalar. In
HDF5, data types can have a size; that is, types can be either scalar (like
MATLAB) or m-by-n.

In HDF5, a 5-by-5 data set containing a single uint8 value in each element is
distinct from a 1-by-1 data set containing a 5-by-5 array of uint8 values. In the

6 Data Import and Export

6-68

first case, the data set contains 25 observations of a single value; in the second
case, the data set contains a single observation with 25 values.

This example uses an HDF5 enumeration object for enumerated data:

1 Create an HDF5 enumerated object.

enum_obj = hdf5.h5enum;

2 Define the enumerated values and their corresponding names.

enum_obj.defineEnum({'RED' 'GREEN' 'BLUE'}, uint8([1 2 3]));

enum_obj now contains the definition of the enumeration that associates the
names RED, GREEN, and BLUE with the numbers 1, 2, and 3.

3 Add enumerated data to the object.

enum_obj.setData(uint8([2 1 3 3 2 3 2 1]));

In the HDF5 file, these numeric values map to the enumerated values
GREEN, RED, BLUE, BLUE, GREEN, etc.

4 Write the enumerated data to a data set named objects in an HDF5 file.

hdf5write('myfile3.h5', '/g1/objects', enum_obj);

5 Read the enumerated data set from the file.

ddd = hdf5read('myfile3.h5','/g1/objects')

hdf5.h5enum:

 Name: ''
 Data: [2 1 3 3 2 3 2 1]
 EnumNames: {'RED' 'GREEN' 'BLUE'}
 EnumValues: [1 2 3]

Importing HDF4 and HDF-EOS Data

6-69

Importing HDF4 and HDF-EOS Data
Hierarchical Data Format (HDF4) is a general-purpose, machine-independent
standard for storing scientific data in files, developed by the National Center
for Supercomputing Applications (NCSA). HDF-EOS is an extension of HDF4
that was developed by the National Aeronautics and Space Administration
(NASA) for storage of data returned from the Earth Observing System (EOS).
For more information about these file formats, read the HDF documentation at
the NCSA Web site (hdf.ncsa.uiuc.edu) and the HDF-EOS documentation at
the NASA Web site (hdfeos.gsfc.nasa.gov/hdfeos/index.cfm).

Note For information about importing HDF5 data, which is a separate,
incompatible format, see “Working with Hierarchical Data Format (HDF5)
Files” on page 6-59.

HDF4 and HDF-EOS files can contain multidimensional numeric arrays or
text data, called data sets, in HDF terminology. MATLAB provides three ways
to import HDF4 or HDF-EOS data sets into the MATLAB workspace:

• “Using the HDF Import Tool” on page 6-69

• “Using the MATLAB hdfread Function” on page 6-84

• “Using the HDF4 Command-Line Interface” on page 6-88

For information about exporting data in HDF files, see “Exporting MATLAB
Data to an HDF4 File” on page 6-96.

Using the HDF Import Tool
The HDF Import Tool is a graphical user interface that you can use to navigate
through HDF4 or HDF-EOS data sets and import data from them. Importing
data using the HDF Import Tool involves these steps:

• “Step 1: Opening an HDF4 File in the HDF Import Tool” on page 6-70

• “Step 2: Selecting a Data Set in an HDF File” on page 6-71

• “Step 3: Specifying a Subset of the Data” on page 6-72

• “Step 4: Importing Data and Metadata” on page 6-73

The following sections provide more detail about each of these steps.

6 Data Import and Export

6-70

Step 1: Opening an HDF4 File in the HDF Import Tool
To open an HDF4 file, select the Import Data option from the MATLAB File
menu. MATLAB displays a file selection dialog box. If you select an HDF4 file,
the Import Wizard automatically starts the HDF Import Tool.

You can also open a file with the HDF Import Tool by entering the hdftool
command at the MATLAB command line:

hdftool('example.hdf')

If you use the hdftool function without arguments, it starts the HDF Import
Tool and automatically opens a file selection dialog box.You can open multiple
files in the HDF Import Tool at the same time.

Overview of the HDF Import Tool. Initially, the HDF Import Tool window contains
three panes: the Contents pane, Metadata pane, and the Importing and
Subsetting pane. Initially, the Contents pane contains the name of the file you
opened and the other panes are empty, as illustrated in the following figure.

Contents pane,
containing the name of
the file you opened.

Metadata pane.

Importing and
Subsetting pane.

Importing HDF4 and HDF-EOS Data

6-71

Step 2: Selecting a Data Set in an HDF File
To select a data set to import, use the Contents pane to navigate through the
file. Click the plus sign at the left of the filename to expand the hierarchical
table of contents and see a list of the data sets in the file. (For HDF-EOS files,
you can choose how the HDF Import Tool displays the contents. See “Specifying
the View in the Contents Pane” on page 6-71 for more information.)

For example, this figure shows the expanded table of contents in the Contents
pane, with the data set Example SDS selected. Note how the Metadata pane
now displays information about the data set and the Importing and
Subsetting pane displays subsetting options available for the data set.

Specifying the View in the Contents Pane. If you are opening an HDF-EOS file, you
can specify whether you want to view the contents of the file as an HDF4 file
or as an HDF-EOS file, or both, as illustrated in the following figure. Note,
however, that the contents of HDF4 files cannot be viewed as HDF-EOS files.

Selected data
set.

Data set
metadata.

Data importing
and subsetting
options.

6 Data Import and Export

6-72

Note Although HDF-EOS files can appear in both windows of the Contents
pane, remember that you are getting two different views of one file.

Step 3: Specifying a Subset of the Data
When you select a data set, the Importing and Subsetting pane displays the
subsetting options available for that type of data set. The subsetting options
available depend on the type of data set. For more information, see “Using the
HDF4 Import Tool Subsetting Options” on page 6-74.

Select view of
file.

View file as
HDF-EOS.

View file as HDF.

Importing HDF4 and HDF-EOS Data

6-73

Step 4: Importing Data and Metadata
To import the data set you have selected, click the Import button in the bottom
right corner of the Importing and Subsetting pane, as illustrated in the
following figure. Using the Importing and Subsetting pane, you can

• Specify the name of the workspace variable — By default, the HDF Import
Tool uses the name of the HDF4 data set as the name of the MATLAB
workspace variable. In the figure, the variable name is Example_SDS. To
specify another name, enter text in the Workspace Variable Name text box.

• Specify whether to import metadata associated with the data set — To
import any metadata that might be associated with the data set, select the
Import Metadata check box. To store the metadata, the HDF Import Tool
creates a second variable in the workspace with the same name with “_info”
appended to it. For example, the name of the metadata variable in the figure
is Example_SDS_info.

• Save the MATLAB import command syntax — The MATLAB Command
text window displays the import command used to import the data set. This
text is not editable, but you can select it to copy and paste it into the
MATLAB Command Window or text editor to reuse it.

Select this box to
import the metadata in
a separate variable.

Click here to import the data set.

Specify the name of the
workspace variable.

Displays the MATLAB command used to import
the data set.

6 Data Import and Export

6-74

Using the HDF4 Import Tool Subsetting Options
When you select a data set, the Importing and Subsetting pane displays the
subsetting options available for that type of data set. For data sets that support
multiple, mutually exclusive subsetting options, like HDF-EOS Grid data, the
contents of the Importing and Subsetting pane change when you select one of
the options. The following sections describe these subsetting options for all
supported data set types. For general information about the tool, see “Using
the HDF Import Tool” on page 6-69.

• “HDF Scientific Data (SD)” on page 6-74

• “HDF Vdata” on page 6-75

• “HDF-EOS Grid Data” on page 6-76

• “HDF-EOS Point Data” on page 6-80

• “HDF-EOS Swath Data” on page 6-81

• “HDF Raster Image Data” on page 6-84

Note To use these data subsetting options effectively, you must understand
the HDF and HDF-EOS data formats. Use this documentation with the HDF
documentation available at the NCSA Web site (hdf.ncsa.uiuc.edu) and the
HDF-EOS documentation at the NASA Web site
(hdfeos.gsfc.nasa.gov/hdfeos/index.cfm).

HDF Scientific Data (SD)
HDF Scientific Data (SD) data sets are multidimensional arrays. You can
import a subset of an HDF SD data set by specifying the location, range, and
values to be read from the data set.

Importing HDF4 and HDF-EOS Data

6-75

The HDF Import Tool displays the subsetting options available, where each
row represents a dimension in the data set and each column represents these
subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The default
value is 1, which starts reading at the first element of each dimension. The
values specified must not exceed the size of any dimension of the data set.

• Increment — Specifies the interval between the values to read. The default
value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to be
read. The Length parameter automatically updates when you change the
value of Start or Increment.

HDF Vdata
HDF Vdata data sets are tables. You can import a subset of an HDF Vdata data
set in two ways:

• By field name

• By record

Fields. Select a specific field you want to import.

Records. Specify the range of records you want to import.

6 Data Import and Export

6-76

HDF-EOS Grid Data
In HDF-EOS Grid data, a rectilinear grid overlays a map. The map uses a
known map projection. The HDF Import Tool supports the following mutually
exclusive subsetting options for Grid data:

• Direct Index

• Geographic Box

• Interpolation

• Pixels

• Tile

• Time

• User-Defined

Direct Index. You can import a subset of an HDF-EOS Grid data set by
specifying the location, range, and values to be read along each dimension.

Each row represents a dimension in the data set and each column represents
these subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The default
value is 1, which starts reading at the first element of each dimension. The
values specified must not exceed the size of any dimension of the data set.

• Increment — Specifies the interval between the values to read. The default
value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to be
read.

Importing HDF4 and HDF-EOS Data

6-77

Geographic Box. You can import a subset of an HDF-EOS Grid data set by
specifying the rectangular area of the grid that you are interested in.

You define the rectangular area of interest by specifying two points that are
two corners of the box:

• Corner 1 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box.

When specifying geographic box subsetting, you can optionally further define
the subset of data you are interested in by using Time parameters (see “Time”
on page 6-79) and by specifying other User-Defined subsetting parameters (see
“User-Defined” on page 6-84).

Interpolation. Interpolation is the process of estimating a pixel value at a
location in between other pixels. In interpolation, the value of a particular pixel
is determined by computing the weighted average of some set of pixels in the
vicinity of the pixel.

6 Data Import and Export

6-78

You define the region used for bilinear interpolation by specifying two points
that are two corners of the interpolation area:

• Corner 1 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box.

Pixels. You can import a subset of the pixels in a Grid data set by defining a
rectangular area over the grid.

You define the box by specifying two points that define two corners of the box:

• Corner 1 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box.

Tile. In HDF-EOS Grid data, a rectilinear grid overlays a map. Each rectangle
defined by the horizontal and vertical lines of the grid is referred to as a tile.
HDF-EOS Grid data can be stored as tiles. If it is, you can import a subset of
the Grid data set by specifying the coordinates of the tile you are interested in.

Tile coordinates are 1-based, with the upper-left corner of a two-dimensional
data set identified as 1,1. In a three-dimensional data set, this tile would be
referenced as 1,1,1.

Importing HDF4 and HDF-EOS Data

6-79

Time. You can import a subset of the Grid data set by specifying a time period.

Specify these values:

• Start — Specifies the start time.

• Stop — Specifies the endpoint in the time span.

Note The units used (hours, minutes, seconds) to specify the time are defined
by the data set.

Along with these time parameters, you can optionally further define the subset
of data to import by supplying user-defined parameters (see “User-Defined” on
page 6-84).

User-Defined. You can import a subset of the Grid data set by specifying
user-defined parameters.

Specify these values:

• Dimension or Field Name — Specifies the name of the dimension or field to
be read from. Dimension names are prefixed with the characters DIM:.

• Min — Specifies the start of a range. For dimensions, Min represents the
start of a range of elements to extract. For fields, Min represents the start of
a range of values to extract.

• Max — Specifies the endpoint of a range. For dimensions, Max represents
the end of a range of elements to extract. For fields, Max represents the end
of a range of values to extract.

6 Data Import and Export

6-80

HDF-EOS Point Data
HDF-EOS Point data sets are tables. You can import a subset of an HDF-EOS
Point data set by specifying any of these parameters:

• Field name

• Rectangular area of interest

• Record

• Time

Fields. Select a specific field you want to import.

Rectangular Area. You can import a subset of an HDF-EOS Point data set by
specifying the rectangular area that you are interested in.

You define the rectangular area of interest by specifying two points that are
two corners of the box:

• Corner 1 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal
degrees.Typically, Corner 2 is the lower-right corner of the box.

Importing HDF4 and HDF-EOS Data

6-81

Records. Specify the range of records you want to import.

Time. You can import a subset of the HDF-EOS Point data set by specifying a
time period.

Specify these values:

• Start — Specifies the start time.

• Stop — Specifies the endpoint in the time span.

Note The units used (hours, minutes, seconds) to specify the time are defined
by the data set.

HDF-EOS Swath Data
HDF-EOS Swath data is data that is produced by a satellite as it traces a path
over the earth. This path is called its ground track. The sensor aboard the
satellite takes a series of scans perpendicular to the ground track. Swath data
can also include a vertical measure as a third dimension. For example, this
vertical dimension can represent the height above the Earth of the sensor.

The HDF Import Tool supports the following mutually exclusive subsetting
options for Swath data:

• Direct indexing

• Geographic region

• Time

• User-Defined

6 Data Import and Export

6-82

Direct Index. You can import a subset of an HDF-EOS Swath data set by
specifying the location, range, and values to be read along each dimension.

Each row represents a dimension in the data set and each column represents
these subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The default
value is 1, which starts reading at the first element of each dimension. The
values specified must not exceed the size of any dimension of the data set.

• Increment — Specifies the interval between the values to read. The default
value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to be
read.

Geographic Box. You can import a subset of an HDF-EOS Swath data set by
specifying the rectangular area of the grid that you are interested in. When you
use this subsetting method, you can also specify the Cross Track Inclusion
Mode and the Geolocation Mode.

Define the area by specifying two points that specify two corners of the box:

• Corner 1 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box.

Importing HDF4 and HDF-EOS Data

6-83

For Swath data, you must also specify the Cross Track Inclusion Mode. This
determines how much of the area of the geographic box that you define must
fall within the boundaries of the swath.

Select from these values:

• AnyPoint — Any part of the box overlaps with the swath.

• Midpoint — At least half of the box overlaps with the swath. This is the
default.

• Endpoint — All of the area defined by the box overlaps with the swath.

For Swath data, you must also specify Geolocation Mode. This specifies
whether geolocation fields and data must be in the same swath.

Select from these values:

• Internal — Geolocation fields and data fields must be in the same swath.

• External — Geolocation fields and data fields can be in different swaths.

Time. You can import a subset of the Swath data set by specifying a time period.

Specify these values:

• Start — Specifies the start time.

• Stop — Specifies the endpoint in the time span.

6 Data Import and Export

6-84

Note The units used (hours, minutes, seconds) to specify the time are defined
by the data set.

When you use this subsetting method, you must also specify the Cross Track
Inclusion Mode and the Geolocation Mode. You can optionally also specify
user-defined subsetting options.

User-Defined. You can import a subset of the Swath data set by specifying
user-defined parameters.

Specify these values:

• Dimension or Field Name — Specifies the name of the dimension or field to
be read from. Dimension names are prefixed with the characters DIM:.

• Min — Specifies the start of a range. For dimensions, Min represents the
start of a range of elements to extract. For fields, Min represents the start of
a range of values to extract.

• Max — Specifies the endpoint of a range. For dimensions, Max represents
the end of a range of elements to extract. For fields, Max represents the end
of a range of values to extract.

HDF Raster Image Data
No subsetting options are available for HDF raster image data.

Using the MATLAB hdfread Function
To import data from an HDF or HDF-EOS file, you can use the hdfread
function. The hdfread function provides a programmatic way to import data
from an HDF4 file, in contrast to the interactive HDF Import Tool, described
in “Using the HDF Import Tool” on page 6-69. The hdfread function hides
many of the details that you need to know if you use the low-level HDF

Importing HDF4 and HDF-EOS Data

6-85

functions, described in “Using the HDF4 Command-Line Interface” on
page 6-88.

To use the hdfread function to import data from an HDF4 file, you must know
the name of the data set in the file that you want to read. To get this
information, use the hdfinfo function. This section describes these high-level
MATLAB HDF functions, including

• “Getting Information About an HDF4 File” on page 6-85

• “Importing Data from a CDF File” on page 6-55

To export data to an HDF4 file, you must use the low-level functions described
in “Exporting MATLAB Data to an HDF4 File” on page 6-96.

Getting Information About an HDF4 File
To get information about the contents of an HDF4 file, use the hdfinfo
function. The hdfinfo function returns a structure that contains information
about the file and the data in the file.

Note You can also use the HDF Import Tool to get information about the
contents of an HDF4 file. See “Using the HDF Import Tool” on page 6-69 for
more information.

This example returns information about a sample HDF4 file included with
MATLAB:

info = hdfinfo('example.hdf')

info =

 Filename: 'example.hdf'
 SDS: [1x1 struct]
 Vdata: [1x1 struct]

To get information about the data sets stored in the file, look at the SDS field.

6 Data Import and Export

6-86

Importing Data from a HDF4 File
To import data into the MATLAB workspace from an HDF4 file, use the
hdfread function. To use this function, you must specify the data set that you
want to read. Use the hdfinfo function to get this information.

The following example illustrates this process. This example also illustrates
how to import a subset of the data in a data set. See “Reading a Subset of the
Data in a Data Set” on page 6-87 for more information.

1 Determine the names of data sets in the HDF4 file, using the hdfinfo
function.

info = hdfinfo('example.hdf')

info =

 Filename: 'example.hdf'
 SDS: [1x1 struct]
 Vdata: [1x1 struct]

To determine the names and other information about the data sets in the
file, look at the contents of the SDS field. The Name field in the SDS structure
gives the name of the data set.

dsets = info.SDS

dsets =

 Filename: 'example.hdf'
 Type: 'Scientific Data Set'
 Name: 'Example SDS'
 Rank: 2
 DataType: 'int16'
 Attributes: []
 Dims: [2x1 struct]
 Label: {}
 Description: {}
 Index: 0

Importing HDF4 and HDF-EOS Data

6-87

2 Read the data set from the HDF4 file, using the hdfread function. Specify
the name of the data set as a parameter to the function. Note that the data
set name is case sensitive. This example returns a 16-by-5 array:

dset = hdfread('example.hdf', 'Example SDS');

dset =

 3 4 5 6 7
 4 5 6 7 8
 5 6 7 8 9
 6 7 8 9 10
 7 8 9 10 11
 8 9 10 11 12
 9 10 11 12 13
 10 11 12 13 14
 11 12 13 14 15
 12 13 14 15 16
 13 14 15 16 17
 14 15 16 17 18
 15 16 17 18 19
 16 17 18 19 20
 17 18 19 20 21
 18 19 20 21 22

Reading a Subset of the Data in a Data Set. To read a subset of a data set, you can
use the optional 'index' parameter. The value of the index parameter is a cell
array of three vectors that specify the location in the data set to start reading,
the skip interval (e.g., read every other data item), and the amount of data to
read (e.g., the length along each dimension). In HDF4 terminology, these
parameters are called the start, stride, and edge values.

For example, this code

• Starts reading data at the third row, third column ([3 3]).

• Reads every element in the array([]).

• Reads 10 rows and 2 columns ([10 2]).

subset = hdfread('Example.hdf','Example SDS',...
'Index',{[3 3],[],[10 2]})

6 Data Import and Export

6-88

subset =

 7 8
 8 9
 9 10
 10 11
 11 12
 12 13
 13 14
 14 15
 15 16
 16 17

Using the HDF4 Command-Line Interface
This section describes how to use MATLAB functions to access the HDF4
Application Programming Interfaces (APIs). These APIs are libraries of C
routines that you can use to import data from an HDF4 file. For a complete list
of the HDF APIs supported by MATLAB and the functions you use to access
each one, see the hdf reference page.

Topics covered include

• “Understanding the HDF4 to MATLAB Syntax Mapping” on page 6-88

• “Example: Using the HDF4 SD API to Import Data” on page 6-89

Note You can also use the HDF Import Tool to get information about the
contents of an HDF4 file. See “Using the HDF Import Tool” on page 6-69 for
more information.

Understanding the HDF4 to MATLAB Syntax Mapping
Each HDF4 API includes many individual routines that you use to read data
from files, write data to files, and perform other related functions. For example,
the HDF Scientific Data (SD) API includes separate C routines to open
(SDopen), close (SDend), and read data (SDreaddata).

Instead of supporting each routine in the HDF APIs, MATLAB provides a
single function that serves as a gateway to all the routines in a particular HDF

Importing HDF4 and HDF-EOS Data

6-89

API. For example, the HDF Scientific Data (SD) API includes the C routine
SDend to close an HDF file:

status = SDend(sd_id); /* C code */

To call this routine from MATLAB, use the MATLAB function associated with
the SD API, hdfsd. You must specify the name of the routine, minus the API
acronym, as the first argument and pass any other required arguments to the
routine in the order they are expected. For example,

status = hdfsd('end',sd_id); % MATLAB code

Handling HDF Routines with Output Arguments. Some HDF API routines use output
arguments to return data. Because MATLAB does not support output
arguments, you must specify these arguments as return values.

For example, the SDfileinfo routine returns data about an HDF file in two
output arguments, ndatasets and nglobal_atts:

status = SDfileinfo(sd_id, ndatasets, nglobal_atts); /* C code */

To call this routine from MATLAB, change the output arguments into return
values:

[ndatasets, nglobal_atts, status] = hdfsd('fileinfo',sd_id);

Specify the return values in the same order as they appear as output
arguments. The function status return value is always specified as the last
return value.

Example: Using the HDF4 SD API to Import Data
To illustrate using HDF4 API routines in MATLAB, this section describes how
to import HDF4 Scientific Data (SD) into the MATLAB workspace. The
following gives an overview of the steps required by the SD API to import data
from and HDF file. The following sections walk you through a detailed
example.

• “Step 1: Opening the HDF4 File” on page 6-90

• “Step 2: Retrieving Information About the HDF File” on page 6-91

• “Step 3: Retrieving Attributes from an HDF File (Optional)” on page 6-91

• “Step 4: Selecting the Data Sets to Import” on page 6-92

• “Step 5: Getting Information About a Data Set” on page 6-92

6 Data Import and Export

6-90

• “Step 6: Reading Data from the HDF File” on page 6-93

• “Step 7: Closing the HDF4 Data Set” on page 6-95

• “Step 8: Closing the HDF File” on page 6-95

Note The following sections, when referring to specific routines in the HDF
SD API, use the C library name rather than the MATLAB function name. The
MATLAB syntax is used in all examples.

Step 1: Opening the HDF4 File. To import an HDF SD data set, you must first open
the file using the SD API routine SDstart. In MATLAB, you use the hdfsd
function, specifying as arguments:

• Name of the SD API routine, start in this case.

• Name of the file you want to open.

• Mode in which you want to open it. The following table lists the file access
modes supported by the SDstart routine. In MATLAB, you specify these
modes as text strings. You can specify the full HDF mode name or one of the
abbreviated forms listed in the table.

For example, this code opens the file mydata.hdf for read access:

sd_id = hdfsd('start','mydata.hdf','read');

If SDstart can find and open the file specified, it returns an HDF SD file
identifier, named sd_id in the example. Otherwise, it returns -1.

HDF File Creation
Mode

HDF Mode Name MATLAB String

Create a new file 'DFACC_CREATE' 'create'

Read access 'DFACC_RDONLY' 'read' or
'rdonly'

Read and write
access

'DFACC_RDWR' 'rdwr' or
'write'

Importing HDF4 and HDF-EOS Data

6-91

Step 2: Retrieving Information About the HDF File. To get information about an HDF4
file, you must use the SD API routine SDfileinfo. This function returns the
number of data sets in the file and the number of global attributes in the file,
if any. (For more information about global attributes, see “Exporting MATLAB
Data to an HDF4 File” on page 6-96.) In MATLAB, you use the hdfsd function,
specifying the following arguments:

• Name of the SD API routine, fileinfo in this case

• SD file identifier, sd_id, returned by SDstart

In this example, the HDF4 file contains three data sets and one global
attribute.

[ndatasets, nglobal_atts, stat] = hdfsd('fileinfo',sd_id)

ndatasets =
3

nglobal_atts =
1

status =
0

Step 3: Retrieving Attributes from an HDF File (Optional). HDF files can optionally
include information, called attributes, that describes the data the file contains.
Attributes associated with an entire HDF file are called global attributes.
Attributes associated with a data set are called local attributes. (You can also
associate attributes with files or dimensions. For more information, see “Step
4: Writing Metadata to an HDF File” on page 6-100.)

To retrieve attributes from an HDF file, use the HDF4 API routine
SDreadattr. In MATLAB, use the hdfsd function, specifying as arguments:

• Name of the SD API routine, readattr in this case.

• File identifier (sd_id) returned by SDstart, for global attributes, or the data
set identifier for local attributes. (See “Step 4: Selecting the Data Sets to
Import” on page 6-92 to learn how to get a data set identifier.)

• Index identifying the attribute you want to view. HDF uses zero-based
indexing. If you know the name of an attribute but not its index, use the

6 Data Import and Export

6-92

SDfindattr routine to determine the index value associated with the
attribute.

For example, this code returns the contents of the first global attribute, which
is the character string my global attribute:

attr_idx = 0;
[attr, status] = hdfsd('readattr', sd_id, attr_idx);

attr =
my global attribute

Step 4: Selecting the Data Sets to Import. To select a data set, use the SD API routine
SDselect. In MATLAB, you use the hdfsd function, specifying as arguments:

• Name of the SD API routine, select in this case

• HDF SD file identifier (sd_id) returned by SDstart

If SDselect finds the specified data set in the file, it returns an HDF SD data
set identifier, called sds_id in the example. If it cannot find the data set, it
returns -1.

Note Do not confuse HDF SD file identifiers, named sd_id in the examples,
with HDF SD data set identifiers, named sds_id in the examples.

sds_id = hdfsd('select',sd_id,1)

Step 5: Getting Information About a Data Set. To read a data set, you must get
information about the data set, such as its name, size, and data type. In the
HDF SD API, you use the SDgetinfo routine to gather this information. In
MATLAB, use the hdfsd function, specifying as arguments:

• Name of the SD API routine, getinfo in this case

• HDF SD data set identifier (sds_id) returned by SDselect

This code retrieves information about the data set identified by sds_id:

[dsname, dsndims, dsdims, dstype, dsatts, stat] =
hdfsd('getinfo',sds_id)

Importing HDF4 and HDF-EOS Data

6-93

dsname =
A

dsndims =
2

dsdims =
5 3

dstype =
double

dsatts =
0

stat =
0

Step 6: Reading Data from the HDF File. To read data from an HDF4 file, you must
use the SDreaddata routine. In MATLAB, use the hdfsd function, specifying as
arguments:

• Name of the SD API function, readdata in this case.

• HDF SD data set identifier (sds_id) returned by SDselect.

• Location in the data set where you want to start reading data, specified as a
vector of index values, called the start vector. To read from the beginning of
a data set, specify zero for each element of the start vector. Use SDgetinfo to
determine the dimensions of the data set.

• Number of elements along each dimension to skip between each read
operation, specified as a vector of scalar values, called the stride vector. To
read every element of a data set, specify 1 as the value for each element of
the vector or specify an empty array ([]).

• Total number of elements to read along each dimension, specified as a vector
of scalar values, called the edges vector. To read every element of a data set,
set each element of the edges vector to the size of each dimension of the data
set. Use SDgetinfo to determine these sizes.

6 Data Import and Export

6-94

Note SDgetinfo returns dimension values in row-major order, the ordering
used by HDF. Because MATLAB stores data in column-major order, you must
specify the dimensions in column-major order, that is, [columns,rows]. In
addition, you must use zero-based indexing in these arguments.

For example, to read the entire contents of a data set, use this code:

[ds_name, ds_ndims, ds_dims, ds_type, ds_atts, stat] =
hdfsd('getinfo',sds_id);

ds_start = zeros(1,ds_ndims); % Creates the vector [0 0]
ds_stride = [];
ds_edges = ds_dims;

[ds_data, status] =
hdfsd('readdata',sds_id,ds_start,ds_stride,ds_edges);

disp(ds_data)
1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

To read less than the entire data set, use the start, stride, and edges vectors
to specify where you want to start reading data and how much data you want
to read. For example, this code reads the entire second row of the sample
data set:

ds_start = [0 1] % Start reading at the first column, second row
ds_stride = []; % Read each element
ds_edges = [5 1]; % Read a 1-by-5 vector of data

[ds_data, status] =
hdfsd('readdata',sds_id,ds_start,ds_stride,ds_edges);

Importing HDF4 and HDF-EOS Data

6-95

Step 7: Closing the HDF4 Data Set. After writing data to a data set in an HDF file,
you must close access to the data set. In the HDF SD API, you use the
SDendaccess routine to close a data set. In MATLAB, use the hdfsd function,
specifying as arguments:

• Name of the SD API routine, endaccess in this case

• HDF SD data set identifier (sds_id) returned by SDselect

For example, this code closes the data set:

stat = hdfsd('endaccess',sds_id);

You must close access to all the data sets in an HDF file before closing it.

Step 8: Closing the HDF File. After writing data to a data set and closing the data
set, you must also close the HDF file. In the HDF SD API, you use the SDend
routine. In MATLAB, use the hdfsd function, specifying as arguments:

• Name of the SD API routine, end in this case

• HDF SD file identifier (sd_id) returned by SDstart

For example, this code closes the data set:

stat = hdfsd('end',sd_id);

6 Data Import and Export

6-96

Exporting MATLAB Data to an HDF4 File
To export data from MATLAB in an HDF file, you must use the functions in the
HDF API associated with the HDF data type. Each API has a particular
programming model, that is, a prescribed way to use the routines to write data
sets to the file. (In HDF terminology, the numeric arrays stored in HDF files
are called data sets.)

To illustrate this concept, this section describes the programming model of one
particular HDF API: the HDF Scientific Data (SD) API. For a complete list of
the HDF APIs supported by MATLAB, see the hdf reference page.

Note This section does not attempt to describe all HDF features and
routines. To use the MATLAB HDF functions effectively, you must refer to the
official NCSA documentation at the NCSA Web site (hdf.ncsa.uiuc.edu).

Example: Exporting Data to an HDF4 File
The programming model for exporting HDF SD data involves these steps:

• “Step 1: Creating an HDF File” on page 6-96

• “Step 2: Creating an HDF Data Set” on page 6-97

• “Step 3: Writing MATLAB Data to an HDF File” on page 6-98

• “Step 4: Writing Metadata to an HDF File” on page 6-100

• “Step 5: Closing HDF Data Sets” on page 6-102

• “Step 6: Closing an HDF File” on page 6-102

Step 1: Creating an HDF File
To export MATLAB data in HDF format, you must first create an HDF file, or
open an existing one. In the HDF SD API, you use the SDstart routine. In
MATLAB, use the hdfsd function, specifying start as the first argument. As
other arguments, specify

• A text string specifying the name you want to assign to the HDF file (or the
name of an existing HDF file)

• A text string specifying the HDF SD interface file access mode

Exporting MATLAB Data to an HDF4 File

6-97

For example, this code creates an HDF file named mydata.hdf:

sd_id = hdfsd('start','mydata.hdf','DFACC_CREATE');

When you specify the DFACC_CREATE access mode, SDstart creates the file and
initializes the HDF SD multifile interface, returning an HDF SD file identifier,
named sd_id in the example.

If you specify DFACC_CREATE mode and the file already exists, SDstart fails,
returning -1. To open an existing HDF file, you must use HDF read or write
modes. For information about using SDstart in these modes, see “Step 1:
Opening the HDF4 File” on page 6-90.

Step 2: Creating an HDF Data Set
After creating the HDF file, or opening an existing one, you must create a data
set in the file for each MATLAB array you want to export.

Note To write data to an existing data set, you can skip this step.

In the HDF SD API, you use the SDcreate routine to create data sets. In
MATLAB, you use the hdfsd function, specifying as arguments:

• Name of the SD API routine, create in this case

• Valid HDF SD file identifier, sd_id, returned by SDstart

• Name you want assigned to the data set

• Data type of the data set. For information about specifying data types, see
“Importing HDF4 and HDF-EOS Data” on page 6-69.

• Number of dimensions in the data set. This is called the rank of the data set
in HDF terminology.

• Size of each dimension, specified as a vector

The values you assign to these arguments depend on the MATLAB array you
want to export. For example, to export the following MATLAB 3-by-5 array of
doubles,

A = [1 2 3 4 5 ; 6 7 8 9 10 ; 11 12 13 14 15];

6 Data Import and Export

6-98

you could set the values of these arguments as in this code fragment:

ds_name = 'A';
ds_type = 'double';
ds_rank = ndims(A);
ds_dims = fliplr(size(A));

sds_id = hdfsd('create',sd_id,ds_name,ds_type,ds_rank,ds_dims);

If SDcreate can successfully create the data set, it returns an HDF SD data set
identifier, (sds_id). Otherwise, SDcreate returns -1.

Note In this example, note how the code fragment reverses the order of the
values in the dimensions argument (ds_dims). This processing is necessary
because the MATLAB size function returns the dimensions in column-major
order and HDF expects to receive dimensions in row-major order.

Once you create a data set, you cannot change its characteristics. You can,
however, modify the data it contains. To do this, initiate access to the data set,
using SDselect, and write to the data set as described in “Step 3: Writing
MATLAB Data to an HDF File” on page 6-98.

Step 3: Writing MATLAB Data to an HDF File
After creating an HDF file and creating a data set in the file, you can write data
to the entire data set or just a portion of the data set. In the HDF SD API, you
use the SDwritedata routine. In MATLAB, use the hdfsd function, specifying
specifying as arguments:

• Name of the SD API routine, writedata in this case

• Valid HDF SD data set identifier, sds_id, returned by SDcreate

• Location in the data set where you want to start writing data, called the start
vector in HDF terminology

• Number of elements along each dimension to skip between each write
operation, called the stride vector in HDF terminology

• Total number of elements to write along each dimension, called the edges
vector in HDF terminology

• MATLAB array to be written

Exporting MATLAB Data to an HDF4 File

6-99

Note You must specify the values of the start, stride, and edges arguments in
row-major order, rather than the column-major order used in MATLAB. Note
how the example uses fliplr to reverse the order of the dimensions in the
vector returned by the size function before assigning it as the value of the
edges argument.

The values you assign to these arguments depend on the MATLAB array you
want to export. For example, the following code fragment writes this MATLAB
3-by-5 array of doubles,

A = [1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15];

into an HDF file:

ds_start = zeros(1:ndims(A)); % Start at the beginning
ds_stride = []; % Write every element.
ds_edges = fliplr(size(A)); % Reverse the dimensions.

stat = hdfsd('writedata',sds_id,...
ds_start, ds_stride, ds_edges, A)

If it can write the data to the data set, SDwritedata returns 0; otherwise, it
returns -1.

Note SDwritedata queues write operations. To ensure that these queued
write operations are executed, you must close the file, using the SDend routine.
See “Step 6: Closing an HDF File” on page 6-102 for more information. As a
convenience, MATLAB provides a function, MLcloseall, that you can use to
close all open data sets and file identifiers with a single call. See “Using the
MATLAB HDF Utility API” on page 6-103 for more information.

Writing Data to Portions of Data Sets. To write less than the entire data set, use the
start, stride, and edges vectors to specify where you want to start writing data
and how much data you want to write.

6 Data Import and Export

6-100

For example, the following code fragment uses SDwritedata to replace the
values of the entire second row of the sample data set:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

with the vector B:

B = [9 9 9 9 9];

In the example, the start vector specifies that you want to start the write
operation in the first column of the second row. Note how HDF uses zero-based
indexing and specifies the column dimension first. In MATLAB, you would
specify this location as (2,1). The edges argument specifies the dimensions of
the data to be written. Note that the size of the array of data to be written must
match the edge specification.

ds_start = [0 1]; % Start writing at the first column, second row.
ds_stride = []; % Write every element.
ds_edges = [5 1]; % Each row is a 1-by-5 vector.

stat = hdfsd('writedata',sds_id,ds_start,ds_stride,ds_edges,B);

Step 4: Writing Metadata to an HDF File
You can optionally include information in an HDF file, called attributes, that
describes the file and its contents. Using the HDF SD API, you can associate
attributes with three types of HDF objects:

• An entire HDF file — File attributes, also called global attributes, generally
contain information pertinent to all the data sets in the file.

• A data set in an HDF file — Data set attributes, also called local attributes,
describe individual data sets.

• A dimension of a data set — Dimension attributes provide information about
one particular dimension of a data set.

Associating Multiple Attributes with a Single Object. You can associate multiple
attributes with a single HDF object. HDF maintains an attribute index for each
object. The attribute index is zero-based. The first attribute has index value 0,
the second has index value 1, and so on. You access an attribute by its index
value.

Exporting MATLAB Data to an HDF4 File

6-101

Each attribute has the format name=value, where name (called label in HDF
terminology) is a text string up to 256 characters in length and value contains
one or more entries of the same data type. A single attribute can have multiple
values.

Creating Attributes. To create an attribute in the HDF SD API, use the SDsetattr
routine. In MATLAB, use the hdfsd function, specifying setattr as the first
argument. As other arguments, specify

• A valid HDF SD identifier associated with the object. This value can be a file
identifier (sd_id), a data set identifier (sds_id), or a dimension identifier
(dim_id).

• A text string that defines the name of the attribute. The SD interface
supports predefined attributes that have reserved names and, in some cases,
data types. For information about these attributes, see “Creating Predefined
Attributes” on page 6-101.

• The attribute value.

For example, this code creates a global attribute, named my_global_attr, and
associates it with the HDF file identified by sd_id:

status = hdfsd('setattr',sd_id,'my_global_attr','my_attr_val');

Note In the NCSA documentation, the SDsetattr routine has two additional
arguments: data type and the number of values in the attribute. When calling
this routine from MATLAB, you do not have to include these arguments. The
MATLAB HDF function can determine the data type and size of the attribute
from the value you specify.

Creating Predefined Attributes. Predefined attributes are identical to user-defined
attributes except that the HDF SD API has already defined their names and
data types. For example, the HDF SD API defines an attribute, named
cordsys, in which you can specify the coordinate system used by the data set.
Possible values of this attribute include the text strings 'cartesian', 'polar',
and 'spherical'.

6 Data Import and Export

6-102

Predefined attributes can be useful because they establish conventions that
applications can depend on. The HDF SD API supports predefined attributes
for data sets and dimensions only; there are no predefined attributes for files.
For a complete list of the predefined attributes, see the NCSA documentation.

In the HDF SD API, you create predefined attributes the same way you create
user-defined attributes, using the SDsetattr routine. In MATLAB, use the
hdfsd function, specifying setattr as the first argument:

attr_name = 'cordsys';
attr_value = 'polar';

status = hdfsd('setattr',sds_id,attr_name,attr_value);

The HDF SD API also includes specialized functions for writing and reading
the predefined attributes. These specialized functions, such as SDsetdatastrs,
are sometimes easier to use, especially when you are reading or writing
multiple related predefined attributes. You must use specialized functions to
read or write the predefined dimension attributes.

Step 5: Closing HDF Data Sets
After writing data to a data set in an HDF file, you must close access to the data
set. In the HDF SD API, you use the SDendaccess routine to close a data set.
In MATLAB, use the hdfsd function, specifying endaccess as the first
argument. As the only other argument, specify a valid HDF SD data set
identifier, sds_id in this example:

stat = hdfsd('endaccess',sds_id);

Step 6: Closing an HDF File
After writing data to a data set and closing the data set, you must also close the
HDF file. In the HDF SD API, you use the SDend routine. In MATLAB, use the
hdfsd function, specifying end as the first argument. As the only other
argument, specify a valid HDF SD file identifier, sd_id in this example:

stat = hdfsd('end',sd_id);

You must close access to all the data sets in an HDF file before closing it.

Exporting MATLAB Data to an HDF4 File

6-103

Note Closing an HDF file executes all the write operations that have been
queued using SDwritedata. As a convenience, the MATLAB HDF Utility API
provides a function, MLcloseall, that can close all open data set and file
identifiers with a single call. See “Using the MATLAB HDF Utility API” on
page 6-103 for more information.

Using the MATLAB HDF Utility API
In addition to the standard HDF APIs, listed in “Using HDF5 Data Type
Objects” on page 6-67, MATLAB supports utility functions that are designed to
make using HDF in the MATLAB environment easier.

For example, the MATLAB HDF utility API includes a function, MLlistinfo,
that you can use to view all types of open HDF identifiers, such as HDF SD file
identifiers. MATLAB updates these lists whenever HDF identifiers are created
or closed.

This code obtains a list of all open HDF file and data set identifiers, using the
MLlistinfo function. In this example, only two identifiers are open:

hdfml('listinfo')
No open RI identifiers
No open GR identifiers
No open grid identifiers
No open grid file identifiers
No open annotation identifiers
No open AN identifiers
Open scientific dataset identifiers:

262144
Open scientific data file identifiers:

393216
No open Vdata identifiers
No open Vgroup identifiers
No open Vfile identifiers
No open point identifiers
No open point file identifiers

6 Data Import and Export

6-104

No open swath identifiers
No open swath file identifiers
No open access identifiers
No open file identifiers

Closing All Open HDF Identifiers
To close all open HDF identifiers in a single call, use the MLcloseall function.
This call closes all open HDF identifiers:

hdfml('closeall')

Using Low-Level File I/O Functions

6-105

Using Low-Level File I/O Functions
MATLAB includes a set of low-level file I/O functions that are based on the I/O
functions of the ANSI Standard C Library. If you know C, you are probably
familiar with these routines. This section covers

• “Opening Files” on page 6-106

• “Reading Binary Data” on page 6-108

• “Writing Binary Data” on page 6-110

• “Controlling Position in a File” on page 6-110

• “Reading Strings Line by Line from Text Files” on page 6-112

• “Reading Formatted ASCII Data” on page 6-114

• “Writing Formatted Text Files” on page 6-115

• “Closing a File” on page 6-117

The MATLAB file I/O functions use the same programming model as the C
language routines. To read or write data, you perform these steps:

1 Open the file, using fopen. fopen returns a file identifier that you use with
all the other low-level file I/O routines.

2 Operate on the file.

a Read binary data, using fread.

b Write binary data, using fwrite.

c Read text strings from a file line-by-line, using fgets/fgetl.

d Read formatted ASCII data, using fscanf.

e Write formatted ASCII data, using fprintf.

3 Close the file, using fclose.

This section also describes how these functions affect the current position in
the file where read or write operations happen and how you can change the
position in the file.

6 Data Import and Export

6-106

Note While the MATLAB file I/O commands are modeled on the C language
I/O routines, in some ways their behavior is different. For example, the fread
function is vectorized; that is, it continues reading until it encounters a text
string or the end of file. These sections, and the MATLAB reference pages for
these functions, highlight any differences in behavior.

Opening Files
Before reading or writing a text or binary file, you must open it with the fopen
command.

fid = fopen('filename','permission')

Specifying the Permission String
The permission string specifies the kind of access to the file you require.
Possible permission strings include

• r for reading only

• w for writing only

• a for appending only

• r+ for both reading and writing

Note Systems such as Microsoft Windows that distinguish between text and
binary files might require additional characters in the permission string, such
as 'rb' to open a binary file for reading.

Using the Returned File Identifier (fid)
If successful, fopen returns a a nonnegative integer, called a file identifier
(fid). You pass this value as an argument to the other I/O functions to access
the open file. For example, this fopen statement opens the data file named
penny.dat for reading:

fid = fopen('penny.dat','r')

Using Low-Level File I/O Functions

6-107

If fopen fails, for example if you try to open a file that does not exist, fopen

• Assigns -1 to the file identifier.

• Assigns an error message to an optional second output argument. Note that
the error messages are system dependent and are not provided for all errors
on all systems. The function ferror can also provide information about
errors.

Test the file identifier each time you open a file in your code. For example, this
code loops until a readable filename is entered:

fid=0;
while fid < 1
 filename=input('Open file: ', 's');
 [fid,message] = fopen(filename, 'r');
 if fid == -1
 disp(message)
 end
end

When you run this code, if you specify a file that doesn’t exist, such as
nofile.mat, at the Open file: prompt, the results are

Open file: nofile.mat
Sorry. No help in figuring out the problem . . .

If you specify a file that does exist, such as goodfile.mat, the code example
returns the file identifier, fid, and exits the loop.

Open file: goodfile.mat

Opening Temporary Files and Directories
The tempdir and tempname functions assist in locating temporary data on your
system.

Function Purpose

tempdir Get temporary directory name.

tempname Get temporary filename.

6 Data Import and Export

6-108

Use these functions to create temporary files. Some systems delete temporary
files every time you reboot the system. On other systems, designating a file as
temporary can mean only that the file is not backed up.

The tempdir function returns the name of the directory or folder that has been
designated to hold temporary files on your system. For example, issuing
tempdir on a UNIX system returns the /tmp directory.

MATLAB also provides a tempname function that returns a filename in the
temporary directory. The returned filename is a suitable destination for
temporary data. For example, if you need to store some data in a temporary file,
then you might issue the following command first:

fid = fopen(tempname, 'w');

Note The filename that tempname generates is not guaranteed to be unique;
however, it is likely to be so.

Reading Binary Data
The fread function reads all or part of a binary file (as specified by a file
identifier) and stores it in a matrix. In its simplest form, it reads an entire file
and interprets each byte of input as the next element of the matrix. For
example, the following code reads the data from a file named nickel.dat into
matrix A:

fid = fopen('nickel.dat','r');
A = fread(fid);

To echo the data to the screen after reading it, use char to display the contents
of A as characters, transposing the data so it is displayed horizontally:

disp(char(A'))

The char function causes MATLAB to interpret the contents of A as characters
instead of as numbers. Transposing A displays it in its more natural horizontal
format.

Using Low-Level File I/O Functions

6-109

Controlling the Number of Values Read
fread accepts an optional second argument that controls the number of values
read (if unspecified, the default is the entire file). For example, this statement
reads the first 100 data values of the file specified by fid into the column
vector A.

A = fread(fid,100);

Replacing the number 100 with the matrix dimensions [10 10] reads the same
100 elements into a 10-by-10 array.

Controlling the Data Type of Each Value
An optional third argument to fread controls the data type of the input. The
data type argument controls both the number of bits read for each value and
the interpretation of those bits as character, integer, or floating-point values.
MATLAB supports a wide range of precisions, which you can specify with
MATLAB specific strings or their C or Fortran equivalents.

Some common precisions include

• 'char' and 'uchar' for signed and unsigned characters (usually 8 bits)

• 'short' and 'long' for short and long integers (usually 16 and 32 bits,
respectively)

• 'float' and 'double' for single- and double-precision floating-point values
(usually 32 and 64 bits, respectively)

Note The meaning of a given precision can vary across different hardware
platforms. For example, a 'uchar' is not always 8 bits. fread also provides a
number of more specific precisions, such as 'int8' and 'float32'. If in doubt,
use precisions that are not platform dependent. See fread for a complete list
of precisions.

For example, if fid refers to an open file containing single-precision
floating-point values, then the following command reads the next 10
floating-point values into a column vector A:

A = fread(fid,10,'float');

6 Data Import and Export

6-110

Writing Binary Data
The fwrite function writes the elements of a matrix to a file in a specified
numeric precision, returning the number of values written. For instance, these
lines create a 100-byte binary file containing the 25 elements of the 5-by-5
magic square, each stored as 4-byte integers:

fwriteid = fopen('magic5.bin','w');
count = fwrite(fwriteid,magic(5),'int32');
status = fclose(fwriteid);

In this case, fwrite sets the count variable to 25 unless an error occurs, in
which case the value is less.

Controlling Position in a File
Once you open a file with fopen, MATLAB maintains a file position indicator
that specifies a particular location within a file. MATLAB uses the file position
indicator to determine where in the file the next read or write operation will
begin. The following sections describe how to

• Determine whether the file position indicator is at the end of the file

• Move to a specific location in the file

• Retrieve the current location of the file position indicator

• Reset the file position indicator to the beginning of the file

Determining End-of-File
The fseek and ftell functions let you set and query the position in the file at
which the next input or output operation takes place:

• The fseek function repositions the file position indicator, letting you skip
over data or back up to an earlier part of the file.

• The ftell function gives the offset in bytes of the file position indicator for a
specified file.

The syntax for fseek is

status = fseek(fid,offset,origin)

Using Low-Level File I/O Functions

6-111

fid is the file identifier for the file. offset is a positive or negative offset value,
specified in bytes. origin is one of the following strings that specify the location
in the file from which to calculate the position.

Understanding File Position
To see how fseek and ftell work, consider this short M-file:

A = 1:5;
fid = fopen('five.bin','w');
fwrite(fid, A,'short');
status = fclose(fid);

This code writes out the numbers 1 through 5 to a binary file named five.bin.
The call to fwrite specifies that each numerical element be stored as a short.
Consequently, each number uses two storage bytes.

Now reopen five.bin for reading:

fid = fopen('five.bin','r');

This call to fseek moves the file position indicator forward 6 bytes from the
beginning of the file:

status = fseek(fid,6,'bof');

This call to fread reads whatever is at file positions 7 and 8 and stores it in
variable four:

four = fread(fid,1,'short');

'bof' Beginning of file

'cof' Current position in file

'eof' End of file

File Position bof 1 2 3 4 5 6 7 8 9 10 eof

File Contents 0 1 0 2 0 3 0 4 0 5

File Position Indicator __↑

6 Data Import and Export

6-112

The act of reading advances the file position indicator. To determine the
current file position indicator, call ftell:

position = ftell(fid)

position =

 8

This call to fseek moves the file position indicator back 4 bytes:

status = fseek(fid,-4,'cof');

Calling fread again reads in the next value (3):

three = fread(fid,1,'short');

Reading Strings Line by Line from Text Files
MATLAB provides two functions, fgetl and fgets, that read lines from
formatted text files and store them in string vectors. The two functions are
almost identical; the only difference is that fgets copies the newline character
to the string vector but fgetl does not.

The following M-file function demonstrates a possible use of fgetl. This
function uses fgetl to read an entire file one line at a time. For each line, the
function determines whether an input literal string (literal) appears in the
line.

File Position bof 1 2 3 4 5 6 7 8 9 10 eof

File Contents 0 1 0 2 0 3 0 4 0 5

File Position Indicator _↑

File Position bof 1 2 3 4 5 6 7 8 9 10 eof

File Contents 0 1 0 2 0 3 0 4 0 5

File Position Indicator _↑

Using Low-Level File I/O Functions

6-113

If it does, the function prints the entire line preceded by the number of times
the literal string appears on the line.

function y = litcount(filename, literal)
% Search for number of string matches per line.

fid = fopen(filename, 'rt');
y = 0;
while feof(fid) == 0
 tline = fgetl(fid);
 matches = findstr(tline, literal);
 num = length(matches);
 if num > 0
 y = y + num;
 fprintf(1,'%d:%s\n',num,tline);
 end
end
fclose(fid);

For example, consider the following input data file called badpoem:

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonflys or fleas.

To find out how many times the string 'an' appears in this file, use litcount:

litcount('badpoem','an')
2: Oranges and lemons,
1: Pineapples and tea.
3: Orangutans and monkeys,

6 Data Import and Export

6-114

Reading Formatted ASCII Data
The fscanf function is like the fscanf function in standard C. Both functions
operate in a similar manner, reading data from a file and assigning it to one or
more variables. Both functions use the same set of conversion specifiers to
control the interpretation of the input data.

The conversion specifiers for fscanf begin with a % character; common
conversion specifiers include

You can also specify that fscanf skip a value by specifying an asterisk in a
conversion specifier. For example, %*f means skip the floating-point value in
the input data; %*d means skip the integer value in the input data.

Differences Between the MATLAB fscanf and the C fscanf
Despite all the similarities between the MATLAB and C versions of fscanf,
there are some significant differences. For example, consider a file named
moon.dat for which the contents are as follows:

3.654234533
2.71343142314
5.34134135678

The following code reads all three elements of this file into a matrix named
MyData:

fid = fopen('moon.dat','r');
MyData = fscanf(fid,'%g');
status = fclose(fid);

Notice that this code does not use any loops. Instead, the fscanf function
continues to read in text as long as the input format is compatible with the
format specifier.

Conversion Specifier Description

%s Match a string.

%d Match an integer in base 10 format.

%g Match a double-precision floating-point value.

Using Low-Level File I/O Functions

6-115

An optional size argument controls the number of matrix elements read. For
example, if fid refers to an open file containing strings of integers, then this
line reads 100 integer values into the column vector A:

A = fscanf(fid,'%5d',100);

This line reads 100 integer values into the 10-by-10 matrix A:

A = fscanf(fid,'%5d',[10 10]);

A related function, sscanf, takes its input from a string instead of a file. For
example, this line returns a column vector containing 2 and its square root:

root2 = num2str([2, sqrt(2)]);
rootvalues = sscanf(root2,'%f');

Writing Formatted Text Files
The fprintf function converts data to character strings and outputs them to
the screen or a file. A format control string containing conversion specifiers and
any optional text specify the output format. The conversion specifiers control
the output of array elements; fprintf copies text directly.

Common conversion specifiers include

Optional fields in the format specifier control the minimum field width and
precision. For example, this code creates a text file containing a short table of
the exponential function:

x = 0:0.1:1;
y = [x; exp(x)];

Conversion Specifier Description

%e Exponential notation

%f Fixed-point notation

%g Automatically select the shorter of %e and %f

6 Data Import and Export

6-116

The code below writes x and y into a newly created file named exptable.txt:

fid = fopen('exptable.txt','w');
fprintf(fid,'Exponential Function\n\n');
fprintf(fid,'%6.2f %12.8f\n',y);
status = fclose(fid);

The first call to fprintf outputs a title, followed by two carriage returns. The
second call to fprintf outputs the table of numbers. The format control string
specifies the format for each line of the table:

• A fixed-point value of six characters with two decimal places

• Two spaces

• A fixed-point value of twelve characters with eight decimal places

fprintf converts the elements of array y in column order. The function uses
the format string repeatedly until it converts all the array elements.

Now use fscanf to read the exponential data file:

fid = fopen('exptable.txt','r');
title = fgetl(fid);
[table,count] = fscanf(fid,'%f %f',[2 11]);
table = table';
status = fclose(fid);

The second line reads the file title. The third line reads the table of values, two
floating-point values on each line, until it reaches end of file. count returns the
number of values matched.

A function related to fprintf, sprintf, outputs its results to a string instead
of a file or the screen. For example,

root2 = sprintf('The square root of %f is %10.8e.\n',2,sqrt(2));

Using Low-Level File I/O Functions

6-117

Closing a File
When you finish reading or writing, use fclose to close the file. For example,
this line closes the file associated with file identifier fid:

status = fclose(fid);

This line closes all open files:

status = fclose('all');

Both forms return 0 if the file or files were successfully closed or -1 if the
attempt was unsuccessful.

MATLAB automatically closes all open files when you exit from MATLAB. It is
still good practice, however, to close a file explicitly with fclose when you are
finished using it. Not doing so can unnecessarily drain system resources.

Note Closing a file does not clear the file identifier variable fid. However,
subsequent attempts to access a file through this file identifier variable will
not work.

6 Data Import and Export

6-118

Exchanging Files over the Internet
MATLAB provides functions for exchanging files over the Internet. You can
exchange files using common protocols, such as File Transfer Protocol (FTP),
Simple Mail Transport Protocol (SMTP), and HyperText Transfer Protocol
(HTTP). In addition, you can create zip archives to minimize the transmitted
file size, and you can save and work with Web pages.

For more information, see the following sections:

• “Downloading Web Content and Files” on page 6-118

• “Creating and Uncompressing Zip Archives” on page 6-120

• “Sending E-Mail” on page 6-121

• “Performing FTP File Operations” on page 6-123

Downloading Web Content and Files
MATLAB provides two functions for downloading Web pages and files using
HTTP: urlread and urlwrite. With the urlread function, you can read and
save the contents of a Web page to a string variable in the MATLAB workspace.
With the urlwrite function, you can save a Web page’s content to a file.

Because it creates a string variable in the workspace, the urlread function is
useful for working with the contents of Web pages in MATLAB. The urlwrite
function is useful for saving Web pages to a local directory.

Note When using urlread, remember that only the HTML in that specific
Web page is retrieved. The hyperlink targets, images, and so on will not be
retrieved.

If you need to pass parameters to a Web page, the urlread and urlwrite
functions let you use HTTP post and get methods. For more information, see
the urlread and urlwrite reference pages.

Example — Using the urlread Function
The following procedure demonstrates how to retrieve the contents of the Web
page containing the Recent File list at the MATLAB Central File Exchange,
http://www.mathworks.com/matlabcentral/fileexchange/index.jsp. It

Exchanging Files over the Internet

6-119

assigns the results to a string variable, newFiles, and it uses the strfind
function to search the retrieved content for a specific word:

1 Retrieve the Web page content with the urlread function:

recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/loa
dFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

2 After retrieving the content, run the strfind function on the recentFile
variable:

hits = findstr(recentFile,'Simulink');

If the file contains the word Simulink, MATLAB will store the matches in
the hits variable.

While you can manually pass arguments using the URL, the urlread function
also lets you pass parameters to a Web page using standard HTTP methods,
including post and form. Using the HTTP get method, which passes
parameters in the URL, the following code queries Google for the word
Simulink:

s =
urlread('http://www.google.com/search','get',{'q','Simulink'})

For more information, see the urlread reference page.

Example — Using the urlwrite Function
The following example builds on the procedure in the previous section. This
example still uses urlread and checks for a specific word, but it also uses
urlwrite to save the file if it contains any matches:

%The urlread function loads the contents of the Web page into the
%MATLAB workspace.
recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/loa
dFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

%The findstr function searches for the word "Simulink".
hits = findstr(recentFile,'Simulink');

6 Data Import and Export

6-120

%The if statement checks for any hits.
if(isempty(hits) == 0)
 %If there are hits, the Web page will be saved locally using the
 %urlwrite function.

urlwrite('http://www.mathworks.com/matlabcentral/fileexchange/lo
adFileList.do?objectType=fileexchange&orderBy=date&srt3=0','cont
ains_simulink.html');
end;

Note that the Web page is saved as contains_simulink.html.

Creating and Uncompressing Zip Archives
Using the zip and unzip functions, you can compress and uncompress files and
directories. The zip function compresses files or directories into a zip archive.
The unzip function uncompresses zip archives.

Example — Using the zip Function
Again building on the example from previous sections, the following code
creates a zip archive of the retrieved Web page:

%The urlread function loads the contents of the Web page into the
%MATLAB workspace.
recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/loa
dFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

%The findstr function searches for the word Simulink .
hits = findstr(recentFile,'Simulink');

%The if statement checks for any hits.
if(isempty(hits) == 0)
%If there are hits, the Web page will be saved locally using the
%urlwrite function.
urlwrite('http://www.mathworks.com/matlabcentral/fileexchange/lo
adFileList.do?objectType=fileexchange&orderBy=date&srt3=0','cont
ains_simulink.html');

Exchanging Files over the Internet

6-121

%The zip function creates a zip archive of the retrieved Web page.
 zip('simulink_matches.zip','contains_simulink.html');
end;

Sending E-Mail
To send an e-mail from within MATLAB, use the sendmail function. You can
also attach files to an e-mail, which lets you mail files directly from MATLAB.
To use sendmail, you must first set up your e-mail address and your SMTP
server information with the setpref function.

The setpref function defines two mail-related preferences:

• E-mail address — This preference sets your e-mail address that will appear
on the message. Here is an example of the syntax:
setpref('Internet','E_mail','youraddress@yourserver.com');

• SMTP server — This preference sets your outgoing SMTP server address,
which can be almost any e-mail server that supports the Post Office Protocol
(POP) or the Internet Message Access Protocol (IMAP). Here is an example
of the syntax:

setpref('Internet', 'SMTP_Server', 'mail.server.network');

You should be able to find your outgoing SMTP server address in your e-mail
account settings in your e-mail client application. You can also contact your
system administrator for the information.

Note The sendmail function does not support e-mail servers that require
authentication.

Once you have properly configured MATLAB, you can use the sendmail
function. The sendmail function requires at least two arguments: the
recipient’s e-mail address and the e-mail subject:

sendmail('recepient@someserver.com', 'Hello From MATLAB!');

You can supply multiple e-mail addresses using a cell array of strings, such as:

sendmail({'recepient@someserver.com',
'recepient2@someserver.com'}, 'Hello From MATLAB!');

6 Data Import and Export

6-122

You can also specify a message body with the sendmail function, such as:

sendmail('recepient@someserver.com', 'Hello From MATLAB!',
'Thanks for using sendmail.');

In addition, you can also attach files to an e-mail using the sendmail function,
such as:

sendmail('recepient@somesever.com', 'Hello from MATLAB!', 'Thanks
for using sendmail.', 'C:\yourFileSystem\message.txt');

You cannot attach a file without including a message. However, the message
can be empty.You can also attach multiple files to an e-mail with the sendmail
function, such as:

sendmail('recepient@somesever.com', 'Hello from MATLAB!', 'Thanks
for using sendmail.', 'C:\yourFileSystem\message.txt',
'C:\yourFileSystem\message2.txt');

Example — Using the sendmail Function
The following example sends e-mail with the retrieved Web page archive
attached if it contains any matches for the specified word:

%The urlread function loads the contents of the Web page into the
%MATLAB workspace.
recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/loa
dFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

%The findstr function searches for the word "Simulink".
hits = findstr(recentFile,'Simulink');

%The if statement checks for any hits.
if(isempty(hits) == 0)

%If there are hits, the Web page will be saved locally using the
%urlwrite function.
urlwrite('http://www.mathworks.com/matlabcentral/fileexchange/lo
adFileList.do?objectType=fileexchange&orderBy=date&srt3=0','cont
ains_simulink.html');

Exchanging Files over the Internet

6-123

%The zip function creates a zip archive of the retrieved web page.
zip('simulink_matches.zip','contains_simulink.html');

%The setpref function supplies your e-mail address and SMTP server
%address to MATLAB.
setpref('Internet','SMTP_Server','mail.server.network');
setpref('Internet', 'E_mail', 'youraddress@yourserver.com');

%The sendmail function sends an e-mail with the zip archive of the
%retrieved Web page attached.
sendmail('youraddress@yourserver.com', 'New Simulink Files
Founds', 'New Simulink files have been uploaded to MATLAB Central.
See the attached zip archive.', 'simulink_matches.zip');
end;

Performing FTP File Operations
From within MATLAB, you can connect to an FTP server to perform remote file
operations. The following procedure uses a public MathWorks FTP server
(ftp.mathworks.com). To perform any file operation on an FTP server, follow
these steps:

1 Connect to the server using the ftp function.

For example, you can create an FTP object for the public MathWorks FTP
server with tmw=ftp('ftp.mathworks.com').

2 Perform the file operations using appropriate MATLAB FTP functions as
methods acting on the server object.

For example, you can display the file directories on the FTP server with
dir(tmw).

3 When you finish working on the server, close the connection object using the
close function.

For example, you can disconnect from the FTP server with close(tmw).

6 Data Import and Export

6-124

Example — Retrieving a File from an FTP Server
In this example, you retrieve the file pub/pentium/Moler_1.txt, which is on
the MathWorks FTP server. You can run this example; the FTP server and
content are valid.

1 Connect to the MathWorks FTP server using ftp. This creates the server
object tmw:

tmw=ftp('ftp.mathworks.com');

2 List the contents of the server using the dir FTP function, which operates
on the server object tmw:

dir(tmw)

. incoming pickup
README matlab pub
README.incoming outgoing pubs

3 Change to the pub/pentium directory by using the FTP cd function. As with
all FTP functions, as part of the syntax you specify the server object you
created using ftp, which in this case is tmw:

cd(tmw,'pub/pentium');

The server object tmw represents the current directory on the FTP server,
which now is pub/pentium.

4 Now when you run

dir(tmw)

you see the contents of pub/pentium, rather than the top level contents as
displayed previously when you ran dir(tmw):

.

..
Andy_Grove.txt
Associated_Press.txt
CNN.html
Coe.txt
...
Intel_replace.txt

Intel_resp.txt
Intel_support.txt
Intel_white.ps
MathWorks_press.txt
Mathisen.txt
Moler_1.txt

Myths.txt

Intel_resp.txt
Intel_support.txt
Intel_white.ps
MathWorks_press.txt
Mathisen.txt
Moler_1.txt

Myths.txt

Exchanging Files over the Internet

6-125

5 From the current directory on the FTP server, use mget to retrieve the file
Moler_1.txt to the MATLAB current directory:

mget(tmw,'Moler_1.txt');

6 Running a dir in MATLAB confirms that the file was downloaded.

dir

. .. Moler_1.txt

7 Close the FTP connection using close.

close(tmw);

Summary of FTP Functions
The following table lists the available FTP functions. For more information,
refer to the applicable reference pages.

Function Description

ascii Set FTP transfer type to ASCII (convert new lines).

binary Set FTP transfer type to binary (transfer verbatim,
default).

cd Change current directory on FTP server.

delete Delete file on FTP server.

dir List contents of directory on FTP server.

close Close connection with FTP server.

ftp Connect to FTP server, creating an FTP object.

mget Download file from FTP site.

mkdir Create new directory on FTP server.

mput Upload file or directory to FTP server.

6 Data Import and Export

6-126

rename Rename file on FTP server.

rmdir Remove directory on FTP server.

Function Description

7

Error Handling

In many cases, it is desirable to take specific actions when different kinds of errors occur. For
example, you may want to prompt the user for more input, display extended error or warning
information, or repeat a calculation using default values. The error handling capabilities in MATLAB
let your application check for particular error conditions and execute appropriate code depending on
the situation.

Checking for Errors with try-catch
(p. 7-2)

Checking for errors that occur in your programs using the try
and catch functions

Handling and Recovering from an
Error (p. 7-4)

Reporting errors and identifying what caused them;
regenerating errors

Message Identifiers (p. 7-8) Attaching an identifier to an error or warning to enable you
to better identify what caused it, and also for selective
warning control

Warnings (p. 7-12) Identifying warnings and identifying what caused them

Warning Control (p. 7-14) Controlling the action taken when a warning is encountered

Debugging Errors and Warnings
(p. 7-23)

Stopping code execution in the debugger on the occurrence of
an error or warning

7 Error Handling

7-2

Checking for Errors with try-catch
No matter how carefully you plan and test the programs you write, they may
not always run as smoothly as expected when run under different conditions.
It is always a good idea to include error checking in programs to ensure reliable
operation under all conditions.

When you have statements in your code that could possibly generate unwanted
results, put those statements into a try-catch block that will catch any errors
and handle them appropriately. The example below shows a try-catch block
within a sample function that multiplies two matrices:

function matrixMultiply(A, B)
try
 X = A * B
catch
 disp '** Error multiplying A * B'
end

A try-catch block is divided into two sections. The first begins with try and
the second with catch. Terminate the block with end:

• All statements in the try segment are executed normally, just as if they were
in the regular code flow. But if any of these operations result in an error,
MATLAB skips the remaining statements in the try and jumps to the catch
segment of the block.

• The catch segment handles the error. In this example, it displays a general
error message. If there are different types of errors that can occur, you will
want to identify which error has been caught and respond to that specific
error. You can also try to recover from an error in the catch section.

When you execute the above example with inputs that are incompatible for
matrix multiplication (e.g., the column dimension of A is not equal to the row
dimension of B), MATLAB catches the error and displays the message
generated in the catch section of the try-catch block.

A = [1 2 3; 6 7 2; 0 1 5];
B = [9 5 6; 0 4 9];

matrixMultiply(A, B)
** Error multiplying A * B

Checking for Errors with try-catch

7-3

Nested try-catch Blocks
You can also nest try-catch blocks, as shown here. You can use this to attempt
to recover from an error caught in the first try section.

try
 statement1 % Try to execute statement1
catch
 try
 statement2 % Attempt to recover from error
 catch
 disp 'Operation failed' % Handle the error
 end
end

7 Error Handling

7-4

Handling and Recovering from an Error
The catch segment of a try-catch block needs to effectively handle any errors
that may be caught by the preceding try. Frequently, you will want to simply
report the error and stop execution. This prevents erroneous data from being
propagated into the remainder of the program.

Reporting an Error
To report an error and halt program execution, use the MATLAB error
function. You determine what the error message will be by specifying it as an
input to the error function in your code. For example,

if n < 1
 error('n must be 1 or greater.')
end

displays the message shown below when n is equal to zero.

??? n must be 1 or greater.

Formatted Message Strings
The error message string that you specify can also contain formatting
conversion characters, such as those used with the MATLAB sprintf function.
Make the error string the first argument, and then add any variables used by
the conversion as subsequent arguments.

error('formatted_errormsg', arg1, arg2, ...)

For example, if your program cannot find a specific file, you might report the
error with

error('File %s not found', filename);

Message Identifiers
Use a message identifier argument with error to attach a unique tag to that
error message. MATLAB uses this tag to better identify the source of an error.
The first argument in this example is the message identifier.

error('MATLAB:noSuchFile', 'File "%s" not found', ...
 filename);

Handling and Recovering from an Error

7-5

See “Using Message Identifiers with lasterr” on page 7-9 for more information
on how to use identifiers with errors.

Formatted String Conversion
MATLAB converts special characters (like \n and %d) in the error message
string only when you specify more than one input argument with error. In the
single argument case shown below, \n is taken to mean backslash-n. It is not
converted to a newline character.

error('In this case, the newline \n is not converted.')
??? In this case, the newline \n is not converted.

But, when more than one argument is specified, MATLAB does convert special
characters. This is true regardless of whether the additional argument supplies
conversion values or is a message identifier.

error('ErrorTests:convertTest', ...
 'In this case, the newline \n is converted.')
??? In this case, the newline
 is converted.

Identifying the Cause
Once an error has been caught, you will need to know the source of the error in
order to handle it appropriately. The lasterr function returns information
that enables you to identify the error that was most recently generated by
MATLAB.

To return the most recent error message to the variable errormsg, type

errormsg = lasterr;

You can also change the text of the last error message with a new message or
with an empty string as shown below. You might want to do this if a lower level
routine detects an error that you don’t want visible to the upper levels.

lasterr('newerrormsg'); % Replace last error with new string
lasterr(''); % Replace last error with empty string

7 Error Handling

7-6

Example Using lasterr
The matrixMultiply function shown earlier in this section could fail for
various reasons. If it is called with incompatible matrices, for example, lasterr
returns the following string.

lasterr
ans =
 Error using ==> *
 Inner matrix dimensions must agree.

This example uses lasterr to determine the cause of an error in
matrixMultiply.

function matrixMultiply(A, B)
try
 A * B
catch
 errmsg = lasterr;
 if(strfind(errmsg, 'Inner matrix dimensions'))
 disp('** Wrong dimensions for matrix multiply')
 else
 if(strfind(errmsg, 'not defined for variables of class'))
 disp('** Both arguments must be double matrices')
 end
 end
end

When calling the function with two matrices not compatible for matrix
multiplication, you get the following error message.

A = [1 2 3; 6 7 2; 0 1 5];
B = [9 5 6; 0 4 9];
matrixMultiply(A, B)
** Wrong dimensions for matrix multiply

When calling the function with a cell array argument, you get a message that
addresses that error.

C = {9 5 6; 0 4 9};
matrixMultiply(A, C)
** Both arguments must be double matrices

Handling and Recovering from an Error

7-7

Regenerating an Error
Use the rethrow function to regenerate an error that has previously been
thrown. You may want to do this from the catch part of a try-catch block, for
example, after performing some required cleanup tasks following an error.

This is how you would rethrow an error in a try-catch block:

try
 do_something
catch
 do_cleanup
 rethrow(lasterror)
end

rethrow generates an error based on the err input argument that you provide.
This argument must be a MATLAB structure with at least the following two
fields.

If you simply want to regenerate the last error that occurred, the lasterror
function returns a structure that can then be passed directly to rethrow.

Note lasterror is not the same as lasterr. The lasterror function returns
a structure array that contains the message string and message identifier for
the last error, and may contain more information in future versions of
MATLAB. The lasterr function returns one or two character arrays that
contain only the message string and identifier.

Field Name Description

message Text of the error message

identifier Message identifier of the error message

7 Error Handling

7-8

Message Identifiers
A message identifier is a tag that you attach to an error or warning statement
that makes that error or warning uniquely recognizable by MATLAB. You can
use message identifiers with error reporting to better identify the source of an
error, or with warnings to control any selected subset of the warnings in your
programs. See the following topics for more information on how message
identifiers are used:

• “Identifier Format” on page 7-8

• “Using Message Identifiers with lasterr” on page 7-9

Identifier Format
The message identifier is a string that specifies a component and a mnemonic
label for an error or warning. A simple identifier looks like this:

component:mnemonic

Some examples of message identifiers are

MATLAB:divideByZero
Simulink:actionNotTaken
TechCorp:notFoundInPath

Both the component and mnemonic fields must adhere to the following syntax
rules:

• No white space (space or tab characters) is allowed in the entire identifier.

• The first character must be alphabetic, either uppercase or lowercase.

• The remaining characters can be alphanumeric or underscore.

There is no length limitation to either field.

Component Field
The component field of a message identifier specifies a broad category under
which various errors and warnings may be generated. Common components
are a particular product or toolbox name, such as MATLAB or Control, or
perhaps the name of your company, such as TechCorp in the example above.

Message Identifiers

7-9

You can also use this field to specify a multilevel component. The statement
below has a three-level component followed by a mnemonic label:

TechCorp:TestEquipDiv:Waveform:obsoleteSyntax

One purpose of the component field is to enable you to guarantee the
uniqueness of each identifier. Thus, while MATLAB uses the identifier
MATLAB:divideByZero for its 'Divide by zero' warning, you could reuse the
divideByZero mnemonic by using your own unique component. For example,

warning('TechCorp:divideByZero', 'A sprocket value was divided by
zero.')

Mnemonic Field
The mnemonic field is a string normally used as a tag relating to the particular
message. For example, when reporting an error resulting from the use of
ambiguous syntax, a mnemonic such as ambiguousSyntax might be
appropriate.

error('MATLAB:ambiguousSyntax', ...
 'Syntax %s could be ambiguous.\n', inputstr)

Using Message Identifiers with lasterr
One use of message identifiers is to enable the lasterr and lasterror
functions to better identify the source of an error. These functions return a
message identifier, and you can use the combination of component and
mnemonic parts of that identifier to identify both a broad category of errors and
a specific instance within that category, respectively.

The first step in using this feature is to determine which of your error messages
need this type of identification and then tag each with an identifier. You do this
by specifying a message identifier argument (msg_id, below) along with the
error message in your calls to error. Either form shown below is acceptable.
The latter form uses formatting conversion characters as described in
“Formatted Message Strings” on page 7-12.

error('msg_id', 'errormsg')
error('msg_id', 'formatted_errormsg', arg1, arg2, ...)

7 Error Handling

7-10

Note When you specify more than one input argument with error, MATLAB
treats the errormsg string as if it were a formatted_errormsg. This is
explained in “Formatted String Conversion” on page 7-5.

The message identifier must be the first argument and must be formatted
according to the rules covered in “Message Identifiers” on page 7-8.

The message identifier is not a required argument for error. If you don’t need
to return this type of information with lasterr, then you can omit the msg_id
argument from the error function syntax shown previously:

error('errormsg')

Returning a Message Identifier from lasterr
Use lasterr with one output to return just the string holding the error
message from the most recently generated error.

errormsg = lasterr;

Use lasterr with two outputs to return both error message string and the
message identifier for that error.

[errormsg, msg_id] = lasterr;

The following example performs an operation in the try segment of the
try-catch block that results in an error. The first line of the catch segment
retrieves both the error message string and message identifier for the error.
The example then responds to the error in a manner that depends on the
identifier returned.

try
 [d, x] = readimage(imageFile);
catch
 [errmsg, msg_id] = lasterr;
 switch (lower(msg_id))
 case 'matlab:nosuchfile'
 error('File "%s" does not exist.', filename);
 case 'myfileio:noaccess'
 error(['Can''t open file "%s" for reading\n', ...
 'You may not have read permission.'], filename);

Message Identifiers

7-11

 case 'myfileio:invformat'
 error('Unable to determine the file format.');
 end
end

If the last error has no message identifier tag associated with it, then MATLAB
returns an empty string in the second output argument.

error('This error has no message identifier.');
??? This error has no message identifier.

[errstr, msgid] = lasterr
errstr =
 This error has no message identifier.
msgid =
 ''

Note Both lasterr and lasterror return a message identifier. Although this
section discusses only lasterr, you can use lasterror in the same way.

Inputs to lasterr
In addition to returning information about the last error, lasterr also accepts
inputs that modify the MATLAB copy of the last error. Use the command
format shown below to change the error message string and message identifier
returned by subsequent invocations of lasterr.

[lastErrmsg, lastMsgid] = lasterr('new_errmsg', 'new_msgid');

All lasterr input arguments are optional, but if you specify both an error
message and message identifier input, they must appear in the order shown
above.

7 Error Handling

7-12

Warnings
Like error, the warning function alerts the user of unexpected conditions
detected when running a program. However, warning does not halt the
execution of the program. It displays the specified warning message and then
continues.

Reporting a Warning
Use warning in your code to generate a warning message during execution.
Specify the message string as the input argument to warning. For example,

warning('Input must be a string')

Warnings also differ from errors in that you can disable any warnings that you
don’t want to see. You do this by invoking warning with certain control
parameters. See “Warning Control” on page 7-14 for more information.

Formatted Message Strings
The warning message string that you specify can also contain formatting
conversion characters, such as those used with the MATLAB sprintf function.
Make the warning string the first argument, and then add any variables used
by the conversion as subsequent arguments.

warning('formatted_warningmsg', arg1, arg2, ...)

For example, if your program cannot process a given parameter, you might
report a warning with

warning('Ambiguous parameter name, "%s".', param)

MATLAB converts special characters (like \n and %d) in the warning message
string only when you specify more than one input argument with warning. See
“Formatted String Conversion” on page 7-5 for information.

Message Identifiers
Use a message identifier argument with warning to attach a unique tag to that
warning message. MATLAB uses this tag to better identify the source of a
warning. The first argument in this example is the message identifier.

warning('MATLAB:paramAmbiguous', ...
 'Ambiguous parameter name, "%s".', param)

Warnings

7-13

See “Warning Control Statements” on page 7-15 for more information on how
to use identifiers with warnings.

Identifying the Cause
The lastwarn function returns a string containing the last warning message
issued by MATLAB. You can use this to enable your program to identify the
cause of a warning that has just been issued. To return the most recent
warning message to the variable warnmsg, type

warnmsg = lastwarn;

You can also change the text of the last warning message with a new message
or with an empty string as shown here.

lastwarn('newwarnmsg'); % Replace last warning with new string
lastwarn(''); % Replace last warning with empty string

7 Error Handling

7-14

Warning Control
MATLAB gives you the ability to control what happens when a warning is
encountered during M-file program execution. Options that are available
include

• Display selected warnings

• Ignore selected warnings

• Stop in the debugger when a warning is invoked

• Display an M-stack trace after a warning is invoked

Depending on how you set up your warning controls, you can have these actions
affect all warnings in your code, specific warnings that you select, or just the
most recently invoked warning.

Setting up this system of warning control involves several steps.

1 Start by determining the scope of the control you will need for the warnings
generated by your code. Do you want the above control operations to affect
all the warnings in your code at once, or do you want to be able to control
certain warnings separately?

2 If the latter is true, you will need to identify those warnings you want to
selectively control. This requires going through your code and attaching
unique message identifiers to those warnings. If, on the other hand, you don’t
require that fine a granularity of control, then the warning statements in
your code need no message identifiers.

3 When you are ready to run your programs, use the MATLAB warning
control statements to exercise the desired controls on all or selected
warnings. Include message identifiers in these control statements when
selecting specific warnings to act upon.

Warning Statements
The warning statements that you put into your M-file code must contain the
string that is to be displayed when the warning is incurred, and may also
contain a message identifier. If you are not planning to use warning control or
if you have no need to single out certain warnings for control, then you need to

Warning Control

7-15

specify the message string only. Use the syntax shown in the section on
“Warnings” on page 7-12. Valid formats are

warning('warnmsg')
warning('formatted_warnmsg', arg1, arg2, ...)

Attaching an Identifier to the Warning Statement
If there are specific warnings that you want MATLAB to be able to apply
control statements to, then you need to include a message identifier in the
warning statement. The message identifier must be the first argument in the
statement. Valid formats are

warning('msg_id', 'warnmsg')
warning('msg_id', 'formatted_warnmsg', arg1, arg2, ...)

See “Message Identifiers” on page 7-8 for information on how to specify the
msg_id argument.

Note When you specify more than one input argument with warning,
MATLAB treats the warnmsg string as if it were a formatted_warnmsg. This is
explained in “Formatted String Conversion” on page 7-5.

Warning Control Statements
Once you have the warning statements in your M-file code and are ready to
execute the code, you can indicate how you want MATLAB to act on these
warnings by issuing control statements. These statements place the specified
warning(s) into a desired state and have the format

warning state msg_id

Control statements can also return information on the state of selected
warnings. This only happens if you assign the output to a variable, as shown
below. See “Output from Control Statements” on page 7-17.

s = warning('state', 'msg_id');

7 Error Handling

7-16

Warning States
There are three possible values for the state argument of a warning control
statement.

Message Identifiers
In addition to the message identifiers already discussed, there are two other
identifiers that you can use in control statements only.

Note MATLAB starts up with all warnings enabled, except for those that are
displayed in response to the command, warning('query', 'all').

Example 1 — Enabling a Selected Warning
Enable just the actionNotTaken warning from Simulink by first turning off all
warnings and then setting just that warning to on.

warning off all
warning on Simulink:actionNotTaken

State Description

on Enable the display of selected warning message.

off Disable the display of selected warning message.

query Display the current state of selected warning.

Identifier Description

msg_id string Set selected warning to the specified state.

all Set all warnings to the specified state.

last Set only the last displayed warning to the specified state.

Warning Control

7-17

Use query to determine the current state of all warnings. It reports that you
have set all warnings to off with the exception of Simulink:actionNotTaken.

warning query all
The default warning state is 'off'. Warnings not set to the
default are

 State Warning Identifier

 on Simulink:actionNotTaken

Example 2 — Disabling the Most Recent Warning
Evaluating inv on zero displays a warning message. Turn off the most recently
invoked warning with warning off last.

inv(0)
Warning: Matrix is singular to working precision.
ans =
 Inf

warning off last

inv(0) % No warning is displayed this time
ans =
 Inf

Output from Control Statements
The warning function, when used in a control statement, returns a MATLAB
structure array containing the previous state of the selected warning(s). Use
the following syntax to return this information in structure array, s:

s = warning('state', 'msg_id');

You must type the command using the MATLAB function format; that is,
parentheses and quotation marks are required.

Note MATLAB does not display warning output if you do not assign the
output to a variable.

7 Error Handling

7-18

This example turns off divideByZero warnings for the MATLAB component,
and returns the identifier and previous state in a 1-by-1 structure array.

s = warning('off','MATLAB:divideByZero')
s =
 identifier: 'MATLAB:divideByZero'
 state: 'on'

You can use output variables with any type of warning control statement. If
you just want to collect the information but don’t want to change state, then
simply perform a query on the warning(s). MATLAB returns the current state
of those warnings selected by the message identifier.

s = warning('query', 'msg_id');

If you want to change state, but also save the former state so that you can
restore it later, use the return structure array to save that state. The following
example does an implicit query, returning state information in s, and then
turns on all warnings.

s = warning('on', 'all');

See the section, “Saving and Restoring State” on page 7-20, for more
information on restoring the former state of warnings.

Output Structure Array
Each element of the structure array returned by warning contains two fields.

If you query for the state of just one warning, using a message identifier or
'last' in the command, then MATLAB returns a one-element structure array.
The identifier field contains the selected message identifier and the state
field holds the current state of that warning:

Field Name Description

identifier Message identifier string, 'all', or 'last'

state State of warning(s) prior to invoking this control
statement

Warning Control

7-19

s = warning('query','last')
s =
 identifier: 'MATLAB:divideByZero'
 state: 'on'

If you query for the state of all warnings, using 'all' in the command,
MATLAB returns a structure array having one or more elements:

• The first element of the array always represents the default state. (This is
the state set by the last warning on|off all command.)

• Each other element of the array represents a warning that is in a state that
is different from the default.

warning off all
warning on MATLAB:divideByZero
warning on MATLAB:fileNotFound

s = warning('query', 'all')
s =
 3x1 struct array with fields:
 identifier
 state

s(1)
ans =
 identifier: 'all'
 state: 'off'

s(2)
ans =
 identifier: 'MATLAB:divideByZero'
 state: 'on'

s(3)
ans =
 identifier: 'MATLAB:fileNotFound'
 state: 'on'

7 Error Handling

7-20

Saving and Restoring State
If you want to temporarily change the state of some warnings and then later
return to your original settings, you can save the original state in a structure
array and then restore it from that array. You can save and restore the state of
all of your warnings or just one that you select with a message identifier.

To save the current warning state, assign the output of a warning control
statement, as discussed in the last section, “Output from Control Statements”
on page 7-17. The following statement saves the current state of all warnings
in structure array s.

s = warning('query', 'all');

To restore state from s, use the syntax shown below. Note that the MATLAB
function format (enclosing arguments in parentheses) is required.

warning(s)

Example 1 — Performing an Explicit Query
Perform a query of all warnings to save the current state in structure array s.

s = warning('query', 'all');

Then, after doing some work that includes making changes to the state of some
warnings, restore the original state of all warnings.

warning(s)

Example 2 — Performing an Implicit Query
Turn on one particular warning, saving the previous state of this warning in s.
Remember that this nonquery syntax (where state equals on or off) performs
an implicit query prior to setting the new state.

s = warning('on', 'Control:parameterNotSymmetric');

Restore the state of that one warning when you are ready, with

warning(s)

Warning Control

7-21

Debug, Backtrace, and Verbose Modes
In addition to warning messages, there are three modes that can be enabled or
disabled with a warning control statement. These modes are shown here.

The syntax for using this type of control statement is as follows, where state,
in this case, can be only on, off, or query.

warning state mode

Note that there is no need to include a message identifier with this type of
control statement. All enabled warnings are affected by the this type of control
statement.

Example 1 — Entering Debug Mode on a Specific Warning
To enter debug mode whenever a Simulink actionNotTaken warning is
invoked, first turn off all warnings and enable only this one type of warning
using its message identifier. Then turn on debug mode for all enabled
warnings. When you run your program, MATLAB will stop in debug mode just
before this warning is executed. You will see the debug prompt (K>>) displayed.

warning off all
warning on Simulink:actionNotTaken
warning on debug

Mode Description Default

debug Stop in the debugger when a warning is invoked. off

backtrace Display an M-stack trace after a warning is
invoked.

off

verbose Display a message on how to suppress the
warning.

off

7 Error Handling

7-22

Example 2 — Enabling Verbose Warnings
When you enable verbose warnings, MATLAB displays an extra line of
information with each warning that tells you how to suppress it:

warning on verbose

A = 25/0;
Warning: Divide by zero.
(Type "warning off MATLAB:divideByZero" to suppress this
warning.)

Debugging Errors and Warnings

7-23

Debugging Errors and Warnings
You can direct MATLAB to temporarily stop the execution of an M-file program
in the event of a run-time error or warning, at the same time opening a debug
window paused at the M-file line that generated the error or warning. This
enables you to examine values internal to the program and determine the
cause of the error.

Use the dbstop function to have MATLAB stop execution and enter debug
mode when any M-file you subsequently run produces a run-time error or
warning. There are three types of such breakpoints that you can set.

In all three cases, the M-file you are trying to debug must be in a directory that
is on the search path or in the current directory.

You cannot resume execution after an error; use dbquit to exit from the
Debugger. To resume execution after a warning, use dbcont or dbstep.

Command Description

dbstop if all error Stop on any error.

dbstop if error Stop on any error not detected within a
try-catch block.

dbstop if warning Stop on any warning.

7 Error Handling

7-24

8

Classes and Objects

Classes and Objects: An Overview (p. 8-2) Using object-oriented programming in MATLAB

Designing User Classes in MATLAB (p. 8-9) The basic set of methods that should be included in a
class

Overloading Operators and Functions
(p. 8-21)

Overloading the MATLAB operators and functions to
change their behavior

Example — A Polynomial Class (p. 8-24) Example that defines a new class to implement a
MATLAB data type for polynomials

Building on Other Classes (p. 8-35) Inheritance and aggregation

Example — Assets and Asset Subclasses
(p. 8-38)

An example that uses simple inheritance

Example — The Portfolio Container
(p. 8-54)

An example that uses aggregation

Saving and Loading Objects (p. 8-60) Saving and retrieving user-defined objects to and from
MAT-files

Example — Defining saveobj and loadobj
for Portfolio (p. 8-61)

Defining methods that automatically execute on save
and load

Object Precedence (p. 8-65) Determining which operator or function to call in a
given situation

How MATLAB Determines Which Method
to Call (p. 8-67)

How function arguments and precedence determine
which method to call

8 Classes and Objects

8-2

Classes and Objects: An Overview
You can view classes as new data types having specific behaviors defined for
the class. For example, a polynomial class might redefine the addition operator
(+) so that it correctly performs the operation of addition on polynomials.
Operations defined to work with objects of a particular class are known as
methods of that class.

You can also view classes as new items that you can treat as single entities. An
example is an arrow object that MATLAB can display on graphs (perhaps
composed of MATLAB line and patch objects) and that has properties like a
Handle Graphics object. You can create an arrow simply by instantiating the
arrow class.

You can add classes to your MATLAB environment by specifying a MATLAB
structure that provides data storage for the object and creating a class
directory containing M-files that operate on the object. These M-files contain
the methods for the class. The class directory can also include functions that
define the way various MATLAB operators, including arithmetic operations,
subscript referencing, and concatenation, apply to the objects. Redefining how
a built-in operator works for your class is known as overloading the operator.

Features of Object-Oriented Programming
When using well-designed classes, object-oriented programming can
significantly increase code reuse and make your programs easier to maintain
and extend. Programming with classes and objects differs from ordinary
structured programming in these important ways:

• Function and operator overloading. You can create methods that override
existing MATLAB functions. When you call a function with a user-defined
object as an argument, MATLAB first checks to see if there is a method
defined for the object’s class. If there is, MATLAB calls it, rather than the
normal MATLAB function.

• Encapsulation of data and methods. Object properties are not visible from
the command line; you can access them only with class methods. This
protects the object properties from operations that are not intended for the
object’s class.

Classes and Objects: An Overview

8-3

• Inheritance. You can create class hierarchies of parent and child classes in
which the child class inherits data fields and methods from the parent. A
child class can inherit from one parent (single inheritance) or many parents
(multiple inheritance). Inheritance can span one or more generations.
Inheritance enables sharing common parent functions and enforcing
common behavior amongst all child classes.

• Aggregation. You can create classes using aggregation, in which an object
contains other objects. This is appropriate when an object type is part of
another object type. For example, a savings account object might be a part of
a financial portfolio object.

MATLAB Data Class Hierarchy
All MATLAB data types are designed to function as classes in object-oriented
programming. The diagram below shows the fifteen fundamental data types (or
classes) defined in MATLAB. You can add new data types to MATLAB by
extending the class hierarchy.

The diagram shows a user class that inherits from the structure class. All
classes that you create are structure based since this is the point in the class
hierarchy where you can insert your own classes. (For more information about
MATLAB data types, see Chapter 2, “Data Types.”)

 ARRAY

char NUMERIC cell structure

double

 int8, uint8,
int16, uint16,
int32, uint32,
int64,uint64

user classes java classes

function
handle

single

[full or sparse]

logical

8 Classes and Objects

8-4

Creating Objects
You create an object by calling the class constructor and passing it the
appropriate input arguments. In MATLAB, constructors have the same name
as the class name. For example, the statement,

p = polynom([1 0 −2 −5]);

creates an object named p belonging to the class polynom. Once you have
created a polynom object, you can operate on the object using methods that are
defined for the polynom class. See “Example — A Polynomial Class” on
page 8-24 for a description of the polynom class.

Invoking Methods on Objects
Class methods are M-file functions that take an object as one of the input
arguments. The methods for a specific class must be placed in the class
directory for that class (the @classname directory). This is the first place that
MATLAB looks to find a class method.

The syntax for invoking a method on an object is similar to a function call.
Generally, it looks like

[out1,out2,...] = methodName(object,arg1,arg2, ...);

For example, suppose a user-defined class called polynom has a char method
defined for the class. This method converts a polynom object to a character
string and returns the string. This statement calls the char method on the
polynom object p.

s = char(p);

Using the class function, you can confirm that the returned value s is a
character string.

class(s)
ans =
 char

s
s =
 x^3−2*x−5

Classes and Objects: An Overview

8-5

You can use the methods command to produce a list of all of the methods that
are defined for a class.

Private Methods
Private methods can be called only by other methods of their class. You define
private methods by placing the associated M-files in a private subdirectory of
the @classname directory. In the example,

@classname/private/updateObj.m

the method updateObj has scope only within the classname class. This means
that updateObj can be called by any method that is defined in the @classname
directory, but it cannot be called from the MATLAB command line or by
methods outside of the class directory, including parent methods.

Private methods and private functions differ in that private methods (in fact
all methods) have an object as one of their input arguments and private
functions do not. You can use private functions as helper functions, such as
described in the next section.

Helper Functions
In designing a class, you may discover the need for functions that perform
support tasks for the class, but do not directly operate on an object. These
functions are called helper functions. A helper function can be a subfunction in
a class method file or a private function. When determining which version of a
particular function to call, MATLAB looks for these functions in the order
listed above. For more information about the order in which MATLAB calls
functions and methods, see “How MATLAB Determines Which Method to Call”
on page 8-67.

Debugging Class Methods
You can use the MATLAB debugging commands with object methods in the
same way that you use them with other M-files. The only difference is that you
need to include the class directory name before the method name in the
command call, as shown in this example using dbstop.

dbstop @polynom/char

While debugging a class method, you have access to all methods defined for the
class, including inherited methods, private methods, and private functions.

8 Classes and Objects

8-6

Changing Class Definition
If you change the class definition, such as the number or names of fields in a
class, you must issue a

clear classes

command to propagate the changes to your MATLAB session. This command
also clears all objects from the workspace. See the clear command help entry
for more information.

Setting Up Class Directories
The M-files defining the methods for a class are collected together in a directory
referred to as the class directory. The directory name is formed with the class
name preceded by the character @. For example, one of the examples used in
this chapter is a class involving polynomials in a single variable. The name of
the class, and the name of the class constructor, is polynom. The M-files
defining a polynomial class would be located in directory with the name
@polynom.

The class directories are subdirectories of directories on the MATLAB search
path, but are not themselves on the path. For instance, the new @polynom
directory could be a subdirectory of the MATLAB working directory or your
own personal directory that has been added to the search path.

Adding the Class Directory to the MATLAB Path
After creating the class directory, you need to update the MATLAB path so that
MATLAB can locate the class source files. The class directory should not be
directly on the MATLAB path. Instead, you should add the parent directory to
the MATLAB path. For example, if the @polynom class directory is located at

c:\myClasses\@polynom

you add the class directory to the MATLAB path with the addpath command

addpath c:\myClasses;

Classes and Objects: An Overview

8-7

Using Multiple Class Directories
A MATLAB class can access methods in multiple @classname directories if all
such directories are visible to MATLAB (i.e., the parent directories are on the
MATLAB path or in the current directory). When you attempt to use a method
of the class, MATLAB searches all the visible directories named @classname
for the appropriate method.

For more information, see “How MATLAB Determines Which Method to Call”
on page 8-67.

Data Structure
One of the first steps in the design of a new class is the choice of the data
structure to be used by the class. Objects are stored in MATLAB structures.
The fields of the structure, and the details of operations on the fields, are
visible only within the methods for the class. The design of the appropriate
data structure can affect the performance of the code.

Tips for C++ and Java Programmers
If you are accustomed to programming in other object-oriented languages, such
as C++ or Java, you will find that the MATLAB programming language differs
from these languages in some important ways:

• In MATLAB, method dispatching is not syntax based, as it is in C++ and
Java. When the argument list contains objects of equal precedence,
MATLAB uses the left-most object to select the method to call.

• In MATLAB, there is no equivalent to a destructor method. To remove an
object from the workspace, use the clear function.

• Construction of MATLAB data types occurs at runtime rather than compile
time. You register an object as belonging to a class by calling the class
function.

• When using inheritance in MATLAB, the inheritance relationship is
established in the child class by creating the parent object, and then calling
the class function. For more information on writing constructors for
inheritance relationships, see “Building on Other Classes” on page 8-35.

• When using inheritance in MATLAB, the child object contains a parent
object in a property with the name of the parent class.

8 Classes and Objects

8-8

• In MATLAB, there is no passing of variables by reference. When writing
methods that update an object, you must pass back the updated object and
use an assignment statement. For instance, this call to the set method
updates the name field of the object A and returns the updated object.
A = set(A,'name','John Smith');

• In MATLAB, there is no equivalent to an abstract class.

• In MATLAB, there is no equivalent to the C++ scoping operator.

• In MATLAB, there is no virtual inheritance or virtual base classes.

• In MATLAB, there is no equivalent to C++ templates.

Designing User Classes in MATLAB

8-9

Designing User Classes in MATLAB
This section discusses how to approach the design of a class and describes the
basic set of methods that should be included in a class.

The MATLAB Canonical Class
When you design a MATLAB class, you should include a standard set of
methods that enable the class to behave in a consistent and logical way within
the MATLAB environment. Depending on the nature of the class you are
defining, you may not need to include all of these methods and you may include
a number of other methods to realize the class’s design goals.

This table lists the basic methods included in MATLAB classes.

The following sections discuss the implementation of each type of method, as
well as providing references to examples used in this chapter.

Class Method Description

class constructor Creates an object of the class.

display Called whenever MATLAB displays the contents
of an object (e.g., when an expression is entered
without terminating with a semicolon).

set and get Accesses class properties.

subsref and subsasgn Enables indexed reference and assignment for
user objects.

end Supports end syntax in indexing expressions
using an object; e.g., A(1:end).

subsindex Supports using an object in indexing
expressions.

converters like double
and char

Methods that convert an object to a MATLAB
data type.

8 Classes and Objects

8-10

The Class Constructor Method
The @ directory for a particular class must contain an M-file known as the
constructor for that class. The name of the constructor is the same as the name
of the directory (excluding the @ prefix and .m extension) that defines the name
of the class. The constructor creates the object by initializing the data structure
and instantiating an object of the class.

Guidelines for Writing a Constructor
Class constructors must perform certain functions so that objects behave
correctly in the MATLAB environment. In general, a class constructor must
handle three possible combinations of input arguments:

• No input arguments

• An object of the same class as an input argument

• The input arguments used to create an object of the class (typically data of
some kind)

No Input Arguments. If there are no input arguments, the constructor should
create a default object. Since there are no inputs, you have no data from which
to create the object, so you simply initialize the object’s data structures with
empty or default values, call the class function to instantiate the object, and
return the object as the output argument. Support for this syntax is required
for two reasons:

• When loading objects into the workspace, the load function calls the class
constructor with no arguments.

• When creating arrays of objects, MATLAB calls the class constructor to add
objects to the array.

Object Input Argument. If the first input argument in the argument list is an
object of the same class, the constructor should simply return the object. Use
the isa function to determine if an argument is a member of a class. See
“Overloading the + Operator” on page 8-30 for an example of a method that
uses this constructor syntax.

Data Input Arguments. If the input arguments exist and are not objects of the
same class, then the constructor creates the object using the input data. Of
course, as in any function, you should perform proper argument checking in
your constructor function. A typical approach is to use a varargin input

Designing User Classes in MATLAB

8-11

argument and a switch statement to control program flow. This provides an
easy way to accommodate the three cases: no inputs, object input, or the data
inputs used to create an object.

It is in this part of the constructor that you assign values to the object’s data
structure, call the class function to instantiate the object, and return the
object as the output argument. If necessary, place the object in an object
hierarchy using the superiorto and inferiorto functions.

Using the class Function in Constructors
Within a constructor method, you use the class function to associate an object
structure with a particular class. This is done using an internal class tag that
is only accessible using the class and isa functions. For example, this call to
the class function identifies the object p to be of type polynom.

p = class(p,'polynom');

Examples of Constructor Methods
See the following sections for examples of constructor methods:

• “The Polynom Constructor Method” on page 8-24

• “The Asset Constructor Method” on page 8-39

• “The Stock Constructor Method” on page 8-46

• “The Portfolio Constructor Method” on page 8-55

Identifying Objects Outside the Class Directory
The class and isa functions used in constructor methods can also be used
outside of the class directory. The expression

isa(a,'classname');

checks whether a is an object of the specified class. For example, if p is a
polynom object, each of the following expressions is true.

isa(pi,'double');
isa('hello','char');
isa(p,'polynom');

8 Classes and Objects

8-12

Outside of the class directory, the class function takes only one argument (it
is only within the constructor that class can have more than one argument).

The expression

class(a)

returns a string containing the class name of a. For example,

class(pi),
class('hello'),
class(p)

return

'double',
'char',
'polynom'

Use the whos function to see what objects are in the MATLAB workspace.

whos

 Name Size Bytes Class
 p 1x1 156 polynom object

The display Method
MATLAB calls a method named display whenever an object is the result of a
statement that is not terminated by a semicolon. For example, creating the
variable a, which is a double, calls the MATLAB display method for doubles.

a = 5
a =
 5

You should define a display method so MATLAB can display values on the
command line when referencing objects from your class. In many classes,
display can simply print the variable name, and then use the char converter
method to print the contents or value of the variable, since MATLAB displays
output as strings. You must define the char method to convert the object’s data
to a character string.

Designing User Classes in MATLAB

8-13

Examples of display Methods
See the following sections for examples of display methods:

• “The Polynom display Method” on page 8-28

• “The Asset display Method” on page 8-44

• “The Stock display Method” on page 8-53

• “The Portfolio display Method” on page 8-56

Accessing Object Data
You need to write methods for your class that provide access to an object’s data.
Accessor methods can use a variety of approaches, but all methods that change
object data always accept an object as an input argument and return a new
object with the data changed. This is necessary because MATLAB does not
support passing arguments by reference (i.e., pointers). Functions can change
only their private, temporary copy of an object. Therefore, to change an existing
object, you must create a new one, and then replace the old one.

The following sections provide more detail about implementation techniques
for the set, get, subsasgn, and subsref methods.

The set and get Methods
The set and get methods provide a convenient way to access object data in
certain cases. For example, suppose you have created a class that defines an
arrow object that MATLAB can display on graphs (perhaps composed of
existing MATLAB line and patch objects).

To produce a consistent interface, you could define set and get methods that
operate on arrow objects the way the MATLAB set and get functions operate
on built-in graphics objects. The set and get verbs convey what operations
they perform, but insulate the user from the internals of the object.

Examples of set and get Methods
See the following sections for examples of set and get methods:

• “The Asset get Method” on page 8-41 and “The Asset set Method” on
page 8-41

• “The Stock get Method” on page 8-48 and “The Stock set Method” on
page 8-49

8 Classes and Objects

8-14

Property Name Methods
As an alternative to a general set method, you can write a method to handle
the assignment of an individual property. The method should have the same
name as the property name.

For example, if you defined a class that creates objects representing employee
data, you might have a field in an employee object called salary. You could
then define a method called salary.m that takes an employee object and a
value as input arguments and returns the object with the specified value set.

Indexed Reference Using subsref and subsasgn
User classes implement new data types in MATLAB. It is useful to be able to
access object data via an indexed reference, as is possible with the MATLAB
built-in data types. For example, if A is an array of class double, A(i) returns
the ith element of A.

As the class designer, you can decide what an index reference to an object
means. For example, suppose you define a class that creates polynomial objects
and these objects contain the coefficients of the polynomial.

An indexed reference to a polynomial object,

p(3)

could return the value of the coefficient of x3, the value of the polynomial at
x = 3, or something different depending on the intended design.

You define the behavior of indexing for a particular class by creating two class
methods – subsref and subsasgn. MATLAB calls these methods whenever a
subscripted reference or assignment is made on an object from the class. If you
do not define these methods for a class, indexing is undefined for objects of this
class.

In general, the rules for indexing objects are the same as the rules for indexing
structure arrays. For details, see “Structures” on page 2-49.

Designing User Classes in MATLAB

8-15

Handling Subscripted Reference
The use of a subscript or field designator with an object on the right-hand side
of an assignment statement is known as a subscripted reference. MATLAB calls
a method named subsref in these situations.

Object subscripted references can be of three forms—an array index, a cell
array index, and a structure field name:

A(I)
A{I}
A.field

Each of these results in a call by MATLAB to the subsref method in the class
directory. MATLAB passes two arguments to subsref.

B = subsref(A,S)

The first argument is the object being referenced. The second argument, S, is a
structure array with two fields:

• S.type is a string containing '()', '{}', or '.' specifying the subscript type.
The parentheses represent a numeric array; the curly braces, a cell array;
and the dot, a structure array.

• S.subs is a cell array or string containing the actual subscripts. A colon used
as a subscript is passed as the string ':'.

For instance, the expression

A(1:2,:)

causes MATLAB to call subsref(A,S), where S is a 1-by-1 structure with

S.type = '()'
S.subs = {1:2,':'}

Similarly, the expression

A{1:2}

uses

S.type ='{}'
S.subs = {1:2}

8 Classes and Objects

8-16

The expression

A.field

calls subsref(A,S) where

S.type = '.'
S.subs = 'field'

These simple calls are combined for more complicated subscripting
expressions. In such cases, length(S) is the number of subscripting levels. For
example,

A(1,2).name(3:4)

calls subsref(A,S), where S is a 3-by-1 structure array with the values:

S(1).type = '()' S(2).type = '.' S(3).type = '()'
S(1).subs = '{1,2}' S(2).subs = 'name' S(3).subs = '{3:4}'

How to Write subsref
The subsref method must interpret the subscripting expressions passed in by
MATLAB. A typical approach is to use the switch statement to determine the
type of indexing used and to obtain the actual indices. The following three code
fragments illustrate how to interpret the input arguments. In each case, the
function must return the value B.

For an array index:

switch S.type
case '()'

B = A(S.subs{:});
end

For a cell array:

switch S.type
case '{}'

B = A(S.subs{:}); % A is a cell array
end

Designing User Classes in MATLAB

8-17

For a structure array:

switch S.type
case '.'

switch S.subs
case 'field1'

B = A.field1;
case 'field2'

B = A.field2;
end

end

Examples of the subsref Method
See the following sections for examples of the subsref method:

• “The Polynom subsref Method” on page 8-29

• “The Asset subsref Method” on page 8-42

• “The Stock subsref Method” on page 8-50

• “The Portfolio subsref Method” on page 8-64

Handling Subscripted Assignment
The use of a subscript or field designator with an object on the left-hand side of
an assignment statement is known as a subscripted assignment. MATLAB
calls a method named subsasgn in these situations. Object subscripted
assignment can be of three forms – an array index, a cell array index, and a
structure field name.

A(I) = B
A{I} = B
A.field = B

Each of these results in a call to subsasgn of the form

A = subsasgn(A,S,B)

The first argument, A, is the object being referenced. The second argument, S,
has the same fields as those used with subsref. The third argument, B, is the
new value.

8 Classes and Objects

8-18

Examples of the subsasgn Method
See the following sections for examples of the subsasgn method:

• “The Asset subsasgn Method” on page 8-43

• “The Stock subsasgn Method” on page 8-51

Object Indexing Within Methods
If a subscripted reference is made within a class method, MATLAB uses its
built-in subsref function to access data within the method’s own class. If the
method accesses data from another class, MATLAB calls the overloaded
subsref function in that class. The same holds true for subscripted assignment
and subsasgn.

The following example shows a method, testref, that is defined in the class,
employee. This method makes a reference to a field, address, in an object of its
own class. For this, MATLAB uses the built-in subsref function. It also
references the same field in another class, this time using the overloaded
subsref of that class.

% ---- EMPLOYEE class method: testref.m ----
function testref(myclass,otherclass)

myclass.address % use built-in subsref
otherclass.address % use overloaded subsref

The example creates an employee object and a company object.

empl = employee('Johnson','Chicago');
comp = company('The MathWorks','Natick');

The employee class method, testref, is called. MATLAB uses an overloaded
subsref only to access data outside of the method’s own class.

testref(empl,comp)
ans = % built-in subsref was called
 Chicago

ans = % @company\subsref was called
Executing @company\subsref ...
 Natick

Designing User Classes in MATLAB

8-19

Defining end Indexing for an Object
When you use end in an object indexing expression, MATLAB calls the object’s
end class method. If you want to be able to use end in indexing expressions
involving objects of your class, you must define an end method for your class.

The end method has the calling sequence

end(a,k,n)

where a is the user object, k is the index in the expression where the end syntax
is used, and n is the total number of indices in the expression.

For example, consider the expression

A(end−1,:)

MATLAB calls the end method defined for the object A using the arguments

end(A,1,2)

That is, the end statement occurs in the first index element and there are two
index elements. The class method for end must then return the index value for
the last element of the first dimension. When you implement the end method
for your class, you must ensure it returns a value appropriate for the object.

Indexing an Object with Another Object
When MATLAB encounters an object as an index, it calls the subsindex
method defined for the object. For example, suppose you have an object a and
you want to use this object to index into another object b.

c = b(a);

A subsindex method might do something as simple as convert the object to
double format to be used as an index, as shown in this sample code.

function d = subsindex(a)
%SUBSINDEX
% convert the object a to double format to be used
% as an index in an indexing expression
d = double(a);

subsindex values are 0-based, not 1-based.

8 Classes and Objects

8-20

Converter Methods
A converter method is a class method that has the same name as another class,
such as char or double. Converter methods accept an object of one class as
input and return an object of another class. Converters enable you to

• Use methods defined for another class

• Ensure that expressions involving objects of mixed class types execute
properly

A converter function call is of the form

b = classname(a)

where a is an object of a class other than classname. In this case, MATLAB
looks for a method called classname in the class directory for object a. If the
input object is already of type classname, then MATLAB calls the constructor,
which just returns the input argument.

Examples of Converter Methods
See the following sections for examples of converter methods:

• “The Polynom to Double Converter” on page 8-26

• “The Polynom to Char Converter” on page 8-26

Overloading Operators and Functions

8-21

Overloading Operators and Functions
In many cases, you may want to change the behavior of the MATLAB operators
and functions for cases when the arguments are objects. You can accomplish
this by overloading the relevant functions. Overloading enables a function to
handle different types and numbers of input arguments and perform whatever
operation is appropriate for the highest-precedence object. See “Object
Precedence” on page 8-65 for more information on object precedence.

Overloading Operators
Each built-in MATLAB operator has an associated function name (e.g., the +
operator has an associated plus.m function). You can overload any operator by
creating an M-file with the appropriate name in the class directory. For
example, if either p or q is an object of type classname, the expression

p + q

generates a call to a function @classname/plus.m, if it exists. If p and q are both
objects of different classes, then MATLAB applies the rules of precedence to
determine which method to use.

Examples of Overloaded Operators
See the following sections for examples of overloaded operators:

• “Overloading the + Operator” on page 8-30

• “Overloading the - Operator” on page 8-30

• “Overloading the * Operator” on page 8-31

8 Classes and Objects

8-22

The following table lists the function names for most of the MATLAB
operators.

Operation M-File Description

a + b plus(a,b) Binary addition

a - b minus(a,b) Binary subtraction

-a uminus(a) Unary minus

+a uplus(a) Unary plus

a.*b times(a,b) Element-wise multiplication

a*b mtimes(a,b) Matrix multiplication

a./b rdivide(a,b) Right element-wise division

a.\b ldivide(a,b) Left element-wise division

a/b mrdivide(a,b) Matrix right division

a\b mldivide(a,b) Matrix left division

a.^b power(a,b) Element-wise power

a^b mpower(a,b) Matrix power

a < b lt(a,b) Less than

a > b gt(a,b) Greater than

a <= b le(a,b) Less than or equal to

a >= b ge(a,b) Greater than or equal to

a ~= b ne(a,b) Not equal to

a == b eq(a,b) Equality

a & b and(a,b) Logical AND

a | b or(a,b) Logical OR

~a not(a) Logical NOT

Overloading Operators and Functions

8-23

Overloading Functions
You can overload any function by creating a function of the same name in the
class directory. When a function is invoked on an object, MATLAB always looks
in the class directory before any other location on the search path. To overload
the plot function for a class of objects, for example, simply place your version
of plot.m in the appropriate class directory.

Examples of Overloaded Functions
See the following sections for examples of overloaded functions:

• “Overloading Functions for the Polynom Class” on page 8-31

• “The Portfolio pie3 Method” on page 8-57

a:d:b
a:b

colon(a,d,b)
colon(a,b)

Colon operator

a' ctranspose(a) Complex conjugate transpose

a.' transpose(a) Matrix transpose

command window
output

display(a) Display method

[a b] horz-
cat(a,b,...)

Horizontal concatenation

[a; b] vert-
cat(a,b,...)

Vertical concatenation

a(s1,s2,...sn) subsref(a,s) Subscripted reference

a(s1,...,sn) = b subsasgn(a,s,b) Subscripted assignment

b(a) subsindex(a) Subscript index

Operation M-File Description

8 Classes and Objects

8-24

Example — A Polynomial Class
This example implements a MATLAB data type for polynomials by defining a
new class called polynom. The class definition specifies a structure for data
storage and defines a directory (@polynom) of methods that operate on polynom
objects.

Polynom Data Structure
The polynom class represents a polynomial with a row vector containing the
coefficients of powers of the variable, in decreasing order. Therefore, a polynom
object p is a structure with a single field, p.c, containing the coefficients. This
field is accessible only within the methods in the @polynom directory.

Polynom Methods
To create a class that is well behaved within the MATLAB environment and
provides useful functionality for a polynomial data type, the polynom class
implements the following methods:

• A constructor method polynom.m

• A polynom to double converter

• A polynom to char converter

• A display method

• A subsref method

• Overloaded +, −, and * operators

• Overloaded roots, polyval, plot, and diff functions

The Polynom Constructor Method
Here is the polynom class constructor, @polynom/polynom.m.

function p = polynom(a)
%POLYNOM Polynomial class constructor.
% p = POLYNOM(v) creates a polynomial object from the vector v,
% containing the coefficients of descending powers of x.

Example — A Polynomial Class

8-25

if nargin == 0
p.c = [];
p = class(p,'polynom');

elseif isa(a,'polynom')
p = a;

else
p.c = a(:).';
p = class(p,'polynom');

end

Constructor Calling Syntax
You can call the polynom constructor method with one of three different
arguments:

• No input argument — If you call the constructor function with no arguments,
it returns a polynom object with empty fields.

• Input argument is an object — If you call the constructor function with an
input argument that is already a polynom object, MATLAB returns the input
argument. The isa function (pronounced “is a”) checks for this situation.

• Input argument is a coefficient vector — If the input argument is a variable
that is not a polynom object, reshape it to be a row vector and assign it to the
.c field of the object’s structure. The class function creates the polynom
object, which is then returned by the constructor.

An example use of the polynom constructor is the statement

p = polynom([1 0 -2 -5])

This creates a polynomial with the specified coefficients.

Converter Methods for the Polynom Class
A converter method converts an object of one class to an object of another class.
Two of the most important converter methods contained in MATLAB classes
are double and char. Conversion to double produces the MATLAB traditional
matrix, although this may not be appropriate for some classes. Conversion to
char is useful for producing printed output.

8 Classes and Objects

8-26

The Polynom to Double Converter
The double converter method for the polynom class is a very simple M-file,
@polynom/double.m, which merely retrieves the coefficient vector.

function c = double(p)
% POLYNOM/DOUBLE Convert polynom object to coefficient vector.
% c = DOUBLE(p) converts a polynomial object to the vector c
% containing the coefficients of descending powers of x.
c = p.c;

On the object p,

p = polynom([1 0 -2 -5])

the statement

double(p)

returns

ans =
1 0 -2 -5

The Polynom to Char Converter
The converter to char is a key method because it produces a character string
involving the powers of an independent variable, x. Therefore, once you have
specified x, the string returned is a syntactically correct MATLAB expression,
which you can then evaluate.

Here is @polynom/char.m.

function s = char(p)
% POLYNOM/CHAR
% CHAR(p) is the string representation of p.c
if all(p.c == 0)

s = '0';
else

d = length(p.c) - 1;
s = [];

Example — A Polynomial Class

8-27

for a = p.c;
if a ~= 0;

if ~isempty(s)
if a > 0

s = [s ' + '];
else

s = [s ' - '];
a = -a;

end
end
if a ~= 1 | d == 0

s = [s num2str(a)];
if d > 0

s = [s '*'];
end

end
if d >= 2

s = [s 'x^' int2str(d)];
elseif d == 1

s = [s 'x'];
end

end
d = d - 1;

end
end

Evaluating the Output
If you create the polynom object p

p = polynom([1 0 -2 -5]);

and then call the char method on p

char(p)

MATLAB produces the result

ans =
 x^3 - 2*x - 5

8 Classes and Objects

8-28

The value returned by char is a string that you can pass to eval once you have
defined a scalar value for x. For example,

x = 3;

eval(char(p))
ans =
 16

See “The Polynom subsref Method” on page 8-29 for a better method to
evaluate the polynomial.

The Polynom display Method
Here is @polynom/display.m. This method relies on the char method to
produce a string representation of the polynomial, which is then displayed on
the screen. This method produces output that is the same as standard
MATLAB output. That is, the variable name is displayed followed by an equal
sign, then a blank line, then a new line with the value.

function display(p)
% POLYNOM/DISPLAY Command window display of a polynom
disp(' ');
disp([inputname(1),' = '])
disp(' ');
disp([' ' char(p)])
disp(' ');

The statement

p = polynom([1 0 -2 -5])

creates a polynom object. Since the statement is not terminated with a
semicolon, the resulting output is

p =
 x^3 - 2*x - 5

Example — A Polynomial Class

8-29

The Polynom subsref Method
Suppose the design of the polynom class specifies that a subscripted reference
to a polynom object causes the polynomial to be evaluated with the value of the
independent variable equal to the subscript. That is, for a polynom object p,

p = polynom([1 0 -2 -5]);

the following subscripted expression returns the value of the polynomial at
x = 3 and x = 4.

p([3 4])
ans =
 16 51

subsref Implementation Details
This implementation takes advantage of the char method already defined in
the polynom class to produce an expression that can then be evaluated.

function b = subsref(a,s)
% SUBSREF
switch s.type
case '()'

ind = s.subs{:};
for k = 1:length(ind)

b(k) = eval(strrep(char(a),'x',num2str(ind(k))));
end

otherwise
 error('Specify value for x as p(x)')
end

Once the polynomial expression has been generated by the char method, the
strrep function is used to swap the passed in value for the character x. The
eval function then evaluates the expression and returns the value in the
output argument.

Overloading Arithmetic Operators for polynom
Several arithmetic operations are meaningful on polynomials and should be
implemented for the polynom class. When overloading arithmetic operators,
keep in mind what data types you want to operate on. In this section, the plus,
minus, and mtimes methods are defined for the polynom class to handle

8 Classes and Objects

8-30

addition, subtraction, and multiplication on polynom/polynom and
polynom/double combinations of operands.

Overloading the + Operator
If either p or q is a polynom, the expression

p + q

generates a call to a function @polynom/plus.m, if it exists (unless p or q is an
object of a higher precedence, as described in “Object Precedence” on
page 8-65).

The following M-file redefines the + operator for the polynom class.

function r = plus(p,q)
% POLYNOM/PLUS Implement p + q for polynoms.
p = polynom(p);
q = polynom(q);
k = length(q.c) - length(p.c);
r = polynom([zeros(1,k) p.c] + [zeros(1,-k) q.c]);

The function first makes sure that both input arguments are polynomials. This
ensures that expressions such as

p + 1

that involve both a polynom and a double, work correctly. The function then
accesses the two coefficient vectors and, if necessary, pads one of them with
zeros to make them the same length. The actual addition is simply the vector
sum of the two coefficient vectors. Finally, the function calls the polynom
constructor a third time to create the properly typed result.

Overloading the − Operator
You can implement the overloaded minus operator (-) using the same approach
as the plus (+) operator. MATLAB calls @polynom/minus.m to compute p−q.

function r = minus(p,q)
% POLYNOM/MINUS Implement p - q for polynoms.
p = polynom(p);
q = polynom(q);
k = length(q.c) - length(p.c);
r = polynom([zeros(1,k) p.c] - [zeros(1,-k) q.c]);

Example — A Polynomial Class

8-31

Overloading the ∗ Operator
MATLAB calls the method @polynom/mtimes.m to compute the product p*q.
The letter m at the beginning of the function name comes from the fact that it
is overloading the MATLAB matrix multiplication. Multiplication of two
polynomials is simply the convolution of their coefficient vectors.

function r = mtimes(p,q)
% POLYNOM/MTIMES Implement p * q for polynoms.
p = polynom(p);
q = polynom(q);
r = polynom(conv(p.c,q.c));

Using the Overloaded Operators
Given the polynom object

p = polynom([1 0 -2 -5])

MATLAB calls these two functions @polynom/plus.m and @polynom/mtimes.m
when you issue the statements

q = p+1
r = p*q

to produce

q =
 x^3 - 2*x - 4

r =
 x^6 - 4*x^4 - 9*x^3 + 4*x^2 + 18*x + 20

Overloading Functions for the Polynom Class
MATLAB already has several functions for working with polynomials
represented by coefficient vectors. They should be overloaded to also work with
the new polynom object. In many cases, the overloading methods can simply
apply the original function to the coefficient field.

8 Classes and Objects

8-32

Overloading roots for the Polynom Class
The method @polynom/roots.m finds the roots of polynom objects.

function r = roots(p)
% POLYNOM/ROOTS. ROOTS(p) is a vector containing the roots of p.
r = roots(p.c);

The statement

roots(p)

results in

ans =
 2.0946
 -1.0473 + 1.1359i
 -1.0473 - 1.1359i

Overloading polyval for the Polynom Class
The function polyval evaluates a polynomial at a given set of points.
@polynom/polyval.m uses nested multiplication, or Horner’s method to reduce
the number of multiplication operations used to compute the various powers of
x.

function y = polyval(p,x)
% POLYNOM/POLYVAL POLYVAL(p,x) evaluates p at the points x.
y = 0;
for a = p.c

y = y.*x + a;
end

Overloading plot for the Polynom Class
The overloaded plot function uses both root and polyval. The function selects
the domain of the independent variable to be slightly larger than an interval
containing all real roots. Then polyval is used to evaluate the polynomial at a
few hundred points in the domain.

function plot(p)
% POLYNOM/PLOT PLOT(p) plots the polynom p.
r = max(abs(roots(p)));
x = (-1.1:0.01:1.1)*r;
y = polyval(p,x);

Example — A Polynomial Class

8-33

plot(x,y);
title(char(p))
grid on

Overloading diff for the Polynom Class
The method @polynom/diff.m differentiates a polynomial by reducing the
degree by 1 and multiplying each coefficient by its original degree.

function q = diff(p)
% POLYNOM/DIFF DIFF(p) is the derivative of the polynom p.
c = p.c;
d = length(c) - 1; % degree
q = polynom(p.c(1:d).*(d:-1:1));

Listing Class Methods
The function call

methods('classname')

or its command form

methods classname

shows all the methods available for a particular class. For the polynom
example, the output is

methods polynom

Methods for class polynom:

Plotting the two polynom objects x and p calls most of these methods.

x = polynom([1 0]);
p = polynom([1 0 -2 -5]);
plot(diff(p*p + 10*p + 20*x) - 20)

char display minus plot polynom roots

diff double mtimes plus polyval subsref

8 Classes and Objects

8-34

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−8

−6

−4

−2

0

2

4

6

8
6*x5 − 16*x3 + 8*x

Building on Other Classes

8-35

Building on Other Classes
A MATLAB object can inherit properties and behavior from another MATLAB
object. When one object (the child) inherits from another (the parent), the child
object includes all the fields of the parent object and can call the parent’s
methods. The parent methods can access those fields that a child object
inherited from the parent class, but not fields new to the child class.

Inheritance is a key feature of object-oriented programming. It makes it easy
to reuse code by allowing child objects to take advantage of code that exists for
parent objects. Inheritance enables a child object to behave exactly like a
parent object, which facilitates the development of related classes that behave
similarly, but are implemented differently.

There are two kinds of inheritance:

• Simple inheritance, in which a child object inherits characteristics from one
parent class.

• Multiple inheritance, in which a child object inherits characteristics from
more than one parent class.

This section also discusses a related topic, aggregation. Aggregation allows one
object to contain another object as one of its fields.

Simple Inheritance
A class that inherits attributes from a single parent class, and adds new
attributes of its own, uses simple inheritance. Inheritance implies that objects
belonging to the child class have the same fields as the parent class, as well as
additional fields. Therefore, methods associated with the parent class can
operate on objects belonging to the child class. The methods associated with the
child class, however, cannot operate on objects belonging to the parent class.
You cannot access the parent’s fields directly from the child class; you must use
access methods defined for the parent.

8 Classes and Objects

8-36

The constructor function for a class that inherits the behavior of another has
two special characteristics:

• It calls the constructor function for the parent class to create the inherited
fields.

• The calling syntax for the class function is slightly different, reflecting both
the child class and the parent class.

The general syntax for establishing a simple inheritance relationship using the
class function is

childObj = class(childObj, 'childClass', parentObj);

Simple inheritance can span more than one generation. If a parent class is
itself an inherited class, the child object will automatically inherit from the
grandparent class.

Visibility of Class Properties and Methods
The parent class does not have knowledge of the child properties or methods.
The child class cannot access the parent properties directly, but must use
parent access methods (e.g., get or subsref method) to access the parent
properties. From the child class methods, this access is accomplished via the
parent field in the child structure. For example, when a constructor creates a
child object c,

c = class(c, 'childClassname', parentObject);

MATLAB automatically creates a field, c.parentClassname, in the object’s
structure that contains the parent object. You could then have a statement in
the child’s display method that calls the parent’s display method.

display(c.parentClassname)

See “Designing the Stock Class” on page 8-45 for examples that use simple
inheritance.

Building on Other Classes

8-37

Multiple Inheritance
In the multiple inheritance case, a class of objects inherits attributes from more
than one parent class. The child object gets fields from all the parent classes,
as well as fields of its own.

Multiple inheritance can encompass more than one generation. For example,
each of the parent objects could have inherited fields from multiple
grandparent objects, and so on. Multiple inheritance is implemented in the
constructors by calling class with more than three arguments.

obj = class(structure,'classname',parent1,parent2,...)

You can append as many parent arguments as desired to the class input list.

Multiple parent classes can have associated methods of the same name. In this
case, MATLAB calls the method associated with the parent that appears first
in the class function call in the constructor function. There is no way to access
subsequent parent function of this name.

Aggregation
In addition to standard inheritance, MATLAB objects support containment or
aggregation. That is, one object can contain (embed) another object as one of its
fields. For example, a rational object might use two polynom objects, one for the
numerator and one for the denominator.

You can call a method for the contained object only from within a method for
the outer object. When determining which version of a function to call,
MATLAB considers only the outermost containing class of the objects passed
as arguments; the classes of any contained objects are ignored.

See “Example — The Portfolio Container” on page 8-54 for an example of
aggregation.

8 Classes and Objects

8-38

Example — Assets and Asset Subclasses
As an example of simple inheritance, consider a general asset class that can be
used to represent any item that has monetary value. Some examples of an asset
are: stocks, bonds, savings accounts, and any other piece of property. In
designing this collection of classes, the asset class holds the data that is
common to all of the specialized asset subclasses. The individual asset
subclasses, such as the stock class, inherit the asset properties and contribute
additional properties. The subclasses are “kinds of” assets.

Inheritance Model for the Asset Class
An example of a simple inheritance relationship using an asset parent class is
shown in this diagram.

As shown in the diagram, the stock, bond, and savings classes inherit
structure fields from the asset class. In this example, the asset class is used
to provide storage for data common to all subclasses and to share asset
methods with these subclasses. This example shows how to implement the

Asset Class

Structure Fields:
descriptor
date
currentValue

Stock Class

Inherited Fields:
descriptor
date
currentValue

Stock Fields:
numShares
sharePprice
asset

Bond Class

Inherited Fields:
descriptor
date
currentValue

Bond Fields:
interestRate
asset

Savings Class

Inherited Fields:
descriptor
date
currentValue

Savings Fields:
interestRate
asset

Example — Assets and Asset Subclasses

8-39

asset and stock classes. The bond and savings classes can be implemented in
a way that is very similar to the stock class, as would other types of asset
subclasses.

Asset Class Design
The asset class provides storage and access for information common to all asset
children. It is not intended to be instantiated directly, so it does not require an
extensive set of methods. To serve its purpose, the class needs to contain the
following methods:

• Constructor

• get and set

• subsref and subsasgn
• display

Other Asset Methods
The asset class provides inherited data storage for its child classes, but is not
instanced directly. The set, get, and display methods provide access to the
stored data. It is not necessary to implement the full complement of methods
for asset objects (such as converters, end, and subsindex) since only the child
classes access the data.

The Asset Constructor Method
The asset class is based on a structure array with four fields:

• descriptor — Identifier of the particular asset (e.g., stock name, savings
account number, etc.)

• date — The date the object was created (calculated by the date command)

• type — The type of asset (e.g., savings, bond, stock)

• currentValue — The current value of the asset (calculated from subclass
data)

This information is common to asset child objects (stock, bond, and savings), so
it is handled from the parent object to avoid having to define the same fields in
each child class. This is particularly helpful as the number of child classes
increases.

8 Classes and Objects

8-40

function a = asset(varargin)
% ASSET Constructor function for asset object
% a = asset(descriptor, currentValue)
switch nargin
case 0
% if no input arguments, create a default object
 a.descriptor = 'none';
 a.date = date;
 a.type = 'none';
 a.currentValue = 0;
 a = class(a,'asset');
case 1
% if single argument of class asset, return it
 if (isa(varargin{1},'asset'))
 a = varargin{1};
 else
 error('Wrong argument type')
 end
case 3
% create object using specified values
 a.descriptor = varargin{1};
 a.date = date;
 a.type = varargin{2};
 a.currentValue = varargin{3};
 a = class(a,'asset');
otherwise
 error('Wrong number of input arguments')
end

The function uses a switch statement to accommodate three possible
scenarios:

• Called with no arguments, the constructor returns a default asset object.

• Called with one argument that is an asset object, the object is simply
returned.

• Called with two arguments (subclass descriptor, and current value), the
constructor returns a new asset object.

Example — Assets and Asset Subclasses

8-41

The asset constructor method is not intended to be called directly; it is called
from the child constructors since its purpose is to provide storage for common
data.

The Asset get Method
The asset class needs methods to access the data contained in asset objects. The
following function implements a get method for the class. It uses capitalized
property names rather than literal field names to provide an interface similar
to other MATLAB objects.

function val = get(a, propName)
% GET Get asset properties from the specified object
% and return the value
switch propName
case 'Descriptor'

val = a.descriptor;
case 'Date'

val = a.date;
case 'CurrentValue'

val = a.currentValue;
otherwise

error([propName,' Is not a valid asset property'])
end

This function accepts an object and a property name and uses a switch
statement to determine which field to access. This method is called by the
subclass get methods when accessing the data in the inherited properties. See
“The Stock get Method” on page 8-48 for an example.

The Asset set Method
The asset class set method is called by subclass set methods. This method
accepts an asset object and variable length argument list of property
name/property value pairs and returns the modified object.

function a = set(a,varargin)
% SET Set asset properties and return the updated object
propertyArgIn = varargin;
while length(propertyArgIn) >= 2,

prop = propertyArgIn{1};
val = propertyArgIn{2};

8 Classes and Objects

8-42

propertyArgIn = propertyArgIn(3:end);
switch prop
case 'Descriptor'

a.descriptor = val;
case 'Date'

a.date = val;
case 'CurrentValue'

a.currentValue = val;
otherwise

error('Asset properties: Descriptor, Date, CurrentValue')
end

end

Subclass set methods call the asset set method and require the capability to
return the modified object since MATLAB does not support passing arguments
by reference. See “The Stock set Method” on page 8-49 for an example.

The Asset subsref Method
The subsref method provides access to the data contained in an asset object
using one-based numeric indexing and structure field name indexing. The
outer switch statement determines if the index is a numeric or field name
syntax. The inner switch statements map the index to the appropriate value.

MATLAB calls subsref whenever you make a subscripted reference to an
object (e.g., A(i), A{i}, or A.fieldname).

function b = subsref(a,index)
%SUBSREF Define field name indexing for asset objects
switch index.type
case '()'

switch index.subs{:}
case 1

b = a.descriptor;
case 2

b = a.date;
case 3

b = a.currentValue;
otherwise

error('Index out of range')
end

Example — Assets and Asset Subclasses

8-43

case '.'
switch index.subs
case 'descriptor'

b = a.descriptor;
case 'date'

b = a.date;
case 'currentValue'

b = a.currentValue;
otherwise

error('Invalid field name')
end

case '{}'
error('Cell array indexing not supported by asset objects')

end

See the “The Stock subsref Method” on page 8-50 for an example of how the
child subsref method calls the parent subsref method.

The Asset subsasgn Method
The subsasgn method is the assignment equivalent of the subsref method.
This version enables you to change the data contained in an object using
one-based numeric indexing and structure field name indexing. The outer
switch statement determines if the index is a numeric or field name syntax.
The inner switch statements map the index value to the appropriate value in
the stock structure.

MATLAB calls subsasgn whenever you execute an assignment statement (e.g.,
A(i) = val, A{i} = val, or A.fieldname = val).

function a = subsasgn(a,index,val)
% SUBSASGN Define index assignment for asset objects
switch index.type
case '()'

switch index.subs{:}
case 1

a.descriptor = val;
case 2

a.date = val;

8 Classes and Objects

8-44

case 3
a.currentValue = val;

otherwise
error('Index out of range')

end
case '.'

switch index.subs
case 'descriptor'

a.descriptor = val;
case 'date'

a.date = val;
case 'currentValue'

a.currentValue = val;
otherwise

error('Invalid field name')
end

end

The subsasgn method enables you to assign values to the asset object data
structure using two techniques. For example, suppose you have a child stock
object s. (If you want to run this statement, you first need to create a stock
constructor method.)

s = stock('XYZ',100,25);

Within stock class methods, you could change the descriptor field with either
of the following statements

s.asset(1) = 'ABC';

or

s.asset.descriptor = 'ABC';

See the “The Stock subsasgn Method” on page 8-51 for an example of how the
child subsasgn method calls the parent subsasgn method.

The Asset display Method
The asset display method is designed to be called from child-class display
methods. Its purpose is to display the data it stores for the child object. The
method simply formats the data for display in a way that is consistent with the
formatting of the child’s display method.

Example — Assets and Asset Subclasses

8-45

function display(a)
% DISPLAY(a) Display an asset object
stg = sprintf(...

'Descriptor: %s\nDate: %s\nType: %s\nCurrent Value:%9.2f',...
a.descriptor,a.date,a.type,a.currentValue);

disp(stg)

The stock class display method can now call this method to display the data
stored in the parent class. This approach isolates the stock display method
from changes to the asset class. See “The Stock display Method” on page 8-53
for an example of how this method is called.

The Asset fieldcount Method
The asset fieldcount method returns the number of fields in the asset object
data structure. fieldcount enables asset child methods to determine the
number of fields in the asset object during execution, rather than requiring the
child methods to have knowledge of the asset class. This allows you to make
changes to the number of fields in the asset class data structure without having
to change child-class methods.

function numFields = fieldcount(assetObj)
% Determines the number of fields in an asset object
% Used by asset child class methods
numFields = length(fieldnames(assetObj));

The struct function converts an object to its equivalent data structure,
enabling access to the structure’s contents.

Designing the Stock Class
A stock object is designed to represent one particular asset in a person’s
investment portfolio. This object contains two properties of its own and inherits
three properties from its parent asset object.

Stock properties:

• NumberShares — The number of shares for the particular stock object.

• SharePrice — The value of each share.

8 Classes and Objects

8-46

Asset properties:

• Descriptor — The identifier of the particular asset (e.g., stock name,
savings account number, etc.).

• Date — The date the object was created (calculated by the date command).

• CurrentValue — The current value of the asset.

Note that the property names are not actually the same as the field names of
the structure array used internally by stock and asset objects. The property
name interface is controlled by the stock and asset set and get methods and is
designed to resemble the interface of other MATLAB object properties.

The asset field in the stock object structure contains the parent asset object
and is used to access the inherited fields in the parent structure.

Stock Class Methods
The stock class implements the following methods:

• Constructor

• get and set

• subsref and subsasgn
• display

The Stock Constructor Method
The stock constructor creates a stock object from three input arguments:

• The stock name

• The number of shares

• The share price

The constructor must create an asset object from within the stock constructor
to be able to specify it as a parent to the stock object. The stock constructor
must, therefore, call the asset constructor. The class function, which is called
to create the stock object, defines the asset object as the parent.

Keep in mind that the asset object is created in the temporary workspace of the
stock constructor function and is stored as a field (.asset) in the stock
structure. The stock object inherits the asset fields, but the asset object is not
returned to the base workspace.

Example — Assets and Asset Subclasses

8-47

function s = stock(varargin)
% STOCK Stock class constructor.
% s = stock(descriptor, numShares, sharePrice)
switch nargin
case 0
% if no input arguments, create a default object

s.numShares = 0;
s.sharePrice = 0;
a = asset('none',0);
s = class(s, 'stock',a);

case 1
% if single argument of class stock, return it

if (isa(varargin{1},'stock'))
s = varargin{1};

else
error('Input argument is not a stock object')

end
case 3
% create object using specified values

s.numShares = varargin{2};
s.sharePrice = varargin{3};
a = asset(varargin{1},'stock',varargin{2} * varargin{3});
s = class(s,'stock',a);

otherwise
error('Wrong number of input arguments')

end

Constructor Calling Syntax
The stock constructor method can be called in one of three ways:

• No input argument — If called with no arguments, the constructor returns a
default object with empty fields.

• Input argument is a stock object — If called with a single input argument
that is a stock object, the constructor returns the input argument. A single
argument that is not a stock object generates an error.

• Three input arguments — If there are three input arguments, the
constructor uses them to define the stock object.

Otherwise, if none of the above three conditions are met, return an error.

8 Classes and Objects

8-48

For example, this statement creates a stock object to record the ownership of
100 shares of XYZ corporation stocks with a price per share of 25 dollars.

XYZStock = stock('XYZ',100,25);

The Stock get Method
The get method provides a way to access the data in the stock object using a
“property name” style interface, similar to Handle Graphics. While in this
example the property names are similar to the structure field name, they can
be quite different. You could also choose to exclude certain fields from access
via the get method or return the data from the same field for a variety of
property names, if such behavior suits your design.

function val = get(s,propName)
% GET Get stock property from the specified object
% and return the value. Property names are: NumberShares
% SharePrice, Descriptor, Date, CurrentValue
switch propName
case 'NumberShares'

val = s.numShares;
case 'SharePrice'

val = s.sharePrice;
case 'Descriptor'

val = get(s.asset,'Descriptor'); % call asset get method
case 'Date'

val = get(s.asset,'Date');
case 'CurrentValue'

val = get(s.asset,'CurrentValue');
otherwise

error([propName ,'Is not a valid stock property'])
end

Note that the asset object is accessed via the stock object’s asset field (s.asset).
MATLAB automatically creates this field when the class function is called
with the parent argument.

Example — Assets and Asset Subclasses

8-49

The Stock set Method
The set method provides a “property name” interface like the get method. It is
designed to update the number of shares, the share value, and the descriptor.
The current value and the date are automatically updated.

function s = set(s,varargin)
% SET Set stock properties to the specified values
% and return the updated object
propertyArgIn = varargin;
while length(propertyArgIn) >= 2,

prop = propertyArgIn{1};
val = propertyArgIn{2};
propertyArgIn = propertyArgIn(3:end);
switch prop
case 'NumberShares'

s.numShares = val;
case 'SharePrice'

s.sharePrice = val;
case 'Descriptor'

s.asset = set(s.asset,'Descriptor',val);
otherwise

error('Invalid property')
end

end
s.asset = set(s.asset,'CurrentValue',...

s.numShares * s.sharePrice,'Date',date);

Note that this function creates and returns a new stock object with the new
values, which you then copy over the old value. For example, given the stock
object,

s = stock('XYZ',100,25);

the following set command updates the share price.

s = set(s,'SharePrice',36);

It is necessary to copy over the original stock object (i.e., assign the output to
s) because MATLAB does not support passing arguments by reference. Hence
the set method actually operates on a copy of the object.

8 Classes and Objects

8-50

The Stock subsref Method
The subsref method defines subscripted indexing for the stock class. In this
example, subsref is implemented to enable numeric and structure field name
indexing of stock objects.

function b = subsref(s,index)
% SUBSREF Define field name indexing for stock objects
fc = fieldcount(s.asset);
switch index.type
case '()'

if (index.subs{:} <= fc)
b = subsref(s.asset,index);

else
switch index.subs{:} − fc
case 1

b = s.numShares;
case 2

b = s.sharePrice;
otherwise
error(['Index must be in the range 1 to ',num2str(fc + 2)])
end

end
case '.'

switch index.subs
case 'numShares'

b = s.numShares;
case 'sharePrice'

b = s.sharePrice;
otherwise

b = subsref(s.asset,index);
end

end

The outer switch statement determines if the index is a numeric or field name
syntax.

The fieldcount asset method determines how many fields there are in the
asset structure, and the if statement calls the asset subsref method for
indices 1 to fieldcount. See “The Asset fieldcount Method” on page 8-45 and
“The Asset subsref Method” on page 8-42 for a description of these methods.

Example — Assets and Asset Subclasses

8-51

Numeric indices greater than the number returned by fieldcount are handled
by the inner switch statement, which maps the index value to the appropriate
field in the stock structure.

Field-name indexing assumes field names other than numShares and
sharePrice are asset fields, which eliminates the need for knowledge of asset
fields by child methods. The asset subsref method performs field-name error
checking.

See the subsref help entry for general information on implementing this
method.

The Stock subsasgn Method
The subsasgn method enables you to change the data contained in a stock
object using numeric indexing and structure field name indexing. MATLAB
calls subsasgn whenever you execute an assignment statement
(e.g., A(i) = val, A{i} = val, or A.fieldname = val).

function s = subsasgn(s,index,val)
% SUBSASGN Define index assignment for stock objects
fc = fieldcount(s.asset);
switch index.type
case '()'

if (index.subs{:} <= fc)
s.asset = subsasgn(s.asset,index,val);

else
switch index.subs{:}−fc
case 1

s.numShares = val;
case 2

s.sharePrice = val;
otherwise
error(['Index must be in the range 1 to ',num2str(fc + 2)])
end

end
case '.'

switch index.subs
case 'numShares'

s.numShares = val;

8 Classes and Objects

8-52

case 'sharePrice'
s.sharePrice = val;

otherwise
s.asset = subsasgn(s.asset,index,val);

end
end

The outer switch statement determines if the index is a numeric or field name
syntax.

The fieldcount asset method determines how many fields there are in the
asset structure and the if statement calls the asset subsasgn method for
indices 1 to fieldcount. See “The Asset fieldcount Method” on page 8-45 and
“The Asset subsasgn Method” on page 8-43 for a description of these methods.

Numeric indices greater than the number returned by fieldcount are handled
by the inner switch statement, which maps the index value to the appropriate
field in the stock structure.

Field-name indexing assumes field names other than numShares and
sharePrice are asset fields, which eliminates the need for knowledge of asset
fields by child methods. The asset subsasgn method performs field-name error
checking.

The subsasgn method enables you to assign values to stock object data
structure using two techniques. For example, suppose you have a stock object

s = stock('XYZ',100,25)

You could change the descriptor field with either of the following statements

s(1) = 'ABC';

or

s.descriptor = 'ABC';

See the subsasgn help entry for general information on assignment statements
in MATLAB.

Example — Assets and Asset Subclasses

8-53

The Stock display Method
When you issue the statement (without terminating with a semicolon)

XYZStock = stock('XYZ',100,25)

MATLAB looks for a method in the @stock directory called display. The
display method for the stock class produces this output.

Descriptor: XYZ
Date: 17-Nov-1998
Type: stock
Current Value: 2500.00
Number of shares: 100
Share price: 25.00

Here is the stock display method.

function display(s)
% DISPLAY(s) Display a stock object
display(s.asset)
stg = sprintf('Number of shares: %g\nShare price: %3.2f\n',...

s.numShares,s.sharePrice);
disp(stg)

First, the parent asset object is passed to the asset display method to display
its fields (MATLAB calls the asset display method because the input
argument is an asset object). The stock object’s fields are displayed in a similar
way using a formatted text string.

Note that if you did not implement a stock class display method, MATLAB
would call the asset display method. This would work, but would display only
the descriptor, date, type, and current value.

8 Classes and Objects

8-54

Example — The Portfolio Container
Aggregation is the containment of one class by another class. The basic
relationship is: each contained class “is a part of” the container class.

For example, consider a financial portfolio class as a container for a set of
assets (stocks, bonds, savings, etc.). Once the individual assets are grouped,
they can be analyzed, and useful information can be returned. The contained
objects are not accessible directly, but only via the portfolio class methods.

See “Example — Assets and Asset Subclasses” on page 8-38 for information
about the assets collected by this portfolio class.

Designing the Portfolio Class
The portfolio class is designed to contain the various assets owned by a given
individual and provide information about the status of his or her investment
portfolio. This example implements a somewhat over-simplified portfolio class
that

• Contains an individual’s assets

• Displays information about the portfolio contents

• Displays a 3-D pie chart showing the relative mix of asset types in the
portfolio

Required Portfolio Methods
The portfolio class implements only three methods:

• portfolio — The portfolio constructor.

• display — Displays information about the portfolio contents.

• pie3 — Overloaded version of pie3 function designed to take a single
portfolio object as an argument.

Since a portfolio object contains other objects, the portfolio class methods can
use the methods of the contained objects. For example, the portfolio display
method calls the stock class display method, and so on.

Example — The Portfolio Container

8-55

The Portfolio Constructor Method
The portfolio constructor method takes as input arguments a client’s name and
a variable length list of asset subclass objects (stock, bond, and savings objects
in this example). The portfolio object uses a structure array with the following
fields:

• name — The client’s name.

• indAssets — The array of asset subclass objects (stock, bond, savings).

• totalValue — The total value of all assets. The constructor calculates this
value from the objects passed in as arguments.

• accountNumber — The account number. This field is assigned a value only
when you save a portfolio object (see “Saving and Loading Objects” on
page 8-60).

function p = portfolio(name,varargin)
% PORTFOLIO Create a portfolio object containing the
% client's name and a list of assets
switch nargin
case 0

% if no input arguments, create a default object
p.name = 'none';
p.totalValue = 0;
p.indAssets = {};
p.accountNumber = '';
p = class(p,'portfolio');

case 1
% if single argument of class portfolio, return it
if isa(name,'portfolio')

p = name;
else

disp([inputname(1) ' is not a portfolio object'])
return

end
otherwise

% create object using specified arguments
p.name = name;
p.totalValue = 0;

8 Classes and Objects

8-56

for k = 1:length(varargin)
p.indAssets(k) = {varargin{k}};
assetValue = get(p.indAssets{k},'CurrentValue');
p.totalValue = p.totalValue + assetValue;

end
p.accountNumber = '';
p = class(p,'portfolio');

end

Constructor Calling Syntax
The portfolio constructor method can be called in one of three different ways:

• No input arguments — If called with no arguments, it returns an object with
empty fields.

• Input argument is an object — If the input argument is already a portfolio
object, MATLAB returns the input argument. The isa function checks for
this case.

• More than two input arguments — If there are more than two input
arguments, the constructor assumes the first is the client’s name and the
rest are asset subclass objects. A more thorough implementation would
perform more careful input argument checking, for example, using the isa
function to determine if the arguments are the correct class of objects.

The Portfolio display Method
The portfolio display method lists the contents of each contained object by
calling the object’s display method. It then lists the client name and total asset
value.

function display(p)
% DISPLAY Display a portfolio object
for k = 1:length(p.indAssets)
 display(p.indAssets{k})
end
stg = sprintf('\nAssets for Client: %s\nTotal Value: %9.2f\n',...
p.name,p.totalValue);
disp(stg)

Example — The Portfolio Container

8-57

The Portfolio pie3 Method
The portfolio class overloads the MATLAB pie3 function to accept a portfolio
object and display a 3-D pie chart illustrating the relative asset mix of the
client’s portfolio. MATLAB calls the @portfolio/pie3.m version of pie3
whenever the input argument is a single portfolio object.

function pie3(p)
% PIE3 Create a 3-D pie chart of a portfolio
stockAmt = 0; bondAmt = 0; savingsAmt = 0;
for k = 1:length(p.indAssets)
 if isa(p.indAssets{k}, 'stock')
 stockAmt = stockAmt + ...
 get(p.indAssets{k}, 'CurrentValue');
 elseif isa(p.indAssets{k}, 'bond')
 bondAmt = bondAmt + ...
 get(p.indAssets{k}, 'CurrentValue');
 elseif isa(p.indAssets{k}, 'savings')
 savingsAmt = savingsAmt + ...
 get(p.indAssets{k}, 'CurrentValue');
 end
end
i = 1;
if stockAmt ~= 0
 label(i) = {'Stocks'};
 pieVector(i) = stockAmt;
 i = i + 1;
end
if bondAmt ~= 0
 label(i) = {'Bonds'};
 pieVector(i) = bondAmt;
 i = i + 1;
end
if savingsAmt ~= 0
 label(i) = {'Savings'};
 pieVector(i) = savingsAmt;
end
pie3(pieVector, label)
set(gcf, 'Renderer', 'zbuffer')
set(findobj(gca, 'Type', 'Text'), 'FontSize', 14)
cm = gray(64);

8 Classes and Objects

8-58

colormap(cm(48:end, :))
stg(1) = {['Portfolio Composition for ', p.name]};
stg(2) = {['Total Value of Assets: $', num2str(p.totalValue)]};
title(stg, 'FontSize', 12)

There are three parts in the overloaded pie3 method.

• The first uses the asset subclass get methods to access the CurrentValue
property of each contained object. The total value of each class is summed.

• The second part creates the pie chart labels and builds a vector of graph data,
depending on which objects are present.

• The third part calls the MATLAB pie3 function, makes some font and
colormap adjustments, and adds a title.

Creating a Portfolio
Suppose you have implemented a collection of asset subclasses in a manner
similar to the stock class. You can then use a portfolio object to present the
individual’s financial portfolio. For example, given the following assets

XYZStock = stock('XYZ', 200, 12);
SaveAccount = savings('Acc # 1234', 2000, 3.2);
Bonds = bond('U.S. Treasury', 1600, 12);

create a portfolio object:

p = portfolio('Gilbert Bates',XYZStock,SaveAccount,Bonds)

The portfolio display method summarizes the portfolio contents (because this
statement is not terminated by a semicolon).

Descriptor: XYZ
Date: 24-Nov-1998
Current Value: 2400.00
Type: stock
Number of shares: 200
Share price: 12.00

Descriptor: Acc # 1234
Date: 24-Nov-1998
Current Value: 2000.00
Type: savings
Interest Rate: 3.2%

Example — The Portfolio Container

8-59

Descriptor: U.S. Treasury
Date: 24-Nov-1998
Current Value: 1600.00
Type: bond
Interest Rate: 12%

Assets for Client: Gilbert Bates
Total Value: 6000.00

The portfolio pie3 method displays the relative mix of assets using a pie chart.

pie3(p)

8 Classes and Objects

8-60

Saving and Loading Objects
You can use the MATLAB save and load commands to save and retrieve
user-defined objects to and from .mat files, just like any other variables.

When you load objects, MATLAB calls the object’s class constructor to register
the object in the workspace. The constructor function for the object class you
are loading must be able to be called with no input arguments and return a
default object. See “Guidelines for Writing a Constructor” on page 8-10 for
more information.

Modifying Objects During Save or Load
When you issue a save or load command on objects, MATLAB looks for class
methods called saveobj and loadobj in the class directory. You can overload
these methods to modify the object before the save or load operation. For
example, you could define a saveobj method that saves related data along with
the object or you could write a loadobj method that updates objects to a newer
version when this type of object is loaded into the MATLAB workspace.

Example — Defining saveobj and loadobj for Portfolio

8-61

Example — Defining saveobj and loadobj for Portfolio
In the section “Example — The Portfolio Container” on page 8-54, portfolio
objects are used to collect information about a client’s investment portfolio.
Now suppose you decide to add an account number to each portfolio object that
is saved. You can define a portfolio saveobj method to carry out this task
automatically during the save operation.

Suppose further that you have already saved a number of portfolio objects
without the account number. You want to update these objects during the load
operation so that they are still valid portfolio objects. You can do this by
defining a loadobj method for the portfolio class.

Summary of Code Changes
To implement the account number scenario, you need to add or change the
following functions:

• portfolio — The portfolio constructor method needs to be modified to create
a new field, accountNumber, which is initialized to the empty string when an
object is created.

• saveobj — A new portfolio method designed to add an account number to a
portfolio object during the save operation, only if the object does not already
have one.

• loadobj — A new portfolio method designed to update older versions of
portfolio objects that were saved before the account number structure field
was added.

• subsref — A new portfolio method that enables subscripted reference to
portfolio objects outside of a portfolio method.

• getAccountNumber — a MATLAB function that returns an account number
that consists of the first three letters of the client’s name.

New Portfolio Class Behavior
With the additions and changes made in this example, the portfolio class now

• Includes a field for an account number

• Adds the account number when a portfolio object is saved for the first time

8 Classes and Objects

8-62

• Automatically updates the older version of portfolio objects when you load
them into the MATLAB workspace

The saveobj Method
MATLAB looks for the portfolio saveobj method whenever the save command
is passed a portfolio object. If @portfolio/saveobj exists, MATLAB passes the
portfolio object to saveobj, which must then return the modified object as an
output argument. The following implementation of saveobj determines if the
object has already been assigned an account number from a previous save
operation. If not, saveobj calls getAccountNumber to obtain the number and
assigns it to the accountNumber field.

function b = saveobj(a)
if isempty(a.accountNumber)

a.accountNumber = getAccountNumber(a);
end
b = a;

The loadobj Method
MATLAB looks for the portfolio loadobj method whenever the load command
detects portfolio objects in the .mat file being loaded. If loadobj exists,
MATLAB passes the portfolio object to loadobj, which must then return the
modified object as an output argument. The output argument is then loaded
into the workspace.

If the input object does not match the current definition as specified by the
constructor function, then MATLAB converts it to a structure containing the
same fields and the object’s structure with all the values intact (that is, you
now have a structure, not an object).

The following implementation of loadobj first uses isa to determine whether
the input argument is a portfolio object or a structure. If the input is an object,
it is simply returned since no modifications are necessary. If the input
argument has been converted to a structure by MATLAB, then the new
accountNumber field is added to the structure and is used to create an updated
portfolio object.

Example — Defining saveobj and loadobj for Portfolio

8-63

function b = loadobj(a)
% loadobj for portfolio class
if isa(a,'portfolio')

b = a;
else % a is an old version

a.accountNumber = getAccountNumber(a);
b = class(a,'portfolio');

end

Changing the Portfolio Constructor
The portfolio structure array needs an additional field to accommodate the
account number. To create this field, add the line

p.accountNumber = '';

to @portfolio/portfolio.m in both the zero argument and variable argument
sections.

The getAccountNumber Function
In this example, getAccountNumber is a MATLAB function that returns an
account number composed of the first three letters of the client name
prepended to a series of digits. To illustrate implementation techniques,
getAccountNumber is not a portfolio method so it cannot access the portfolio
object data directly. Therefore, it is necessary to define a portfolio subsref
method that enables access to the name field in a portfolio object’s structure.

For this example, getAccountNumber simply generates a random number,
which is formatted and concatenated with elements 1 to 3 from the portfolio
name field.

function n = getAccountNumber(p)
% provides a account number for object p
n = [upper(p.name(1:3)) strcat(num2str(round(rand(1,7)*10))')'];

Note that the portfolio object is indexed by field name, and then by numerical
subscript to extract the first three letters. The subsref method must be written
to support this form of subscripted reference.

8 Classes and Objects

8-64

The Portfolio subsref Method
When MATLAB encounters a subscripted reference, such as that made in the
getAccountNumber function

p.name(1:3)

MATLAB calls the portfolio subsref method to interpret the reference. If you
do not define a subsref method, the above statement is undefined for portfolio
objects (recall that here p is an object, not just a structure).

The portfolio subsref method must support field-name and numeric indexing
for the getAccountNumber function to access the portfolio name field.

function b = subsref(p,index)
% SUBSREF Define field name indexing for portfolio objects
switch index(1).type
case '.'

switch index(1).subs
case 'name'

if length(index)== 1
b = p.name;

else
switch index(2).type
case '()'

b = p.name(index(2).subs{:});
end

end
end

end

Note that the portfolio implementation of subsref is designed to provide access
to specific elements of the name field; it is not a general implementation that
provides access to all structure data, such as the stock class implementation of
subsref.

See the subsref help entry for more information about indexing and objects.

Object Precedence

8-65

Object Precedence
Object precedence is a means to resolve the question of which of possibly many
versions of an operator or function to call in a given situation. Object
precedence enables you to control the behavior of expressions containing
different classes of objects. For example, consider the expression

objectA + objectB

Ordinarily, MATLAB assumes that the objects have equal precedence and calls
the method associated with the leftmost object. However, there are two
exceptions:

• User-defined classes have precedence over MATLAB built-in classes.

• User-defined classes can specify their relative precedence with respect to
other user-defined classes using the inferiorto and superiorto functions.

For example, in the section “Example — A Polynomial Class” on page 8-24 the
polynom class defines a plus method that enables addition of polynom objects.
Given the polynom object p

p = polynom([1 0 −2 −5])
p =
 x^3−2*x−5

The expression,

1 + p
ans =
 x^3−2*x−4

calls the polynom plus method (which converts the double, 1, to a polynom
object, and then adds it to p). The user-defined polynom class has precedence
over the MATLAB double class.

8 Classes and Objects

8-66

Specifying Precedence of User-Defined Classes
You can specify the relative precedence of user-defined classes by calling the
inferiorto or superiorto function in the class constructor.

The inferiorto function places a class below other classes in the precedence
hierarchy. The calling syntax for the inferiorto function is

inferiorto('class1','class2',...)

You can specify multiple classes in the argument list, placing the class below
many other classes in the hierarchy.

Similarly, the superiorto function places a class above other classes in the
precedence hierarchy. The calling syntax for the superiorto function is

superiorto('class1','class2',...)

Location in the Hierarchy
If objectA is above objectB in the precedence hierarchy, then the expression

objectA + objectB

calls @classA/plus.m. Conversely, if objectB is above objectA in the
precedence hierarchy, then MATLAB calls @classB/plus.m.

See “How MATLAB Determines Which Method to Call” on page 8-67 for
related information.

How MATLAB Determines Which Method to Call

8-67

How MATLAB Determines Which Method to Call
In MATLAB, functions exist in directories in the computer’s file system. A
directory may contain many functions (M-files). Function names are unique
only within a single directory (e.g., more than one directory may contain a
function called pie3). When you type a function name on the command line,
MATLAB must search all the directories it is aware of to determine which
function to call. This list of directories is called the MATLAB path.

When looking for a function, MATLAB searches the directories in the order
they are listed in the path, and calls the first function whose name matches the
name of the specified function.

If you write an M-file called pie3.m and put it in a directory that is searched
before the specgraph directory that contains the MATLAB pie3 function, then
MATLAB uses your pie3 function instead (note that this is not true for built-in
functions like plot, which are always found first).

Object-oriented programming allows you to have many methods (MATLAB
functions located in class directories) with the same name and enables
MATLAB to determine which method to use based on the type or class of the
variables passed to the function. For example, if p is a portfolio object, then

pie3(p)

calls @portfolio/pie3.m because the argument is a portfolio object.

Selecting a Method
When you call a method for which there are multiple versions with the same
name, MATLAB determines the method to call by:

• Looking at the classes of the objects in the argument list to determine which
argument has the highest object precedence; the class of this object controls
the method selection and is called the dispatch type.

• Applying the function precedence order to determine which of possibly
several implementations of a method to call. This order is determined by the
location and type of function.

8 Classes and Objects

8-68

Determining the Dispatch Type
MATLAB first determines which argument controls the method selection. The
class type of this argument then determines the class in which MATLAB
searches for the method. The controlling argument is either

• The argument with the highest precedence, or

• The leftmost of arguments having equal precedence

User-defined objects take precedence over the MATLAB built-in classes such
as double or char. You can set the relative precedence of user-defined objects
with the inferiorto and superiorto functions, as described in “Object
Precedence” on page 8-65.

MATLAB searches for functions by name. When you call a function, MATLAB
knows the name, number of arguments, and the type of each argument.
MATLAB uses the dispatch type to choose among multiple functions of the
same name, but does not consider the number of arguments.

Function Precedence Order
The function precedence order determines the precedence of one function over
another based on the type of function and its location on the MATLAB path.
MATLAB selects the correct function for a given context by applying the
following function precedence rules, in the order given:

1 Subfunctions

Subfunctions take precedence over all other M-file functions and overloaded
methods that are on the path and have the same name. Even if the function
is called with an argument of type matching that of an overloaded method,
MATLAB uses the subfunction and ignores the overloaded method.

2 Private functions

Private functions are called if there is no subfunction of the same name
within the current scope. As with subfunctions, even if the function is called
with an argument of type matching that of an overloaded method, MATLAB
uses the private function and ignores the overloaded method.

How MATLAB Determines Which Method to Call

8-69

3 Class constructor functions

Constructor functions (functions having names that are the same as the @
directory, for example @polynom/polynom.m) take precedence over other
MATLAB functions. Therefore, if you create an M-file called polynom.m and
put it on your path before the constructor @polynom/polynom.m version,
MATLAB will always call the constructor version.

4 Overloaded methods

MATLAB calls an overloaded method if it is not masked by a subfunction or
private function.

5 Current directory

A function in the current working directory is selected before one elsewhere
on the path.

6 Elsewhere on path

Finally, a function anywhere else on the path is selected.

Selecting Methods from Multiple Directories
There may be a number of directories on the path that contain methods with
the same name. MATLAB stops searching when it finds the first
implementation of the method on the path, regardless of the implementation
type (MEX-file, P-code, M-file).

Selecting Methods from Multiple Implementation Types
There are five file precedence types. MATLAB uses file precedence to select
between identically named functions in the same directory. The order of
precedence for file types is

1 Built-in (.bi) file

2 MEX-files

3 MDL (Simulink® model) file

4 P-code file

8 Classes and Objects

8-70

5 M-file

For example, if MATLAB finds a P-code and an M-file version of a method in a
class directory, then the P-code version is used. It is, therefore, important to
regenerate the P-code version whenever you edit the M-file.

Querying Which Method MATLAB Will Call
You can determine which method MATLAB will call using the which command.
For example,

which pie3
your_matlab_path/toolbox/matlab/specgraph/pie3.m

However, if p is a portfolio object,

which pie3(p)
dir_on_your_path/@portfolio/pie3.m % portfolio method

The which command determines which version of pie3 MATLAB will call if you
passed a portfolio object as the input argument. To see a list of all versions of a
particular function that are on your MATLAB path, use the −all option. See
the which reference page for more information on this command.

9
Scheduling Program
Execution with Timers

MATLAB includes a timer object that you can use to schedule the execution of MATLAB commands.
This chapter describes how you can create timer objects, start a timer running, and specify the
processing that you want performed when a timer fires. A timer is said to fire when the amount of
time specified by the timer object elapses and the timer object executes the commands you specify.

Using a MATLAB Timer Object
(p. 9-2)

Step-by-step procedure for using a timer object with a simple
example

Creating Timer Objects (p. 9-4) Using the timer function to create a timer object

Working with Timer Object
Properties (p. 9-6)

Setting timer object properties and retrieving the values of
timer object properties

Starting and Stopping Timers (p. 9-9) Using the start or startat function to start timer objects;
using the stop function to stop them, and blocking the
command line

Creating and Executing Callback
Functions (p. 9-13)

Creating a callback function and specifying it as the value of
a timer object callback property

Timer Object Execution Modes
(p. 9-18)

Using the ExecutionMode property to control when a timer
object executes

Deleting Timer Objects from Memory
(p. 9-22)

Using the delete function to delete a timer object

Finding All Timer Objects in Memory
(p. 9-23)

Using the timerfind and timerfindall functions to
determine if timer objects exist in memory

9 Scheduling Program Execution with Timers

9-2

Using a MATLAB Timer Object
To use a timer, perform these steps:

1 Create a timer object.

You use the timer function to create a timer object. See “Creating Timer
Objects” on page 9-4 for more information.

2 Specify which MATLAB commands you want executed when the timer fires
and control other aspects of timer object behavior.

You use timer object properties to specify this information. To learn about
all the properties supported by the timer object, see “Working with Timer
Object Properties” on page 9-6. (You can also set timer object properties
when you create them, in step 1.)

3 Start the timer object.

After you create the timer object, you must start it, using either the start
or startat function. See “Starting and Stopping Timers” on page 9-9 for
more information.

4 Delete the timer object when you are done with it.

After you are finished using a timer object, you should delete it from
memory. See “Deleting Timer Objects from Memory” on page 9-22 for more
information.

Note The specified execution time and the actual execution of a timer can
vary because timer objects work in the MATLAB single-threaded execution
environment. The length of this time lag is dependent on what other
processing MATLAB is performing. To force the execution of the callback
functions in the event queue, include a call to the drawnow function in your
code. The drawnow function flushes the event queue. For more information
about callback processing, see “The Event Queue” in the MATLAB
Programming GUIs documentation.

Using a MATLAB Timer Object

9-3

Example: Displaying a Message
The following example sets up a timer object that executes a MATLAB
command string after 10 seconds elapse. The example creates a timer object,
specifying the values of two timer object properties, TimerFcn and StartDelay.
TimerFcn specifies the timer callback function. This is the MATLAB command
string or M-file that you want to execute when the timer fires. In the example,
the timer callback function sets the value of the MATLAB workspace variable
stat and executes the MATLAB disp command. The StartDelay property
specifies how much time elapses before the timer fires.

After creating the timer object, the example uses the start function to start the
timer object. (The additional commands in this example are included to
illustrate the timer but are not required for timer operation.)

t = timer('TimerFcn', 'stat=false; disp(''Timer!'')',...
'StartDelay',10);

start(t)

stat=true;
while(stat==true)
disp('.')
pause(1)

end

When you execute this code, it produces this output:

.

.

.

.

.

.

.

.

.
Timer!

delete(t) % Always delete timer objects after using them.

9 Scheduling Program Execution with Timers

9-4

Creating Timer Objects
To use a timer in MATLAB, you must create a timer object. The timer object
represents the timer in MATLAB, supporting various properties and functions
that control its behavior.

To create a timer object, use the timer function. This creates a valid timer
object with default values for most properties. The following shows an example
of the default timer object and its summary display:

t = timer

Timer Object: timer-1

 Timer Settings
 ExecutionMode: singleShot
 Period: 1
 BusyMode: drop
 Running: off

 Callbacks
 TimerFcn: ''
 ErrorFcn: ''
 StartFcn: ''
 StopFcn: ''

MATLAB names the timer object timer-1. (See “Timer Object Naming” on
page 9-5 for more information.)

To specify the value of timer object properties after you create it, you can use
the set function. This example sets the value of the TimerFcn property and the
StartDelay property. For more information about timer object properties, see
“Working with Timer Object Properties” on page 9-6.

set(t,'TimerFcn','disp(''Hello World!'')','StartDelay',5)

You can also set timer object properties when you create the timer object by
specifying property name and value pairs as arguments to the timer function.
The following example sets the same properties at object creation time:

t = timer('TimerFcn', 'disp(''Hello World!'')','StartDelay',5);

Creating Timer Objects

9-5

Always delete timer objects when you are done using them. See “Deleting
Timer Objects from Memory” on page 9-22 for more information.

Timer Object Naming
MATLAB assigns a name to each timer object you create. This name has the
form 'timer-i', where i is a number representing the total number of timer
objects created this session.

For example, the first time you call the timer function to create a timer object,
MATLAB names the object timer-1. If you call the timer function again to
create another timer object, MATLAB names the object timer-2.

MATLAB keeps incrementing the number associated with each timer object it
creates, even if you delete the timer objects you already created. For example,
if you delete the first two timer objects and create a new object, MATLAB
names it timer-3, even though the other two timer objects no longer exist in
memory. To reset the numeric part of timer object names to 1, execute the clear
classes command.

9 Scheduling Program Execution with Timers

9-6

Working with Timer Object Properties
The timer object supports many properties that provide information about the
current state of the timer object and control aspects of its functioning. The
following sections describe

• “Retrieving the Value of Timer Object Properties” on page 9-6

• “Setting the Value of Timer Object Properties” on page 9-7

To get information about timer object properties, see the timer function
reference page.

Retrieving the Value of Timer Object Properties
To retrieve the value of a timer object property, you can use the get function or
use subscripts (dot notation) to access the field.

The following example uses the set function to retrieve the value of the
ExecutionMode property:

t = timer;

tmode = get(t,'ExecutionMode')

tmode =

singleShot

The following example uses dot notation to retrieve the value of the
ExecutionMode property:

tmode = t.ExecutionMode

tmode =

singleShot

Working with Timer Object Properties

9-7

To view a list of all the properties of a timer object, use the get function,
specifying the timer object as the only argument:

get(t)
 AveragePeriod: NaN
 BusyMode: 'drop'
 ErrorFcn: ''
 ExecutionMode: 'singleShot'
 InstantPeriod: NaN
 Name: 'timer-4'
 ObjectVisibility: 'on'
 Period: 1
 Running: 'off'
 StartDelay: 0
 StartFcn: ''
 StopFcn: ''
 Tag: ''
 TasksExecuted: 0
 TasksToExecute: Inf
 TimerFcn: ''
 Type: 'timer'
 UserData: []

Setting the Value of Timer Object Properties
To set the value of a timer object property, use the set function or subscripted
assignment (dot notation). You can also set timer object properties when you
create the timer object. For more information, see “Creating Timer Objects” on
page 9-4.

The following example uses both methods to assign values to timer object
properties. The example creates a timer that, once started, displays a message
every second until you stop it with the stop command.

1 Create a timer object.

t = timer;

2 Assign values to timer object properties using the set function.

set(t,'ExecutionMode','fixedRate','BusyMode','drop','Period',1);

9 Scheduling Program Execution with Timers

9-8

3 Assign a value to the timer object TimerFcn property using dot notation.

t.TimerFcn = 'disp(''Processing...'')'

4 Start the timer object. It displays a message at 1-second intervals.

start(t)

5 Stop the timer object.

stop(t)

6 Delete timer objects after you are done using them.

delete(t)

Viewing a List of All Settable Properties
To view a list of all timer object properties that can have values assigned to
them (in contrast to the read-only properties), use the set function, specifying
the timer object as the only argument.

The display includes the values you can use to set the property if, like the
BusyMode property, the property accepts an enumerated list of values.

t = timer;

set(t)
 BusyMode: [{drop} | queue | error]
 ErrorFcn: string -or- function handle -or- cell array
 ExecutionMode: [{singleShot} | fixedSpacing | fixedDelay | fixedRate]
 Name
 ObjectVisibility: [{on} | off]
 Period
 StartDelay
 StartFcn: string -or- function handle -or- cell array
 StopFcn: string -or- function handle -or- cell array
 Tag
 TasksToExecute
 TimerFcn: string -or- function handle -or- cell array
 UserData

Starting and Stopping Timers

9-9

Starting and Stopping Timers
After you create a timer object, you can start the timer by calling either the
start or startat function. This section describes

• “Starting a Timer” on page 9-9

• “Starting a Timer at a Specified Time” on page 9-10

• “Stopping Timer Objects” on page 9-10

• “Blocking the MATLAB Command Line” on page 9-11

Note Because the timer works within the MATLAB single-threaded
environment, it cannot guarantee execution times or execution rates.

Starting a Timer
To start a timer object, call the start function, specifying the timer object as
the only argument. The start function starts a timer object running; the
amount of time the timer runs is specified in seconds in the StartDelay
property.

This example creates a timer object that displays a greeting after 5 seconds
elapse.

1 Create a timer object, specifying values for timer object properties.

t = timer('TimerFcn','disp(''Hello World!'')','StartDelay', 5);

2 Start the timer object.

start(t)

3 Delete the timer object after you are finished using it.

delete(t);

9 Scheduling Program Execution with Timers

9-10

Starting a Timer at a Specified Time
To start a timer object and specify when you want the timer to fire as a date
and time, rather than as the number of seconds to elapse, use the startat
function.

The startat function starts a timer object running and lets you specify the
date, hour, minute, and second when you want to the timer to execute. You
specify the time as a MATLAB serial date number or as a specially formatted
date text string. See the startat function reference page for details.

This example creates a timer object that displays a message after an hour has
elapsed. The startat function starts the timer object running and calculates
the value of the StartDelay property based on the time you specify.

t2=timer('TimerFcn','disp(''It has been an hour now.'')');

startat(t2,now+1/24);

Stopping Timer Objects
Once started, the timer object stops running if one of the following conditions
apply:

• The timer function callback (TimerFcn) has been executed the number of
times specified in the TasksToExecute property.

• An error occurred while executing a timer function callback (TimerFcn).

You can also stop a timer object by using the stop function, specifying the timer
object as the only argument. The following example illustrates stopping a timer
object:

1 Create a timer object.

t = timer('TimerFcn','disp(''Hello World!'')','StartDelay', 100);

2 Start it running.

start(t)

Starting and Stopping Timers

9-11

3 Check the state of the timer object after starting it.

get(t,'Running')

ans =

on

4 Stop the timer using the stop command and check the state again. When a
timer stops, the value of the Running property of the timer object is set to
'off'.

stop(t)

get(t,'Running')

ans =

off

5 Delete the timer object when you are finished using it.

delete(t)

Note The timer object can execute a callback function that you specify when
it starts or stops. See “Creating and Executing Callback Functions” on
page 9-13.

Blocking the MATLAB Command Line
By default, when you use the start or startat function to start a timer object,
the function returns control to the command line immediately. For some
applications, you might prefer to block the command line until the timer fires.
To do this, call the wait function right after calling the start or startat
function.

1 Create a timer object.

t = timer('StartDelay', 5,'TimerFcn','disp(''Hello World!'')');

9 Scheduling Program Execution with Timers

9-12

2 Start the timer object running.

start(t)

3 After the start function returns, call the wait function immediately. The
wait function blocks the command line until the timer object fires.

wait(t)

4 Delete the timer object after you are finished using it.

delete(t)

Creating and Executing Callback Functions

9-13

Creating and Executing Callback Functions
This section describes

• “Associating Commands with Timer Object Events” on page 9-13

• “Creating Callback Functions” on page 9-14

• “Specifying the Value of Callback Function Properties” on page 9-16

Note Callback function execution might be delayed if the callback involves a
CPU-intensive task such as updating a figure.

Associating Commands with Timer Object Events
The timer object supports properties that let you specify the MATLAB
commands that execute when a timer fires, and for other timer object events,
such as starting, stopping, or when an error occurs. These are called callbacks.
To associate MATLAB commands with a timer object event, set the value of the
associated timer object callback property.

The following diagram shows when the events occur during execution of a
timer object and give the names of the timer object properties associated with
each event. For example, to associate MATLAB commands with a start event,
assign a value to the StartFcn callback property. Error callbacks can occur at
any time.

9 Scheduling Program Execution with Timers

9-14

Timer Object Events and Related Callback Function

Creating Callback Functions
When the time period specified by a timer object elapses, the timer object
executes one or more MATLAB functions of your choosing. You can specify the
functions directly as the value of the callback property. You can also put the
commands in an M-file function and specify the M-file function as the value of
the callback property.

Specifying Callback Functions Directly
This example creates a timer object that displays a greeting after 5 seconds.
The example specifies the value of the TimerFcn callback property directly,
putting the commands in a text string.

t = timer('TimerFcn','disp(''Hello World!'')','StartDelay',5);

Start
event

TimerFcnQueue
lag

TimerFcnQueue
lag

Period

StartFcn
callback

StopFcn
callback

TimerFcn
callback

StartDelay

Timer fires
event

Timer fires
event

Stop
event

TimerFcn
callback

Creating and Executing Callback Functions

9-15

Note When you specify the callback commands directly as the value of the
callback function property, the commands are evaluated in the MATLAB
workspace.

Putting Commands in a Callback Function
Instead of specifying MATLAB commands directly as the value of a callback
property, you can put the commands in an M-file and specify the M-file as the
value of the callback property.

When you create a callback function, the first two arguments must be a handle
to the timer object and an event structure. An event structure contains two
fields: Type and Data. The Type field contains a text string that identifies the
type of event that caused the callback. The value of this field can be any of the
following strings: 'StartFcn', 'StopFcn', 'TimerFcn', or 'ErrorFcn'. The
Data field contains the time the event occurred.

In addition to these two required input arguments, your callback function can
accept application-specific arguments. To receive these input arguments, you
must use a cell array when specifying the name of the function as the value of
a callback property. For more information, see “Specifying the Value of
Callback Function Properties” on page 9-16.

Example: Writing a Callback Function
This example implements a simple callback function that displays the type of
event that triggered the callback and the time the callback occurred. To
illustrate passing application-specific arguments, the example callback
function accepts as an additional argument a text string and includes this text
string in the display output. To see this function used with a callback property,
see “Specifying the Value of Callback Function Properties” on page 9-16.

function my_callback_fcn(obj, event, string_arg)

txt1 = ' event occurred at ';
txt2 = string_arg;

event_type = event.Type;
event_time = datestr(event.Data.time);

9 Scheduling Program Execution with Timers

9-16

msg = [event_type txt1 event_time];
disp(msg)
disp(txt2)

Specifying the Value of Callback Function Properties
You associate a callback function with a specific event by setting the value of
the appropriate callback property. You can specify the callback function as a
text string, cell array, or function handle. To access the object and event
arguments, you must specify the function as a cell array or as a function
handle. If your callback function accepts additional arguments, you must use a
cell array.

The following table shows the syntax for several sample callback functions and
describes how you call them.

This example illustrates several ways you can specify the value of timer object
callback function properties, some with arguments and some without. To see
the code of the callback function, my_callback_fcn, see “Example: Writing a
Callback Function” on page 9-15.

1 Create a timer object.

t = timer('StartDelay', 4,'Period', 4,'TasksToExecute', 2,...
'ExecutionMode','fixedRate');

2 Specify the value of the StartFcn callback. Note that the example specifies
the value in a cell array because the callback function needs to access
arguments passed to it.

t.StartFcn = {'my_callback_fcn', 'My start message'};

Callback Function Syntax How to Specify as a Property Value

function myfile set(h, 'StartFcn', 'myfile')

function myfile(obj, event) set(h, 'StartFcn', @myfile)

function myfile(obj, event, arg1, arg2) set(h, 'StartFcn', {'myfile', 5, 6})

function myfile(obj, event, arg1, arg2) set(h, 'StartFcn', {@myfile, 5, 6})

Creating and Executing Callback Functions

9-17

3 Specify the value of the StopFcn callback. The example specifies the callback
function by its handle, rather than as a text string. Again, the value is
specified in a cell array because the callback function needs to access the
arguments passed to it.

t.StopFcn = { @my_callback_fcn, 'My stop message'};

4 Specify the value of the TimerFcn callback. The example specifies the
MATLAB commands in a text string.

t.TimerFcn = 'disp(''Hello World!'')';

5 Start the timer object.

start(t)

The example outputs the following.

StartFcn event occurred at 10-Mar-2004 17:16:59
Start message
Hello World!
Hello World!
StopFcn event occurred at 10-Mar-2004 17:16:59
Stop message

6 Delete the timer object after you are finished with it.

delete(t)

9 Scheduling Program Execution with Timers

9-18

Timer Object Execution Modes
The timer object supports several execution modes that determine how it
schedules the timer callback function (TimerFcn) for execution. You specify the
execution mode by setting the value of the ExecutionMode property. This
section describes

• “Executing a Timer Callback Function Once” on page 9-18

• “Executing a Timer Callback Function Multiple Times” on page 9-19

• “Handling Callback Function Queuing Conflicts” on page 9-20

Executing a Timer Callback Function Once
To execute a timer callback function once, set the ExecutionMode property to
'singleShot'. This is the default execution mode.

In this mode, the timer object starts the timer and, after the time period
specified in the StartDelay property elapses, adds the timer callback function
(TimerFcn) to the MATLAB execution queue. When the timer callback function
finishes, the timer stops.

The following figure graphically illustrates the parts of timer callback
execution for a singleShot execution mode. The shaded area in the figure,
labelled queue lag, represents the indeterminate amount of time between when
the timer adds a timer callback function to the MATLAB execution queue and
when the function starts executing. The duration of this lag is dependent on
what other processing MATLAB happens to be doing at the time.

Timer Callback Execution (singleShot Execution Mode)

Start
timer

singleShot

TimerFcnQueue
lag

Timer
stops

Timer
executes

StartDelay

Timer Object Execution Modes

9-19

Executing a Timer Callback Function Multiple Times
The timer object supports three multiple-execution modes:

• 'fixedRate'
• 'fixedDelay'
• 'fixedSpacing'

In many ways, these execution modes operate the same:

• The TasksToExecute property specifies the number of times you want the
timer to execute the timer callback function (TimerFcn).

• The Period property specifies the amount of time between executions of the
timer callback function.

• The BusyMode property specifies how the timer object handles queuing of the
timer callback function when the previous execution of the callback function
has not completed. See “Handling Callback Function Queuing Conflicts” on
page 9-20 for more information.

The execution modes differ only in where they start measuring the time period
between executions. The following table describes these differences.

Execution Mode Description

'fixedRate' Time period between executions begins
immediately after the timer callback function is
added to the MATLAB execution queue.

'fixedDelay' Time period between executions begins when the
timer function callback actually starts executing,
after any time lag due to delays in the MATLAB
execution queue.

'fixedSpacing' Time period between executions begins when the
timer callback function finishes executing.

9 Scheduling Program Execution with Timers

9-20

The following figure illustrates the difference between these modes. Note that
the amount of time between executions (specified by the Period property)
remains the same. Only the point at which execution begins is different.

Differences Between Execution Modes

Handling Callback Function Queuing Conflicts
At busy times, in multiple-execution scenarios, the timer may need to add the
timer callback function (TimerFcn) to the MATLAB execution queue before the
previously queued execution of the callback function has completed. You can
determine how the timer object handles this scenario by using the BusyMode
property.

If you specify 'drop' as the value of the BusyMode property, the timer object
skips the execution of the timer function callback if the previously scheduled
callback function has not already completed.

Start
timer

fixedRate

TimerFcnQueue
lag

Period

TimerFcnQueue
lag

Period

TimerFcnQueue
lag

TimerFcnQueue
lag

Period

Timer
executes

fixedDelay

fixedSpacing

StartDelay

Timer Object Execution Modes

9-21

If you specify 'queue', the timer object waits until the currently executing
callback function finishes before queuing the next execution of the timer
callback function.

Note In 'queue' mode, the timer object tries to make the average time
between executions equal the amount of time specified in the Period property.
If the timer object has to wait longer than the time specified in the Period
property between executions of the timer function callback, it shortens the
time period for subsequent executions to make up the time.

If the BusyMode property is set to 'error', the timer object stops and executes
the timer object error callback function (ErrorFcn), if one is specified.

9 Scheduling Program Execution with Timers

9-22

Deleting Timer Objects from Memory
When you are finished with a timer object, delete it from memory using the
delete function:

delete(t)

When you delete a timer object, workspace variables that referenced the object
remain. Deleted timer objects are invalid and cannot be reused. Use the clear
command to remove workspace variables that reference deleted timer objects.

Testing the Validity of a Timer Object
To test if a timer object has been deleted, use the isvalid function. The
isvalid function returns logical 0 (false) for deleted timer objects:

isvalid(t)
ans =

 0

Deleting All Existing Timer Objects
To remove all timer objects from memory, enter

delete(timerfind)

For information about the timerfind function, see “Finding All Timer Objects
in Memory” on page 9-23.

Finding All Timer Objects in Memory

9-23

Finding All Timer Objects in Memory
To find all the timer objects that exist in memory, use the timerfind function.
This function returns an array of timer objects. If you leave off the semicolon,
and there are multiple timer objects in the array, timerfind displays summary
information in a table:

t1 = timer;
t2 = timer;
t3 = timer;
t_array = timerfind

Timer Object Array

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 '' timer-3
 2 singleShot 1 '' timer-4
 3 singleShot 1 '' timer-5

Using timerfind to determine all the timer objects that exist in memory can
be helpful when deleting timer objects. See “Deleting All Existing Timer
Objects” on page 9-22 for an example.

Finding Invisible Timer Objects
If you set the value of a timer object’s ObjectVisibility property to 'off', the
timer object does not appear in listings of existing timer objects returned by
timerfind. The ObjectVisibility property provides a way for application
developers to prevent end-user access to the timer objects created by their
application.

Objects that are not visible are still valid. If you have access to the object (for
example, from within the M-file that created it), you can set its properties. To
retrieve a list of all the timer objects in memory, including invisible ones, use
the timerfindall function.

9 Scheduling Program Execution with Timers

9-24

10

Improving Performance
and Memory Usage

Analyzing Your Program’s Performance
(p. 10-2)

What tools are provided by MATLAB to measure the
performance of your programs and identify where the
bottlenecks are

Techniques for Improving Performance
(p. 10-4)

How to improve M-file performance by vectorizing loops,
preallocating arrays, etc.

Making Efficient Use of Memory
(p. 10-12)

Conserving memory; platform-specific memory handling;
“Out of Memory” errors

Resolving “Out of Memory” Errors
(p. 10-16)

What to do when if you get a “Out of Memory” error

10 Improving Performance and Memory Usage

10-2

Analyzing Your Program’s Performance
The M-file Profiler graphical user interface and the stopwatch timer functions
enable you to get back information on how your program is performing and
help you identify areas that need improvement. The Profiler can be more useful
in measuring relative execution time and in identifying specific performance
bottlenecks in your code, while the stopwatch functions tend to be more useful
for providing absolute time measurements.

The M-File Profiler Utility
A good first step to speeding up your programs is to find out where the
bottlenecks are. This is where you need to concentrate your attention to
optimize your code.

MATLAB provides the M-file Profiler, a graphical user interface that shows
you where your program is spending its time during execution. Use the Profiler
to help you determine where you can modify your code to make performance
improvements.

To start the Profiler, type profile viewer or select Desktop -> Profiler in the
MATLAB Command Window. See “Profiling for Improving Performance” in the
MATLAB Desktop Tools and Development Environment documentation, and
the profile function reference page.

Stopwatch Timer Functions
If you just need to get an idea of how long your program (or a portion of it) takes
to run, or to compare the speed of different implementations of a program, you
can use the stopwatch timer functions, tic and toc. Invoking tic starts the
timer, and the first subsequent toc stops it and reports the time elapsed
between the two.

Use tic and toc as shown here:

tic
 run the program section to be timed
toc

Keep in mind that tic and toc measure overall elapsed time. Make sure that
no other applications are running in the background on your system that could
affect the timing of your MATLAB programs.

Analyzing Your Program’s Performance

10-3

Measuring Smaller Programs
Shorter programs sometimes run too fast to get useful data from tic and toc.
When this is the case, try measuring the program running repeatedly in a loop,
and then average to find the time for a single run:

tic
 for k = 1:100
 run the program
 end
toc

10 Improving Performance and Memory Usage

10-4

Techniques for Improving Performance
This section covers the following suggestions on how you can improve the
performance of your MATLAB programs:

• “Vectorizing Loops” on page 10-4

• “Preallocating Arrays” on page 10-7

• “Coding Loops in a MEX-File” on page 10-9

• “Assigning to Variables” on page 10-9

• “Operating on Real Data” on page 10-10

• “Using Appropriate Logical Operators” on page 10-10

• “Overloading Built-In Functions” on page 10-11

• “Functions Are Generally Faster Than Scripts” on page 10-11

• “Load and Save Are Faster Than File I/O Functions” on page 10-11

• “Avoid Large Background Processes” on page 10-11

Vectorizing Loops
MATLAB is a matrix language, which means it is designed for vector and
matrix operations. You can often speed up your M-file code by using vectorizing
algorithms that take advantage of this design. Vectorization means converting
for and while loops to equivalent vector or matrix operations.

Simple Example of Vectorizing
Here is one way to compute the sine of 1001 values ranging from 0 to 10:

i = 0;
for t = 0:.01:10
 i = i + 1;
 y(i) = sin(t);
end

Techniques for Improving Performance

10-5

A vectorized version of the same code is

t = 0:.01:10;
y = sin(t);

The second example executes much faster than the first and is the way
MATLAB is meant to be used. Test this on your system by creating M-file
scripts that contain the code shown, and then using the tic and toc functions
to time the M-files.

Advanced Example of Vectorizing
repmat is an example of a function that takes advantage of vectorization. It
accepts three input arguments: an array A, a row dimension M, and a column
dimension N.

repmat creates an output array that contains the elements of array A,
replicated and “tiled” in an M-by-N arrangement:

A = [1 2 3; 4 5 6];

B = repmat(A,2,3);
B =
 1 2 3 1 2 3 1 2 3
 4 5 6 4 5 6 4 5 6
 1 2 3 1 2 3 1 2 3
 4 5 6 4 5 6 4 5 6

repmat uses vectorization to create the indices that place elements in the
output array:

function B = repmat(A, M, N)

% Step 1 Get row and column sizes
[m,n] = size(A);

% Step 2 Generate vectors of indices from 1 to row/column size
mind = (1:m)';
nind = (1:n)';

% Step 3 Create index matrices from vectors above
mind = mind(:,ones(1, M));
nind = nind(:,ones(1, N));

10 Improving Performance and Memory Usage

10-6

% Step 4 Create output array
B = A(mind,nind);

Step 1, above, obtains the row and column sizes of the input array.

Step 2 creates two column vectors. mind contains the integers from 1 through
the row size of A. The nind variable contains the integers from 1 through the
column size of A.

Step 3 uses a MATLAB vectorization trick to replicate a single column of data
through any number of columns. The code is

B = A(:,ones(1,nCols))

where nCols is the desired number of columns in the resulting matrix.

Step 4 uses array indexing to create the output array. Each element of the row
index array, mind, is paired with each element of the column index array, nind,
using the following procedure:

1 The first element of mind, the row index, is paired with each element of nind.
MATLAB moves through the nind matrix in a columnwise fashion, so
mind(1,1) goes with nind(1,1), and then nind(2,1), and so on. The result
fills the first row of the output array.

2 Moving columnwise through mind, each element is paired with the elements
of nind as above. Each complete pass through the nind matrix fills one row
of the output array.

Functions Used in Vectorizing
Some of the most commonly used functions for vectorizing are as follows

Function Description

all Test to determine if all elements are nonzero

any Test for any nonzeros

cumsum Find cumulative sum

diff Find differences and approximate derivatives

Techniques for Improving Performance

10-7

Preallocating Arrays
for and while loops that incrementally increase, or grow, the size of a data
structure each time through the loop can adversely affect performance and
memory use. Repeatedly resizing arrays often requires that MATLAB spend
extra time looking for larger contiguous blocks of memory and then moving the
array into those blocks. You can often improve on code execution time by
preallocating the maximum amount of space that would be required for the
array ahead of time.

find Find indices and values of nonzero elements

ind2sub Convert from linear index to subscripts

ipermute Inverse permute dimensions of a multidimensional array

logical Convert numeric values to logical

ndgrid Generate arrays for multidimensional functions and
interpolation

permute Rearrange dimensions of a multidimensional array

prod Find product of array elements

repmat Replicate and tile an array

reshape Change the shape of an array

shiftdim Shift array dimensions

sort Sort array elements in ascending or descending order

squeeze Remove singleton dimensions from an array

sub2ind Convert from subscripts to linear index

sum Find the sum of array elements

Function Description

10 Improving Performance and Memory Usage

10-8

The following code creates a scalar variable x, and then gradually increases the
size of x in a for loop instead of preallocating the required amount of memory
at the start:

x = 0;
for k = 2:1000
 x(k) = x(k-1) + 5;
end

Change the first line to preallocate a 1-by-1000 block of memory for x initialized
to zero. This time there is no need to repeatedly reallocate memory and move
data as more values are assigned to x in the loop:

x = zeros(1, 1000);
for k = 2:1000
 x(k) = x(k-1) + 5;
end

Preallocation Functions
Preallocation makes it unnecessary for MATLAB to resize an array each time
you enlarge it. Use the appropriate preallocation function for the kind of array
you are working with.

Preallocating a Nondouble Matrix
When you preallocate a block of memory to hold a matrix of some type other
than double, avoid using the method

A = int8(zeros(100));

This statement preallocates a 100-by-100 matrix of int8 first by creating a full
matrix of doubles, and then converting each element to int8. This costs time
and uses memory unnecessarily.

Array Type Function Examples

Numeric zeros y = zeros(1, 100);

Cell cell B = cell(2, 3);
B{1,3} = 1:3;
B{2,2} = 'string';

Techniques for Improving Performance

10-9

The next statement shows how to do this more efficiently:

A = zeros(100, 'int8');

Coding Loops in a MEX-File
If there are instances where you cannot vectorize and must use a for or while
loop, consider coding the loop in a MEX-file. In this way, the loop executes
much more quickly since the instructions in the loop do not have to be
interpreted each time they execute.

See “Introducing MEX-Files” in the External Interfaces documentation.

Assigning to Variables
For best performance, keep the following suggestions in mind when assigning
values to variables.

Changing a Variable’s Data Type or Dimension
Changing the data type or array shape of an existing variable slows MATLAB
down as it must take extra time to process this. When you need to store data of
a different type, it is advisable to create a new variable.

This code changes the type for X from double to char, which has a negative
impact on performance:

X = 23;
 .
 other code
 .
X = 'A'; % X changed from type double to char
 .
 other code

Assigning Real and Complex Numbers
Assigning a complex number to a variable that already holds a real number
impacts the performance of your program. Similarly, you should not assign a
real value to a variable that already holds a complex value.

10 Improving Performance and Memory Usage

10-10

Operating on Real Data
When operating on real (i.e., noncomplex) numbers, it is more efficient to use
MATLAB functions that have been designed specifically for real numbers. The
following functions return numeric values that are real.

Using Appropriate Logical Operators
When performing a logical AND or OR operation, you have a choice of two
operators of each type.

In if and while statements, it is more efficient to use the short-circuiting
operators, && for logical AND and || for logical OR. This is because these
operators often don’t have to evaluate the entire logical expression. For
example, MATLAB evaluates only the first part of this expression whenever
the number of input arguments is less than three:

if (nargin >= 3) && (ischar(varargin{3}))

See “Short-Circuit Operators” in the MATLAB documentation for a discussion
on short-circuiting with && and ||.

Function Description

reallog Find natural logarithm for nonnegative real arrays

realpow Find array power for real-only output

realsqrt Find square root for nonnegative real arrays

Operator Description

&, | Perform logical AND and OR on arrays element by
element

&&, || Perform logical AND and OR on scalar values with
short-circuiting

Techniques for Improving Performance

10-11

Overloading Built-In Functions
Overloading MATLAB built-in functions on any of the standard MATLAB data
types can negatively affect performance. For example, if you overload the plus
function to handle any of the integer data types differently, you may hinder
certain optimizations in the MATLAB built-in function code for plus, and thus
may slow down any programs that make use of this overload.

Functions Are Generally Faster Than Scripts
Your code executes more quickly if it is implemented in a function rather than
a script.

Load and Save Are Faster Than File I/O Functions
If you have a choice of whether to use load and save instead of the low-level
MATLAB file I/O routines such as fread and fwrite, choose the former. load
and save have been optimized to run faster and reduce memory fragmentation.

Avoid Large Background Processes
Avoid running large processes in the background at the same time you are
executing your program in MATLAB. This frees more CPU time for your
MATLAB session.

10 Improving Performance and Memory Usage

10-12

Making Efficient Use of Memory
This section discusses how to conserve memory and improve memory use.
Topics include

• “Memory Management Functions” on page 10-12

• “Preallocating Arrays to Reduce Fragmentation” on page 10-13

• “Enlarging Arrays with repmat” on page 10-13

• “Working with Variables” on page 10-13

• “Converting Full Matrices into Sparse” on page 10-15

• “Structure of Arrays vs. Array of Structures” on page 10-15

• “Working with Large Amounts of Data” on page 10-15

For more information on memory management, see Technical Note 1106:
“Memory Management Guide” at the following URL:

 http://www.mathworks.com/support/tech-notes/1100/1106.shtml

Memory Management Functions
The following functions can help you to manage memory use in MATLAB:

• whos shows how much memory has been allocated for variables in the
workspace.

• pack saves existing variables to disk, and then reloads them contiguously.
This reduces the chances of running into problems due to memory
fragmentation.

See “Compressing Data in Memory” on page 10-16.

• clear removes variables from memory. One way to increase the amount of
available memory is to periodically clear variables from memory that you no
longer need.

• save selectively stores variables to the disk. This is a useful technique when
you are working with large amounts of data. Save data to the disk
periodically, and then use the clear function to remove the saved data from
memory.

• load reloads a data file saved with the save function.

Making Efficient Use of Memory

10-13

• quit exits MATLAB and returns all allocated memory to the system. This
can be useful on UNIX systems as UNIX does not free up memory allocated
to an application (e.g., MATLAB) until the application exits.

Preallocating Arrays to Reduce Fragmentation
In the course of a MATLAB session, memory can become fragmented due to
dynamic memory allocation and deallocation. for and while loops that
incrementally increase, or grow, the size of a data structure each time through
the loop can add to this fragmentation as they have to repeatedly find and
allocate larger blocks of memory to store the data.

To make more efficient use of your memory, preallocate a block of memory
large enough to hold the matrix at its final size before entering the loop. When
you preallocate memory for a potentially large array, MATLAB “grabs”
sufficient contiguous space for the data at the beginning of the computation.
Once you have this space, you can add elements to the array without having to
continually allocate new space for it in memory.

For more information on preallocation, see “Preallocating Arrays” on
page 10-7.

Enlarging Arrays with repmat
In cases where you cannot preallocate, see if you can increase the size of your
array using the repmat function. repmat tries to allocate a contiguous block of
memory for your expanding array.

Working with Variables
To conserve memory when creating variables,

• Allocate your larger matrices first, as explained in “Allocating Large
Matrices Earlier” on page 10-14.

• Avoid creating large temporary variables, and clear temporary variables
when they are no longer needed.

• When working with arrays of fixed size, preallocate them rather than having
MATLAB resize the array each time you enlarge it.

• Set variables equal to the empty matrix [] to free memory, or clear the
variables using the clear function.

10 Improving Performance and Memory Usage

10-14

• Reuse variables as much as possible, but keeping in mind the guidelines
stated in “Assigning to Variables” on page 10-9.

Allocating Large Matrices Earlier
MATLAB uses a heap method of memory management. It requests memory
from the operating system when there is not enough memory available in the
MATLAB heap to store the current variables. It reuses memory as long as the
size of the memory segment required is available in the MATLAB heap.

For example, on one machine these statements use approximately 15.4 MB of
RAM:

a = rand(1e6,1);
b = rand(1e6,1);

This statement uses approximately 16.4 MB of RAM:

c = rand(2.1e6,1);

These statements use approximately 32.4 MB of RAM. This is because
MATLAB is not able to fit a 2.1 MB array in the space previously occupied by
two 1-MB arrays:

a = rand(1e6,1);
b = rand(1e6,1);
clear
c = rand(2.1e6,1);

The simplest way to prevent overallocation of memory is to allocate the largest
vectors first. These statements use only about 16.4 MB of RAM:

c = rand(2.1e6,1);
clear
a = rand(1e6,1);
b = rand(1e6,1);

Clearing Unused Variables from Memory
If you use pack and there is still not enough free memory to proceed, you
probably need to remove some of the variables you are no longer using from
memory. Use clear to do this.

Making Efficient Use of Memory

10-15

Converting Full Matrices into Sparse
Matrices with values that are mostly zero are best stored in sparse format.
Sparse matrices can use less memory and may also be faster to manipulate
than full matrices. You can convert a full matrix to sparse using the sparse
function.

Compare two 1000-by-1000 matrices: X, a matrix of doubles with 2/3 of its
elements equal to zero; and Y, a sparse copy of X. As shown below,
approximately half as much memory is required for the sparse matrix:

whos
 Name Size Bytes Class

 X 1000x1000 8000000 double array
 Y 1000x1000 4004000 double array (sparse)

Structure of Arrays vs. Array of Structures
If your MATLAB application needs to store a large amount of data, and the
definition of that data lends itself to being stored in either a structure of arrays
or an array of structures, the former is preferable. A structure of arrays
requires significantly less memory than an array of structures, and also has a
corresponding speed benefit.

Working with Large Amounts of Data
If your program generates very large amounts of data, consider writing the
data to disk periodically. After saving that portion of the data, use the clear
function to remove the variable from memory and continue with the data
generation.

10 Improving Performance and Memory Usage

10-16

Resolving “Out of Memory” Errors
MATLAB generates an Out of Memory message whenever it requests a segment
of memory from the operating system that is larger than what is currently
available. This section covers the following topics providing suggestions on how
to resolve such errors:

• “General Suggestions For Reclaiming Memory” on page 10-16

• “Compressing Data in Memory” on page 10-16

• “Increasing System Swap Space” on page 10-17

• “Freeing Up System Resources on Windows Systems” on page 10-18

• “Reloading Variables on UNIX Systems” on page 10-18

General Suggestions For Reclaiming Memory
When you see the Out of Memory message, use any of the techniques discussed
under “Making Efficient Use of Memory” on page 10-12 to help optimize the
available memory. If the Out of Memory message still appears, you can try any
of the following:

• Compress data to reduce memory fragmentation

• If possible, break large matrices into several smaller matrices so that less
memory is used at any one time.

• If possible, reduce the size of your data.

• Make sure that there are no external constraints on the memory accessible
to MATLAB. (On UNIX systems, use the limit command to check).

• Increase the size of the swap file. We recommend that your machine be
configured with twice as much swap space as you have RAM. See “Increasing
System Swap Space” on page 10-17, below.

• Add more memory to the system.

Compressing Data in Memory
Since MATLAB uses a heap method of memory management, extended
MATLAB sessions may cause memory to become fragmented. When memory is
fragmented, there may be plenty of free space, but not enough contiguous
memory to store a new large variable. If you get the Out of Memory message

Resolving “Out of Memory” Errors

10-17

from MATLAB, the pack function may be able to compress some of your data
in memory, thus freeing up larger contiguous blocks.

Note Because of time considerations, you should not use pack within loops or
M-file functions.

Increasing System Swap Space
How you set the swap space for your computer depends on what operating
system you are running on.

UNIX
Information about swap space can be procured by typing pstat -s at the UNIX
command prompt. For detailed information on changing swap space, ask your
system administrator.

Linux
Swap space can be changed by using the mkswap and swapon commands. For
more information on the above commands, type man followed by the command
name at the Linux prompt.

Windows NT
Follow the steps shown here:

1 Right-click the My Computer icon, and select Properties.

2 Select the Performance tab and click the Change button to change the
amount of virtual memory.

Windows 2000
Follow the steps shown here:

1 Right-click the My Computer icon, and select Properties.

2 Select the Advanced tab and click the Performance Options button.

3 Click the Change button to change the amount of virtual memory.

10 Improving Performance and Memory Usage

10-18

Windows XP
Follow the steps shown here:

1 Right-click on the My Computer icon, and select Properties.

2 Select the Advanced tab and click the Performance Settings button.

3 Click the Change button to change the amount of virtual memory.

Freeing Up System Resources on Windows Systems
There are no functions implemented to manipulate the way MATLAB handles
Microsoft Windows system resources. Windows uses system resources to track
fonts, windows, and screen objects. Resources can be depleted by using
multiple figure windows, multiple fonts, or several UI controls. One way to free
up system resources is to close all inactive windows. Windows icons still use
resources.

Reloading Variables on UNIX Systems
On UNIX systems, MATLAB does not return memory to the operating system
even after variables have been cleared. This is due to the manner in which
UNIX manages memory. UNIX does not accept memory back from a program
until the program has terminated. So, the amount of memory used in a
MATLAB session is not returned to the operating system until you exit
MATLAB.

To free up the memory used in your MATLAB session, save your workspace
variables, exit MATLAB, and then load your variables back in.

11

Programming Tips
Programming Tips

This chapter is a categorized compilation of tips for the MATLAB® programmer. Each item is
relatively brief to help you to browse through them and find information that is useful. Many of the
tips include a reference to specific MATLAB documentation that gives you more complete coverage of
the topic. You can find information on the following topics:

Command and Function Syntax (p. 11-3) Syntax, command shortcuts, command recall, etc.

Help (p. 11-6) Getting help on MATLAB functions and your own

Development Environment (p. 11-10) Useful features in the development environment

M-File Functions (p. 11-12) M-file structure, getting information about a function

Function Arguments (p. 11-14) Various ways to pass arguments, useful functions

Program Development (p. 11-16) Suggestions for creating and modifying program code

Debugging (p. 11-19) Using the debugging environment and commands

Variables (p. 11-23) Variable names, global and persistent variables

Strings (p. 11-27) String concatenation, string conversion, etc.

Evaluating Expressions (p. 11-30) Use of eval, short-circuiting logical expressions, etc.

MATLAB Path (p. 11-32) Precedence rules, making file changes visible to
MATLAB, etc.

Program Control (p. 11-36) Using program control statements like if, switch, try

Save and Load (p. 11-40) Saving MATLAB data to a file, loading it back in

Files and Filenames (p. 11-43) Naming M-files, passing filenames, etc.

Input/Output (p. 11-46) Reading and writing various types of files

Starting MATLAB (p. 11-49) Getting MATLAB to start up faster

11 Programming Tips

11-2

For suggestions on how to improve the performance of your MATLAB programs, and how to write
programs that use memory more efficiently, see Chapter 10, “Improving Performance and Memory
Usage.”

Operating System Compatibility
(p. 11-50)

Interacting with the operating system

Demos (p. 11-52) Learning about the demos supplied with MATLAB

For More Information (p. 11-53) Other valuable resources for information

Command and Function Syntax

11-3

Command and Function Syntax
This section covers the following topics:

• “Syntax Help” on page 11-3

• “Command and Function Syntaxes” on page 11-3

• “Command Line Continuation” on page 11-3

• “Completing Commands Using the Tab Key” on page 11-4

• “Recalling Commands” on page 11-4

• “Clearing Commands” on page 11-5

• “Suppressing Output to the Screen” on page 11-5

Syntax Help
For help about the general syntax of MATLAB functions and commands, type

help syntax

Command and Function Syntaxes
You can enter MATLAB commands using either a command or function syntax.
It is important to learn the restrictions and interpretation rules for both.

functionname arg1 arg2 arg3 % Command syntax
functionname('arg1','arg2','arg3') % Function syntax

For more information: See “Calling Functions” in the MATLAB
Programming documentation.

Command Line Continuation
You can continue most statements to one or more additional lines by
terminating each incomplete line with an ellipsis (...). Breaking down a
statement into a number of lines can sometimes result in a clearer
programming style.

sprintf ('Example %d shows a command coded on %d lines.\n', ...
 exampleNumber, ...
 numberOfLines)

11 Programming Tips

11-4

Note that you cannot continue an incomplete string to another line.

disp 'This statement attempts to continue a string ...
 to another line, resulting in an error.'

For more information: See “Entering Long Lines” in the MATLAB Desktop
Tools and Development Environment documentation.

Completing Commands Using the Tab Key
You can save some typing when entering commands by entering only the first
few letters of the command, variable, property, etc. followed by the Tab key.
Typing the second line below (with T representing Tab) yields the expanded,
full command shown in the third line:

f = figure;
set(f, 'papTuT,'cT) % Type this line.
set(f, 'paperunits','centimeters') % This is what you get.

If there are too many matches for the string you are trying to complete, you will
get no response from the first Tab. Press Tab again to see all possible choices:

set(f, 'paTT
PaperOrientation PaperPositionMode PaperType Parent
PaperPosition PaperSize PaperUnits

For more information: See “Tab Completion” in the MATLAB Desktop Tools
and Development Environment documentation

Recalling Commands
Use any of the following methods to simplify recalling previous commands to
the screen:

• To recall an earlier command to the screen, press the up arrow key one or
more times, until you see the command you want. If you want to modify the
recalled command, you can edit its text before pressing Enter or Return to
execute it.

• To recall a specific command by name without having to scroll through your
earlier commands one by one, type the starting letters of the command,
followed by the up arrow key.

Command and Function Syntax

11-5

• Open the Command History window (View -> Command History) to see all
previous commands. Double-click on the one you want to execute.

For more information: See “Recalling Previous Lines” and “Command
History” in the MATLAB Desktop Tools and Development Environment
documentation.

Clearing Commands
If you have typed a command that you then decide not to execute, you can clear
it from the Command Window by pressing the Escape (Esc) key.

Suppressing Output to the Screen
To suppress output to the screen, end statements with a semicolon. This can be
particularly useful when generating large matrices.

A = magic(100); % Create matrix A, but do not display it.

11 Programming Tips

11-6

Help
This section covers the following topics:

• “Using the Help Browser” on page 11-6

• “Help on Functions from the Help Browser” on page 11-7

• “Help on Functions from the Command Window” on page 11-7

• “Topical Help” on page 11-7

• “Paged Output” on page 11-8

• “Writing Your Own Help” on page 11-8

• “Help for Subfunctions and Private Functions” on page 11-9

• “Help for Methods and Overloaded Functions” on page 11-9

Using the Help Browser
Open the Help browser from the MATLAB Command Window using one of the
following:

• Click on the question mark symbol in the toolbar.

• Select Help -> MATLAB Help from the menu.

• Type the word doc at the command prompt.

Some of the features of the Help browser are listed below.

Feature Description

Product Filter Establish which products to find help on.

Contents Look up topics in the Table of Contents.

Index Look up help using the documentation Index.

Search Search the documentation for one or more words.

Demos See what demos are available; run selected demos.

Favorites Save bookmarks for frequently used Help pages.

Help

11-7

For more information: See “Finding Information with the Help Browser” in
the MATLAB Desktop Tools and Development Environment documentation.

Help on Functions from the Help Browser
To find help on any function from the Help browser, do either of the following:

• Select the Contents tab of the Help browser, open the Contents entry
labeled MATLAB, and find the two subentries shown below. Use one of these to
look up the function you want help on.

- Functions — Categorical List

- Functions — Alphabetical List

• Type doc functionname at the command line.

Help on Functions from the Command Window
Several types of help on functions are available from the Command Window:

• To list all categories that you can request help on from the Command
Window, just type
 help

• To see a list of functions for one of these categories, along with a brief
description of each function, type help category. For example,
 help datafun

• To get help on a particular function, type help functionname. For example,

 help sortrows

Topical Help
In addition to the help on individual functions, you can get help on any of the
following topics by typing help topicname at the command line.

Topic Name Description

arith Arithmetic operators

relop Relational and logical operators

11 Programming Tips

11-8

Paged Output
Before displaying a lengthy section of help text or code, put MATLAB into its
paged output mode by typing more on. This breaks up any ensuing display into
pages for easier viewing. Turn off paged output with more off.

Page through the displayed text using the space bar key. Or step through line
by line using Enter or Return. Discontinue the display by pressing the Q key
or Ctrl+C.

Writing Your Own Help
Start each program you write with a section of text providing help on how and
when to use the function. If formatted properly, the MATLAB help function
displays this text when you enter

help functionname

punct Special character operators

slash Arithmetic division operators

paren Parentheses, braces, and bracket operators

precedence Operator precedence

datatypes MATLAB data types, their associated functions,
and operators that you can overload

lists Comma separated lists

strings Character strings

function_handle Function handles and the @ operator

debug Debugging functions

java Using Java from within MATLAB

fileformats A list of readable file formats

changeNotification Windows directory change notification

Topic Name Description

Help

11-9

MATLAB considers the first group of consecutive lines immediately following
the function definition line that begin with % to be the help section for the
function. The first line without % as the left-most character ends the help.

For more information: See “Help Text” in the MATLAB Desktop Tools and
Development Environment documentation.

Help for Subfunctions and Private Functions
You can write help for subfunctions using the same rules that apply to main
functions. To display the help for the subfunction mysubfun in file myfun.m,
type

help myfun/mysubfun

To display the help for a private function, precede the function name with
private/. To get help on private function myprivfun, type

help private/myprivfun

Help for Methods and Overloaded Functions
You can write help text for object-oriented class methods implemented with
M-files. Display help for the method by typing

help classname/methodname

where the file methodname.m resides in subdirectory @classname.

For example, if you write a plot method for a class named polynom, (where the
plot method is defined in the file @polynom/plot.m), you can display this help
by typing

help polynom/plot

You can get help on overloaded MATLAB functions in the same way. To display
the help text for the eq function as implemented in matlab/iofun/@serial,
type

help serial/eq

11 Programming Tips

11-10

Development Environment
This section covers the following topics:

• “Workspace Browser” on page 11-10

• “Using the Find and Replace Utility” on page 11-10

• “Commenting Out a Block of Code” on page 11-11

• “Creating M-Files from Command History” on page 11-11

• “Editing M-Files in EMACS” on page 11-11

Workspace Browser
The Workspace browser is a graphical interface to the variables stored in the
MATLAB base and function workspaces. You can view, modify, save, load, and
create graphics from workspace data using the browser. Select
View -> Workspace to open the browser.

To view function workspaces, you need to be in debug mode.

For more information: See “MATLAB Workspace” in the MATLAB Desktop
Tools and Development Environment documentation.

Using the Find and Replace Utility
Find any word or phrase in a group of files using the Find and Replace utility.
Click on View -> Current Directory, and then click on the binoculars icon at
the top of the Current Directory window.

When entering search text, you don’t need to put quotes around a phrase. In
fact, parts of words, like win for windows, will not be found if enclosed in quotes.

For more information: See “Finding and Replacing a String” in the MATLAB
Desktop Tools and Development Environment documentation.

Development Environment

11-11

Commenting Out a Block of Code
To comment out a block of text or code within the MATLAB editor,

1 Highlight the block of text you would like to comment out.

2 Holding the mouse over the highlighted text, select Text -> Comment (or
Uncomment, to do the reverse) from the toolbar. (You can also get these
options by right-clicking the mouse.)

For more information: See “Commenting” in the MATLAB Desktop Tools
and Development Environment documentation.

Creating M-Files from Command History
If there is part of your current MATLAB session that you would like to put into
an M-file, this is easily done using the Command History window:

1 Open this window by selecting View -> Command History.

2 Use Shift+Click or Ctrl+Click to select the lines you want to use. MATLAB
highlights the selected lines.

3 Right-click once, and select Create M-File from the menu that appears.
MATLAB creates a new Editor window displaying the selected code.

Editing M-Files in EMACS
If you use Emacs, you can download editing modes for editing M-files with
GNU-Emacs or with early versions of Emacs from the MATLAB Central Web
site:

http://www.mathworks.com/matlabcentral/

At this Web site, select File Exchange, and then Utilities -> Emacs.

For more information: See “General Preferences for the Editor/Debugger” in
the MATLAB Desktop Tools and Development Environment documentation.

11 Programming Tips

11-12

M-File Functions
This section covers the following topics:

• “M-File Structure” on page 11-12

• “Using Lowercase for Function Names” on page 11-12

• “Getting a Function’s Name and Path” on page 11-13

• “What M-Files Does a Function Use?” on page 11-13

• “Dependent Functions, Built-Ins, Classes” on page 11-13

M-File Structure
An M-File consists of the components shown here:

function [x, y] = myfun(a, b, c) % Function definition line
% H1 line A one-line summary of the function's purpose.
% Help text One or more lines of help text that explain
% how to use the function. This text is displayed when
% the user types "help functionname".

% The Function body normally starts after the first blank line.
% Comments Description (for internal use) of what the function
% does, what inputs are expected, what outputs are generated.
% Typing "help functionname" does not display this text.

x = prod(a, b); % Start of Function code

For more information: See “Basic Parts of an M-File” on page 4-8 of the
MATLAB Programming documentation.

Using Lowercase for Function Names
Function names appear in uppercase in MATLAB help text only to make the
help easier to read. In practice, however, it is usually best to use lowercase
when calling functions.

For M-file functions, case requirements depend on the case sensitivity of the
operating system you are using. As a rule, naming and calling functions using
lowercase generally makes your M-files more portable from one operating
system to another.

M-File Functions

11-13

Getting a Function’s Name and Path
To obtain the name of an M-file that is currently being executed, use the
following function in your M-file code.

mfilename

To include the path along with the M-file name, use

mfilename('fullpath')

For more information: See the mfilename function reference page.

What M-Files Does a Function Use?
For a simple display of all M-files referenced by a particular function, follow the
steps below:

1 Type clear functions to clear all functions from memory (see Note below).

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, since you can get different
results when calling the same function with different arguments.

3 Type inmem to display all M-Files that were used when the function ran. If
you want to see what MEX-files were used as well, specify an additional
output, as shown here:

 [mfiles, mexfiles] = inmem

Note clear functions does not clear functions locked by mlock. If you have
locked functions, (which you can check using inmem), unlock them with
munlock, and then repeat step 1.

Dependent Functions, Built-Ins, Classes
For a much more detailed display of dependent function information, use the
depfun function. In addition to M-files, depfun shows which built-ins and
classes a particular function depends on.

11 Programming Tips

11-14

Function Arguments
This section covers the following topics:

• “Getting the Input and Output Arguments” on page 11-14

• “Variable Numbers of Arguments” on page 11-14

• “String or Numeric Arguments” on page 11-15

• “Passing Arguments in a Structure” on page 11-15

• “Passing Arguments in a Cell Array” on page 11-15

Getting the Input and Output Arguments
Use nargin and nargout to determine the number of input and output
arguments in a particular function call. Use nargchk and nargoutchk to verify
that your function is called with the required number of input and output
arguments.

function [x, y] = myplot(a, b, c, d)
disp(nargchk(2, 4, nargin)) % Allow 2 to 4 inputs
disp(nargoutchk(0, 2, nargout)) % Allow 0 to 2 outputs

x = plot(a, b);
if nargin == 4
 y = myfun(c, d);
end

Variable Numbers of Arguments
You can call functions with fewer input and output arguments than you have
specified in the function definition, but not more. If you want to call a function
with a variable number of arguments, use the varargin and varargout
function parameters in the function definition.

This function returns the size vector and, optionally, individual dimensions:

function [s, varargout] = mysize(x)
nout = max(nargout, 1) - 1;
s = size(x);
for k = 1:nout
 varargout(k) = {s(k)};
end

Function Arguments

11-15

Try calling it with

[s, rows, cols] = mysize(rand(4, 5))

String or Numeric Arguments
If you are passing only string arguments into a function, you can use MATLAB
command syntax. All arguments entered in command syntax are interpreted
as strings.

strcmp string1 string1
ans =
 1

When passing numeric arguments, it is best to use function syntax unless you
want the number passed as a string. The right-hand example below passes the
number 75 as the string, '75'.

isnumeric(75) isnumeric 75
ans = ans =
 1 0

For more information: See “Passing Arguments” in the MATLAB
Programming documentation.

Passing Arguments in a Structure
Instead of requiring an additional argument for every value you want to pass
in a function call, you can package them in a MATLAB structure and pass the
structure. Make each input you want to pass a separate field in the structure
argument, using descriptive names for the fields.

Structures allow you to change the number, contents, or order of the arguments
without having to modify the function. They can also be useful when you have
a number of functions that need similar information.

Passing Arguments in a Cell Array
You can also group arguments into cell arrays. The disadvantage over
structures is that you don’t have fieldnames to describe each variable. The
advantage is that cell arrays are referenced by index, allowing you to loop
through a cell array and access each argument passed in or out of the function.

11 Programming Tips

11-16

Program Development
This section covers the following topics:

• “Planning the Program” on page 11-16

• “Using Pseudo-Code” on page 11-16

• “Selecting the Right Data Structures” on page 11-16

• “General Coding Practices” on page 11-17

• “Naming a Function Uniquely” on page 11-17

• “The Importance of Comments” on page 11-17

• “Coding in Steps” on page 11-18

• “Making Modifications in Steps” on page 11-18

• “Functions with One Calling Function” on page 11-18

• “Testing the Final Program” on page 11-18

Planning the Program
When planning how to write a program, take the problem you are trying to
solve and break it down into a series of smaller, independent tasks. Implement
each task as a separate function. Try to keep functions fairly short, each having
a single purpose.

Using Pseudo-Code
You may find it helpful to write the initial draft of your program in a structured
format using your own natural language. This pseudo-code is often easier to
think through, review, and modify than using a formal programming language,
yet it is easily translated into a programming language in the next stage of
development.

Selecting the Right Data Structures
Look at what data types and data structures are available to you in MATLAB
and determine which of those best fit your needs in storing and passing your
data.

For more information: See “Data Types” in the MATLAB Programming
documentation.

Program Development

11-17

General Coding Practices
A few suggested programming practices:

• Use descriptive function and variable names to make your code easier to
understand.

• Order subfunctions alphabetically in an M-file to make them easier to find.

• Precede each subfunction with a block of help text describing what that
subfunction does. This not only explains the subfunctions, but also helps to
visually separate them.

• Don’t extend lines of code beyond the 80th column. Otherwise, it will be hard
to read when you print it out.

• Use full Handle Graphics® property and value names. Abbreviated names
are often allowed, but can make your code unreadable. They also could be
incompatible in future releases of MATLAB.

Naming a Function Uniquely
To avoid choosing a name for a new function that might conflict with a name
already in use, check for any occurrences of the name using this command:

which -all functionname

For more information: See the which function reference page.

The Importance of Comments
Be sure to document your programs well to make it easier for you or someone
else to maintain them. Add comments generously, explaining each major
section and any smaller segments of code that are not obvious. You can add a
block of comments as shown here.

%---
% This function computes the ... <and so on>
%---

For more information: See “Comments” in the MATLAB Programming
documentation.

11 Programming Tips

11-18

Coding in Steps
Don’t try to write the entire program all at once. Write a portion of it, and then
test that piece out. When you have that part working the way you want, then
write the next piece, and so on. It’s much easier to find programming errors in
a small piece of code than in a large program.

Making Modifications in Steps
When making modifications to a working program, don’t make widespread
changes all at one time. It’s better to make a few small changes, test and debug,
make a few more changes, and so on. Tracking down a difficult bug in the small
section that you’ve changed is much easier than trying to find it in a huge block
of new code.

Functions with One Calling Function
If you have a function that is called by only one other function, put it in the
same M-file as the calling function, making it a subfunction.

For more information: See “Subfunctions” in the MATLAB Programming
documentation.

Testing the Final Program
One suggested practice for testing a new program is to step through the
program in the MATLAB debugger while keeping a record of each line that gets
executed on a printed copy of the program. Use different combinations of inputs
until you have observed that every line of code is executed at least once.

Debugging

11-19

Debugging
This section covers the following topics:

• “The MATLAB Debug Functions” on page 11-19

• “More Debug Functions” on page 11-19

• “The MATLAB Graphical Debugger” on page 11-20

• “A Quick Way to Examine Variables” on page 11-20

• “Setting Breakpoints from the Command Line” on page 11-21

• “Finding Line Numbers to Set Breakpoints” on page 11-21

• “Stopping Execution on an Error or Warning” on page 11-21

• “Locating an Error from the Error Message” on page 11-21

• “Using Warnings to Help Debug” on page 11-22

• “Making Code Execution Visible” on page 11-22

• “Debugging Scripts” on page 11-22

The MATLAB Debug Functions
For a brief description of the main debug functions in MATLAB, type

help debug

For more information: See “Debugging M-Files” in the MATLAB Desktop
Tools and Development Environment documentation.

More Debug Functions
Other functions you may find useful in debugging are listed below.

Function Description

echo Display function or script code as it executes.

disp Display specified values or messages.

sprintf,
fprintf

Display formatted data of different types.

whos List variables in the workspace.

11 Programming Tips

11-20

The MATLAB Graphical Debugger
Learn to use the MATLAB graphical debugger. You can view the function and
its calling functions as you debug, set and clear breakpoints, single-step
through the program, step into or over called functions, control visibility into
all workspaces, and find and replace strings in your files.

Start out by opening the file you want to debug using File -> Open or the open
function. Use the debugging functions available on the toolbar and pull-down
menus to set breakpoints, run or step through the program, and examine
variables.

For more information: See “Debugging M-Files” and “Using Debugging
Features” in the MATLAB Desktop Tools and Development Environment
documentation.

A Quick Way to Examine Variables
To see the value of a variable from the Editor/Debugger window, hold the
mouse cursor over the variable name for a second or two. You will see the value
of the selected variable displayed.

size Show array dimensions.

keyboard Interrupt program execution and allow input from
keyboard.

return Resume execution following a keyboard interruption.

warning Display specified warning message.

error Display specified error message.

lasterr Return error message that was last issued.

lasterror Return last error message and related information.

lastwarn Return warning message that was last issued.

Function Description

Debugging

11-21

Setting Breakpoints from the Command Line
You can set breakpoints with dbstop in any of the following ways:

• Break at a specific M-file line number.

• Break at the beginning of a specific subfunction.

• Break at the first executable line in an M-file.

• Break when a warning, or error, is generated.

• Break if any infinite or NaN values are encountered.

For more information: See “Setting Breakpoints” in the MATLAB Desktop
Tools and Development Environment documentation.

Finding Line Numbers to Set Breakpoints
When debugging from the command line, a quick way to find line numbers for
setting breakpoints is to use dbtype. The dbtype function displays all or part
of an M-file, also numbering each line. To display copyfile.m, use

dbtype copyfile

To display only lines 70 through 90, use

dbtype copyfile 70:90

Stopping Execution on an Error or Warning
Use dbstop if error to stop program execution on any error and enter debug
mode. Use warning debug to stop execution on any warning and enter debug
mode.

For more information: See “Debug, Backtrace, and Verbose Modes” in the
MATLAB Programming documentation.

Locating an Error from the Error Message
Click on the underlined text in an error message, and MATLAB opens the
M-file being executed in its editor and places the cursor at the point of error.

For more information: See “Types of Errors” in the MATLAB Desktop Tools
and Development Environment documentation.

11 Programming Tips

11-22

Using Warnings to Help Debug
You can detect erroneous or unexpected behavior in your programs by inserting
warning messages that MATLAB will display under the conditions you specify.
See the section on “Warning Control” in the MATLAB “Programming and Data
Types” documentation to find out how to selectively enable warnings.

For more information: See the warning function reference page.

Making Code Execution Visible
An easy way to see the end result of a particular line of code is to edit the
program and temporarily remove the terminating semicolon from that line.
Then, run your program and the evaluation of that statement is displayed on
the screen.

For more information: See “Finding Errors” in the MATLAB Desktop Tools
and Development Environment documentation.

Debugging Scripts
Scripts store their variables in a workspace that is shared with the caller of the
script. So, when you debug a script from the command line, the script uses
variables from the base workspace. To avoid errors caused by workspace
sharing, type clear all before starting to debug your script to clear the base
workspace.

Variables

11-23

Variables
This section covers the following topics:

• “Rules for Variable Names” on page 11-23

• “Making Sure Variable Names Are Valid” on page 11-23

• “Don’t Use Function Names for Variables” on page 11-24

• “Checking for Reserved Keywords” on page 11-24

• “Avoid Using i and j for Variables” on page 11-24

• “Avoid Overwriting Variables in Scripts” on page 11-25

• “Persistent Variables” on page 11-25

• “Protecting Persistent Variables” on page 11-25

• “Global Variables” on page 11-26

Rules for Variable Names
Although variable names can be of any length, MATLAB uses only the first N
characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make each
variable name unique in the first N characters to enable MATLAB to
distinguish variables. Also note that variable names are case sensitive.

N = namelengthmax
N =
 63

For more information: See “Naming Variables” in the MATLAB
Programming documentation.

Making Sure Variable Names Are Valid
Before using a new variable name, you can check to see if it is valid with the
isvarname function. Note that isvarname does not consider names longer than
namelengthmax characters to be valid.

11 Programming Tips

11-24

For example, the following name cannot be used for a variable since it begins
with a number.

isvarname 8thColumn
ans =
 0

For more information: See “Naming Variables” in the MATLAB
Programming documentation.

Don’t Use Function Names for Variables
When naming a variable, make sure you are not using a name that is already
used as a function name. If you do define a variable with a function name, you
won’t be able to call that function until you clear the variable from memory. (If
it’s a MATLAB built-in function, then you will still be able to call that function
but you must do so using builtin.)

To test whether a proposed variable name is already used as a function name,
use

which -all name

Checking for Reserved Keywords
MATLAB reserves certain keywords for its own use and does not allow you to
override them. Attempts to use these words may result in any one of a number
of error messages, some of which are shown here:

Error: Expected a variable, function, or constant, found "=".
Error: "End of Input" expected, "case" found.
Error: Missing operator, comma, or semicolon.
Error: "identifier" expected, "=" found.

Use the iskeyword function with no input arguments to list all reserved words.

Avoid Using i and j for Variables
MATLAB uses the characters i and j to represent imaginary units. Avoid
using i and j for variable names if you intend to use them in complex
arithmetic.

Variables

11-25

If you want to create a complex number without using i and j, you can use the
complex function.

Avoid Overwriting Variables in Scripts
MATLAB scripts store their variables in a workspace that is shared with the
caller of the script. When called from the command line, they share the base
workspace. When called from a function, they share that function’s workspace.
If you run a script that alters a variable that already exists in the caller’s
workspace, that variable is overwritten by the script.

For more information: See “Scripts” in the MATLAB Programming
documentation.

Persistent Variables
To get the equivalent of a static variable in MATLAB, use persistent. When
you declare a variable to be persistent within a function, its value is retained
in memory between calls to that function. Unlike global variables, persistent
variables are known only to the function in which they are declared.

For more information: See “Persistent Variables” in the MATLAB
Programming documentation.

Protecting Persistent Variables
You can inadvertently clear persistent variables from memory by either
modifying the function in which the variables are defined, or by clearing the
function with one of the following commands:

clear all
clear functions

Locking the M-file in memory with mlock prevents any persistent variables
defined in the file from being reinitialized.

11 Programming Tips

11-26

Global Variables
Use global variables sparingly. The global workspace is shared by all of your
functions and also by your interactive MATLAB session. The more global
variables you use, the greater the chances of unintentionally reusing a variable
name, thus leaving yourself open to having those variables change in value
unexpectedly. This can be a difficult bug to track down.

For more information: See “Global Variables” in the MATLAB Programming
documentation.

Strings

11-27

Strings
This section covers the following topics:

• “Creating Strings with Concatenation” on page 11-27

• “Comparing Methods of Concatenation” on page 11-27

• “Store Arrays of Strings in a Cell Array” on page 11-28

• “Converting Between Strings and Cell Arrays” on page 11-28

• “Search and Replace Using Regular Expressions” on page 11-29

Creating Strings with Concatenation
Strings are often created by concatenating smaller elements together (e.g.,
strings, values, etc.). Two common methods of concatenating are to use the
MATLAB concatenation operator ([]) or the sprintf function. The second and
third line below illustrate both of these methods. Both lines give the same
result:

numChars = 28;
s = ['There are ' int2str(numChars) ' characters here']
s = sprintf('There are %d characters here\n', numChars)

For more information: See “Creating Character Arrays” and
“Numeric/String Conversion” in the MATLAB Programming documentation.

Comparing Methods of Concatenation
When building strings with concatenation, sprintf is often preferable to []
because

• It is easier to read, especially when forming complicated expressions

• It gives you more control over the output format

• It often executes more quickly

You can also concatenate using the strcat function, However, for simple
concatenations, sprintf and [] are faster.

11 Programming Tips

11-28

Store Arrays of Strings in a Cell Array
It is usually best to store an array of strings in a cell array instead of a
character array, especially if the strings are of different lengths. Strings in a
character array must be of equal length, which often requires padding the
strings with blanks. This is not necessary when using a cell array of strings
that has no such requirement.

The cellRecord below does not require padding the strings with spaces:

charRecord = ['Allison Jones'; 'Development '; 'Phoenix '];
cellRecord = {'Allison Jones'; 'Development'; 'Phoenix'};

For more information: See “Cell Arrays of Strings” in the MATLAB
Programming documentation.

Converting Between Strings and Cell Arrays
You can convert between standard character arrays and cell arrays of strings
using the cellstr and char functions:

charRecord = ['Allison Jones'; 'Development '; 'Phoenix '];
cellRecord = cellstr(charRecord);

Also, a number of the MATLAB string operations can be used with either
character arrays, or cell arrays, or both:

cellRecord2 = {'Brian Lewis'; 'Development'; 'Albuquerque'};
strcmp(charRecord, cellRecord2)
ans =
 0
 1
 0

For more information: See “Converting to a Cell Array of Strings” and
“String Comparisons” in the MATLAB Programming documentation.

Strings

11-29

Search and Replace Using Regular Expressions
Using regular expressions in MATLAB offers a very versatile way of searching
for and replacing characters or phrases within a string. See the help on these
functions for more information.

For more information: See “Regular Expressions” in the MATLAB
Programming documentation.

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.

regexprep Replace string using regular expression.

11 Programming Tips

11-30

Evaluating Expressions
This section covers the following topics:

• “Find Alternatives to Using eval” on page 11-30

• “Assigning to a Series of Variables” on page 11-30

• “Short-Circuit Logical Operators” on page 11-31

• “Changing the Counter Variable within a for Loop” on page 11-31

Find Alternatives to Using eval
While the eval function can provide a convenient solution to certain
programming challenges, it is best to limit its use. The main reason is that code
that uses eval is often difficult to read and hard to debug. A second reason is
that eval statements cannot always be translated into C or C++ code by the
MATLAB Compiler.

If you are evaluating a function, it is more efficient to use feval than eval. The
feval function is made specifically for this purpose and is optimized to provide
better performance.

For more information: See MATLAB Technical Note 1103, “What Is the
EVAL Function, When Should I Use It, and How Can I Avoid It?” at URL
http://www.mathworks.com/support/tech-notes/1100/1103.html.

Assigning to a Series of Variables
One common pattern for creating variables is to use a variable name suffixed
with a number (e.g., phase1, phase2, phase3, etc.). We recommend using a cell
array to build this type of variable name series, as it makes code more readable
and executes more quickly than some other methods. For example:

for k = 1:800
 phase{k} = expression;
end

Evaluating Expressions

11-31

Short-Circuit Logical Operators
MATLAB has logical AND and OR operators (&& and ||) that enable you to
partially evaluate, or short-circuit, logical expressions. Short-circuit operators
are useful when you want to evaluate a statement only when certain conditions
are satisfied.

In this example, MATLAB does not execute the function myfun unless its M-file
exists on the current path.

comp = (exist('myfun.m') == 2) && (myfun(x) >= y)

For more information: See “Short-Circuit Operators” in the MATLAB
Programming documentation.

Changing the Counter Variable within a for Loop
You cannot change the value of the loop counter variable (e.g., the variable k in
the example below) in the body of a for loop. For example, this loop executes
just 10 times, even though k is set back to 1 on each iteration.

for k = 1:10
 disp(sprintf('Pass %d', k))
 k = 1;
end

Although MATLAB does allow you to use a variable of the same name as the
loop counter within a loop, this is not a recommended practice.

11 Programming Tips

11-32

MATLAB Path
This section covers the following topics:

• “Precedence Rules” on page 11-32

• “File Precedence” on page 11-33

• “Adding a Directory to the Search Path” on page 11-33

• “Handles to Functions Not on the Path” on page 11-33

• “Making Toolbox File Changes Visible to MATLAB” on page 11-34

• “Making Nontoolbox File Changes Visible to MATLAB” on page 11-35

• “Change Notification on Windows” on page 11-35

Precedence Rules
When MATLAB is given a name to interpret, it determines its usage by
checking the name against each of the entities listed below, and in the order
shown:

1 Variable

2 Subfunction

3 Private function

4 Class constructor

5 Overloaded method

6 M-file in the current directory

7 M-file on the path, or MATLAB built-in function

Regarding the last item on this list, all built-in functions have a .bi file on the
path that is used internally by MATLAB. If you have an M-file on the path that
has the same name as a MATLAB built-in, MATLAB selects the function that
has its M- or .bi file in the directory closest to the beginning of the path string.

If you have two or more M-files on the path that have the same name, MATLAB
selects the function that has its M-file in the directory closest to the beginning
of the path string.

MATLAB Path

11-33

For more information: See “Function Precedence Order” in the MATLAB
Programming documentation.

File Precedence
If you refer to a file by its filename only (leaving out the file extension), and
there is more than one file of this name in the directory, MATLAB selects the
file to use according to the following precedence:

1 MEX-file

2 MDL-file (Simulink® model)

3 P-Code file

4 M-file

For more information: See “Selecting Methods from Multiple
Implementation Types” in the MATLAB Programming documentation.

Adding a Directory to the Search Path
To add a directory to the search path, use either of the following:

• At the toolbar, select File -> Set Path.

• At the command line, use the addpath function.

You can also add a directory and all of its subdirectories in one operation by
either of these means. To do this from the command line, use genpath together
with addpath. The online help for the genpath function shows how to do this.

This example adds /control and all of its subdirectories to the MATLAB path:

addpath(genpath('K:/toolbox/control'))

For more information: See “Search Path” in the MATLAB Desktop Tools and
Development Environment documentation.

Handles to Functions Not on the Path
You cannot create function handles to functions that are not on the MATLAB
path. But you can achieve essentially the same thing by creating the handles

11 Programming Tips

11-34

through a script file placed in the same off-path directory as the functions. If
you then run the script, using run path/script, you will have created the
handles that you need.

For example,

1 Create a script in this off-path directory that constructs function handles
and assigns them to variables. That script might look something like this:

File E:/testdir/createFhandles.m
 fhset = @setItems
 fhsort = @sortItems
 fhdel = @deleteItem

2 Run the script from your current directory to create the function handles:

run E:/testdir/createFhandles

3 You can now execute one of the functions by means of its handle.

fhset(item, value)

Making Toolbox File Changes Visible to MATLAB
Unlike functions in user-supplied directories, M-files (and MEX-files) in the
$MATLAB/toolbox directories are not time-stamp checked, so MATLAB does
not automatically see changes to them. If you modify one of these files, and
then rerun it, you may find that the behavior does not reflect the changes that
you made. This is most likely because MATLAB is still using the previously
loaded version of the file.

To force MATLAB to reload a function from disk, you need to explicitly clear
the function from memory using clear functionname. Note that there are rare
cases where clear will not have the desired effect, (for example, if the file is
locked, or if it is a class constructor and objects of the given class exist in
memory).

Similarly, MATLAB does not automatically detect the presence of new files in
$MATLAB/toolbox directories. If you add (or remove) files from these
directories, use rehash toolbox to force MATLAB to see your changes. Note
that if you use the MATLAB Editor to create files, these steps are unnecessary,
as the Editor automatically informs MATLAB of such changes.

MATLAB Path

11-35

Making Nontoolbox File Changes Visible to MATLAB
For M-files outside of the toolbox directories, MATLAB sees the changes made
to these files by comparing timestamps and reloads any file that has changed
the next time you execute the corresponding function.

If MATLAB does not see the changes you make to one of these files, try clearing
the old copy of the function from memory using clear functionname. You can
verify that MATLAB has cleared the function using inmem to list all functions
currently loaded into memory.

Change Notification on Windows
If MATLAB, running on Windows, is unable to see new files or changes you
have made to an existing file, the problem may be related to operating system
change notification handles.

Type the following for more information:

help changeNotification
help changeNotificationAdvanced

11 Programming Tips

11-36

Program Control
This section covers the following topics:

• “Using break, continue, and return” on page 11-36

• “Using switch Versus if” on page 11-37

• “MATLAB case Evaluates Strings” on page 11-37

• “Multiple Conditions in a case Statement” on page 11-37

• “Implicit Break in switch-case” on page 11-38

• “Variable Scope in a switch” on page 11-38

• “Catching Errors with try-catch” on page 11-38

• “Nested try-catch Blocks” on page 11-39

• “Forcing an Early Return from a Function” on page 11-39

Using break, continue, and return
It’s easy to confuse the break, continue, and return functions as they are
similar in some ways. Make sure you use these functions appropriately.

Function Where to Use It Description

break for or while loops Exits the loop in which it appears. In
nested loops, control passes to the next
outer loop.

continue for or while loops Skips any remaining statements in the
current loop. Control passes to next
iteration of the same loop.

return Anywhere Immediately exits the function in
which it appears. Control passes to the
caller of the function.

Program Control

11-37

Using switch Versus if
It is possible, but usually not advantageous, to implement switch-case
statements using if-elseif instead. See pros and cons in the table.

MATLAB case Evaluates Strings
A useful difference between switch-case statements in MATLAB and C is that
you can specify string values in MATLAB case statements, which you cannot
do in C.

switch(method)
 case 'linear'
 disp('Method is linear')
 case 'cubic'
 disp('Method is cubic')
end

Multiple Conditions in a case Statement
You can test against more than one condition with switch. The first case below
tests for either a linear or bilinear method by using a cell array in the case
statement.

switch(method)
 case {'linear', 'bilinear'}
 disp('Method is linear or bilinear')
 case (<and so on>)
end

switch-case Statements if-elseif Statements

Easier to read. Can be difficult to read.

Can compare strings of different
lengths.

You need strcmp to compare strings
of different lengths.

Test for equality only. Test for equality or inequality.

11 Programming Tips

11-38

Implicit Break in switch-case
In C, if you don’t end each case with a break statement, code execution falls
through to the following case. In MATLAB, case statements do not fall
through; only one case may execute. Using break within a case statement is
not only unnecessary, it is also invalid and generates a warning.

In this example, if result is 52, only the first disp statement executes, even
though the second is also a valid match:

switch(result)
 case 52
 disp('result is 52')
 case {52, 78}
 disp('result is 52 or 78')
end

Variable Scope in a switch
Since MATLAB executes only one case of any switch statement, variables
defined within one case are not known in the other cases of that switch
statement. The same holds true for if-elseif statements.

In these examples, you get an error when choice equals 2, because x is
undefined.

 SWITCH-CASE IF-ELSEIF
switch choice
 case 1 if choice == 1
 x = -pi:0.01:pi; x = -pi:0.01:pi;
 case 2 elseif choice == 2
 plot(x, sin(x)); plot(x, sin(x));
end end

Catching Errors with try-catch
When you have statements in your code that could possibly generate unwanted
results, put those statements into a try-catch block that will catch any errors
and handle them appropriately.

Program Control

11-39

The example below shows a try-catch block within a function that multiplies
two matrices. If a statement in the try segment of the block fails, control passes
to the catch segment. In this case, the catch statements check the error
message that was issued (returned by lasterr) and respond appropriately.

try
 X = A * B
catch
 errmsg = lasterr;
 if(strfind(errmsg, 'Inner matrix dimensions'))
 disp('** Wrong dimensions for matrix multiply')
end

For more information: See “Checking for Errors with try-catch” in the
MATLAB Programming documentation.

Nested try-catch Blocks
You can also nest try-catch blocks, as shown here. You can use this to attempt
to recover from an error caught in the first try section:

try
 statement1 % Try to execute statement1
catch
 try
 statement2 % Attempt to recover from error
 catch
 disp 'Operation failed' % Handle the error
 end
end

Forcing an Early Return from a Function
To force an early return from a function, place a return statement in the
function at the point where you want to exit. For example,

if <done>
 return
end

11 Programming Tips

11-40

Save and Load
This section covers the following topics:

• “Saving Data from the Workspace” on page 11-40

• “Loading Data into the Workspace” on page 11-40

• “Viewing Variables in a MAT-File” on page 11-41

• “Appending to a MAT-File” on page 11-41

• “Save and Load on Startup or Quit” on page 11-42

• “Saving to an ASCII File” on page 11-42

Saving Data from the Workspace
To save data from your workspace, you can do any of the following:

• Copy from the MATLAB Command Window and paste into a text file.

• Record part of your session in a diary file, and then edit the file in a text
editor.

• Save to a binary or ASCII file using the save function.

• Save spreadsheet, scientific, image, or audio data with appropriate function.

• Save to a file using low-level file I/O functions (fwrite, fprintf, ...).

For more information: See “Saving the Current Workspace” in the MATLAB
Desktop Tools and Development Environment documentation, “Using the
diary Function to Export Data” on page 6-39, and “Using Low-Level File I/O
Functions” on page 6-105.

Loading Data into the Workspace
Similarly, to load new or saved data into the workspace, you can do any of the
following:

• Enter or paste data at the command line.

• Create a script file to initialize large matrices or data structures.

• Read a binary or ASCII file using load.

• Load spreadsheet, scientific, image, or audio data with appropriate function.

• Load from a file using low-level file I/O functions (fread, fscanf, ...).

Save and Load

11-41

For more information: See “Loading a Saved Workspace and Importing
Data” in the MATLAB Development Environment documentation, and “Using
Low-Level File I/O Functions” on page 6-105.

Viewing Variables in a MAT-File
To see what variables are saved in a MAT-file, use who or whos as shown here
(the .mat extension is not required). who returns a cell array and whos returns
a structure array.

mydataVariables = who('-file', 'mydata.mat');

Appending to a MAT-File
To save additional variables to an existing MAT-file, use

save matfilename -append

Any variables you save that do not yet exist in the MAT-file are added to the
file. Any variables you save that already exist in the MAT-file overwrite the old
values.

Note Saving with the -append switch does not append additional elements to
an array that is already saved in a MAT-file. See the example below.

In this example, the second save operation does not concatenate new elements
to vector A, (making A equal to [1 2 3 4 5 6 7 8]) in the MAT-file. Instead,
it replaces the 5 element vector, A, with a 3 element vector, also retaining all
other variables that were stored on the first save operation.

A = [1 2 3 4 5]; B = 12.5; C = rand(4);
save savefile;
A = [6 7 8];
save savefile A -append;

11 Programming Tips

11-42

Save and Load on Startup or Quit
You can automatically save your variables at the end of each MATLAB session
by creating a finish.m file to save the contents of your base workspace every
time you quit MATLAB. Load these variables back into your workspace at the
beginning of each session by creating a startup.m file that uses the load
function to load variables from your MAT-file.

For more information: See the startup and finish function reference pages.

Saving to an ASCII File
When you save matrix data to an ASCII file using save -ascii, MATLAB
combines the individual matrices into one collection of numbers. Variable
names are not saved. If this is not acceptable for your application, use fprintf
to store your data instead.

For more information: See “Exporting Delimited ASCII Data Files” on
page 6-37.

Files and Filenames

11-43

Files and Filenames
This section covers the following topics:

• “Naming M-files” on page 11-43

• “Naming Other Files” on page 11-43

• “Passing Filenames as Arguments” on page 11-44

• “Passing Filenames to ASCII Files” on page 11-44

• “Determining Filenames at Run-Time” on page 11-44

• “Returning the Size of a File” on page 11-45

Naming M-files
M-file names must start with an alphabetic character, may contain any
alphanumeric characters or underscores, and must be no longer than the
maximum allowed M-file name length (returned by the function
namelengthmax).

N = namelengthmax
N =
 63

Since variables must obey similar rules, you can use the isvarname function to
check whether a filename (minus its .m file extension) is valid for an M-file.

isvarname mfilename

Naming Other Files
The names of other files that MATLAB interacts with (e.g., MAT, MEX, and
MDL-files) follow the same rules as M-files, but may be of any length.

Depending on your operating system, you may be able to include certain
non-alphanumeric characters in your filenames. Check your operating system
manual for information on valid filename restrictions.

11 Programming Tips

11-44

Passing Filenames as Arguments
In MATLAB commands, you can specify a filename argument using the
MATLAB command or function syntax. For example, either of the following are
acceptable. (The .mat file extension is optional for save and load).

load mydata.mat % Command syntax
load('mydata.mat') % Function syntax

If you assign the output to a variable, you must use the function syntax.

savedData = load('mydata.mat')

Passing Filenames to ASCII Files
ASCII files are specified as follows. Here, the file extension is required.

load mydata.dat -ascii % Command syntax
load('mydata.dat','-ascii') % Function syntax

Determining Filenames at Run-Time
There are several ways that your function code can work on specific files
without you having to hard-code their filenames into the program. You can

• Pass the filename in as an argument
 function myfun(datafile)

• Prompt for the filename using the input function
 filename = input('Enter name of file: ', 's');

• Browse for the file using the uigetfile function
 [filename, pathname] = uigetfile('*.mat', 'Select MAT-file');

For more information: See the input and uigetfile function reference
pages.

Files and Filenames

11-45

Returning the Size of a File
Two ways to have your program determine the size of a file are shown here.

 METHOD #1 METHOD #2
s = dir('myfile.dat'); fid = fopen('myfile.dat');
filesize = s.bytes fseek(fid, 0, 'eof');
 filesize = ftell(fid)
 fclose(fid);

The dir function also returns the filename (s.name), last modification date
(s.date), and whether or not it’s a directory (s.isdir).

(The second method requires read access to the file.)

For more information: See the fopen, fseek, ftell, and fclose function
reference pages.

11 Programming Tips

11-46

Input/Output
This section covers the following topics:

• “File I/O Function Overview” on page 11-46

• “Common I/O Functions” on page 11-46

• “Readable File Formats” on page 11-46

• “Using the Import Wizard” on page 11-47

• “Loading Mixed Format Data” on page 11-47

• “Reading Files with Different Formats” on page 11-47

• “Reading ASCII Data into a Cell Array” on page 11-48

• “Interactive Input into Your Program” on page 11-48

For more information and examples on importing and exporting data, see
Technical Note 1602:

http://www.mathworks.com/support/tech-notes/1600/1602.html

File I/O Function Overview
For a good overview of MATLAB file I/O functions, use the online “Functions
— Categorical List” reference. In the Help browser Contents, select
MATLAB -> Functions — Categorical List, and then click File I/O.

Common I/O Functions
The most commonly used, high-level, file I/O functions in MATLAB are save
and load. For help on these, type doc save or doc load.

Functions for I/O to text files with delimited values are textread, dlmread,
dlmwrite. Functions for I/O to text files with comma-separated values are
csvread, csvwrite.

For more information: See “Text Files” in the MATLAB “Functions —
Categorical List” reference documentation.

Readable File Formats
Type doc fileformats to see a list of file formats that MATLAB can read, along
with the associated MATLAB functions.

Input/Output

11-47

Using the Import Wizard
A quick method of importing text or binary data from a file (e.g., Excel files) is
to use the MATLAB Import Wizard. Open the Import Wizard with the
command, uiimport filename or by selecting File -> Import Data at the
Command Window.

Specify or browse for the file containing the data you want to import and you
will see a preview of what the file contains. Select the data you want and click
Finish.

For more information: See “Using the Import Wizard with Text Data” on
page 6-7 and “Using the Import Wizard with Binary Data” on page 6-13.

Loading Mixed Format Data
To load data that is in mixed formats, use textread instead of load. The
textread function lets you specify the format of each piece of data.

If the first line of file mydata.dat is

Sally 12.34 45

Read the first line of the file as a free format file using the % format:

 [names, x, y] = textread('mydata.dat', '%s %f %d', 1)

returns

names =
 'Sally'
x =
 12.34000000000000
y =
 45

Reading Files with Different Formats
Attempting to read data from a file that was generated on a different platform
may result in an error because the binary formats of the platforms may differ.
Using the fopen function, you can specify a machine format when you open the
file to avoid these errors.

11 Programming Tips

11-48

Reading ASCII Data into a Cell Array
A common technique used to read an ASCII data file into a cell array is

[a,b,c,d] = textread('data.txt', '%s %s %s %s');
mydata = cellstr([a b c d]);

For more information: See the textread and cellstr function reference
pages.

Interactive Input into Your Program
Your program can accept interactive input from users during execution. Use
the input function to prompt the user for input, and then read in a response.
When executed, input causes the program to display your prompt, pause while
a response is entered, and then resume when the Enter key is pressed.

Starting MATLAB

11-49

Starting MATLAB

Getting MATLAB to Start Up Faster
Here are some things that you can do to make MATLAB start up faster.

• Make sure toolbox path caching is enabled.

• Make sure that the system on which MATLAB is running has enough RAM.

• Choose only the windows you need in the MATLAB desktop.

• Close the Help browser before exiting MATLAB. When you start your next
session, MATLAB will not open the Help browser, and thus will start faster.

• If disconnected from the network, check the LM_LICENSE_FILE variable. See
http://www.mathworks.com/support/solutions/data/25731.html for a
more detailed explanation.

For more information: See “Reduced Startup Time with Toolbox Path
Caching” in the MATLAB Desktop Tools and Development Environment
documentation.

11 Programming Tips

11-50

Operating System Compatibility
This section covers the following topics:

• “Executing O/S Commands from MATLAB” on page 11-50

• “Searching Text with grep” on page 11-50

• “Constructing Paths and Filenames” on page 11-50

• “Finding the MATLAB Root Directory” on page 11-51

• “Temporary Directories and Filenames” on page 11-51

Executing O/S Commands from MATLAB
To execute a command from your operating system prompt without having to
exit MATLAB, precede the command with the MATLAB ! operator.

On Windows, you can add an ampersand (&) to the end of the line to make the
output appear in a separate window.

For more information: See “Running External Programs” in the MATLAB
Desktop Tools and Development Environment documentation, and the system
and dos function reference pages.

Searching Text with grep
grep is a powerful tool for performing text searches in files on UNIX systems.
To grep from within MATLAB, precede the command with an exclamation
point (!grep).

For example, to search for the word warning, ignoring case, in all M-files of the
current directory, you would use

!grep -i 'warning' *.m

Constructing Paths and Filenames
Use the fullfile function to construct path names and filenames rather than
entering them as strings into your programs. In this way, you always get the
correct path specification, regardless of which operating system you are using
at the time.

Operating System Compatibility

11-51

Finding the MATLAB Root Directory
The matlabroot function returns the location of the MATLAB installation on
your system. Use matlabroot to create a path to MATLAB and toolbox
directories that does not depend on a specific platform or MATLAB version.

The following example uses matlabroot with fullfile to return a
platform-independent path to the general toolbox directory:

fullfile(matlabroot,'toolbox','matlab','general')

Temporary Directories and Filenames
If you need to locate the directory on your system that has been designated to
hold temporary files, use the tempdir function. tempdir returns a string that
specifies the path to this directory.

To create a new file in this directory, use the tempname function. tempname
returns a string that specifies the path to the temporary file directory, plus a
unique filename.

For example, to store some data in a temporary file, you might issue the
following command first.

fid = fopen(tempname, 'w');

11 Programming Tips

11-52

Demos

Demos Available with MATLAB
MATLAB comes with a wide array of visual demonstrations to help you see the
extent of what you can do with the product. To start running any of the demos,
simply type demo at the MATLAB command prompt. Demos cover the following
major areas:

• MATLAB

• Toolboxes

• Simulink

• Blocksets

• Real-Time Workshop®

• Stateflow®

For more information: See “Running Demonstrations” in the MATLAB
Desktop Tools and Development Environment documentation, and the demo
function reference page.

For More Information

11-53

For More Information

Current CSSM
news:comp.soft-sys.matlab

Archived CSSM
http://mathforum.org/epigone/comp.soft-sys.matlab/

MATLAB Technical Support
http://www.mathworks.com/support/

Tech Notes
http://www.mathworks.com/support/tech-notes/list_all.html

MATLAB Central
http://www.mathworks.com/matlabcentral/

MATLAB Newsletters (Digest, News & Notes)
http://www.mathworks.com/company/newsletters/index.html

MATLAB Documentation
http://www.mathworks.com/access/helpdesk/help/helpdesk.html

MATLAB Index of Examples
http://www.mathworks.com/access/helpdesk/help/techdoc/
 demo_example.shtml

11 Programming Tips

11-54

A
External Interfaces

Finding the Documentation in Online
Help (p. A-2)

A summary of what information is available on the
MATLAB external interfaces

Reference Documentation (p. A-5) A summary of the MATLAB functions that support
external interfaces

A External Interfaces

A-2

Finding the Documentation in Online Help
MATLAB provides interface capabilities that enable you to communicate
between MATLAB and the following programs and devices:

• MAT-files that store data from your MATLAB sessions

• Generic dynamic link library (DLL) files

• External C and Fortran programs

• Object-oriented technologies like Java and COM

• Web services, such as SOAP and WSDL

• Hardware devices on your computer’s serial port

These interfaces, also referred to as the MATLAB Application Program
Interface (API), are documented in full in the MathWorks book, “External
Interfaces,” and in the online help for MATLAB.

Use the following path in the left pane of the MATLAB Help browser to locate
the help sections listed below:

MATLAB -> External Interfaces

Importing and Exporting Data
This section describes how to use MAT-files to import data to and export data
from the MATLAB environment. MAT-files provide a convenient mechanism
for moving your MATLAB data between different platforms in a highly
portable manner. In addition, they provide a means to import and export your
data to other stand-alone MATLAB applications.

MATLAB Interface to Generic DLLs
A shared library is a collection of functions that are available for use by one or
more applications running on a system. On Windows systems, the library is
precompiled into a dynamic link library (.dll) file. At run-time, the library is
loaded into memory and made accessible to all applications. The MATLAB
Interface to Generic DLLs enables you to interact with functions in dynamic
link libraries directly from MATLAB.

A-3

Calling C and Fortran Programs from MATLAB
MATLAB provides an interface to external programs written in the C and
Fortran languages that enables you to interact with data and programs
external to the MATLAB environment. This section explains how to call your
own C or Fortran subroutines from MATLAB as if they were built-in functions.

Creating C Language MEX-Files
MATLAB callable C and Fortran programs are referred to as MEX-files. This
section explains how to create and work with C MEX-files.

Creating Fortran MEX-Files
This section explains how to create and work with Fortran MEX-files.

Calling MATLAB from C and Fortran Programs
You can employ MATLAB as a computational engine that responds to calls
from your C and Fortran programs. This section describes the MATLAB
functions that enable you to

• Start and end a MATLAB process

• Send commands to and exchange data with MATLAB

• Compile and link MATLAB engine programs

Calling Java from MATLAB
This section describes how to use the MATLAB interface to Java classes and
objects. This MATLAB capability enables you to

• Bring Java classes into the MATLAB environment

• Construct objects from those classes

• Work with Java arrays in MATLAB

• Call methods on Java objects, passing MATLAB or Java data types

A External Interfaces

A-4

COM and DDE Support
MATLAB has interfaces that enable you to interact with Component Object
Model (COM) and Dynamic Data Exchange (DDE). This section explains how
to

• Integrate COM control components into a COM control container such as a
MATLAB figure window

• Use COM Automation components to control or be controlled by MATLAB

• Enable access between MATLAB and other Windows applications using
DDE

Using Web Services in MATLAB
Web services are designed to let applications running on disparate operating
systems and development platforms communicate with each other. MATLAB
acts as a Web service client by sending requests to a server and handling the
responses. MATLAB implements the following Web service technologies:

• Simple Object Access Protocol (SOAP)

• Web Services Description Language (WSDL)

Serial Port I/O
This section describes the MATLAB serial port interface which provides direct
access to peripheral devices such as modems, printers, and scientific
instruments that you connect to your computer's serial port. This interface is
established through a serial port object that enables you to

• Configure serial port communications

• Use serial port control pins

• Write data to and read data from the device

• Execute an action when a particular event occurs

• Create a record of your serial port session

Reference Documentation

A-5

Reference Documentation
The online help provides a detailed description of each of the MATLAB
functions available in the MATLAB external interfaces. Use the following path
in the left pane of the MATLAB Help browser to locate the help sections listed
below:

MATLAB -> External Interfaces Reference

Generic DLL Interface Functions
Functions you can use to interact with external shared library (.dll) files.

C MAT-File Functions
Functions that enable you to incorporate and use MATLAB data in your own C
programs.

C MX-Functions
Array access and creation functions that you use in your C files to manipulate
MATLAB arrays.

C MEX-Functions
Functions that you use in your C files to perform operations in the MATLAB
environment.

C Engine Functions
Functions that enable you to call MATLAB from your own C programs.

Fortran MAT-File Functions
Functions that enable you to incorporate and use MATLAB data in your own
Fortran programs.

Fortran MX-Functions
Array access and creation functions that you use in your Fortran files to
manipulate MATLAB arrays.

Fortran MEX-Functions
Functions that you use in your Fortran files to perform operations in the
MATLAB environment.

A External Interfaces

A-6

Fortran Engine Functions
Functions that enable you to call MATLAB from your own Fortran programs.

Java Interface Functions
Functions that enable you to create and interact with Java classes and objects
from MATLAB.

COM Functions
Functions that create Component Object Model objects and manipulate their
interfaces.

DDE Functions
Dynamic Data Exchange functions that enable MATLAB to access other
Windows applications and vice versa.

Serial Port I/O Functions
Functions that enable you to interact with devices connected to your
computer's serial port.

Index-1

Index

Symbols
! symbol

for entering a shell escape function 3-75
% symbol

for specifying character conversions 3-76
for writing single-line comments 3-76
for writing the H1 help line 4-10

%{ and %} symbols
for writing multiple-line comments 3-77

() symbol
for indexing into an array 3-76
for specifying function input arguments 3-76

(space) character
for separating array row elements 3-78
for separating function return values 3-79

* symbol
for filename wildcards 3-70

, symbol
for separating array indices 3-72
for separating array row elements 3-72
for separating input or output arguments 3-73
for separating MATLAB commands 3-73

. symbol
for defining a structure field 3-73
for specifying object methods 3-74

.() symbol
for creating a dynamic structure field 3-75

.. symbol
for referring to a parent directory 3-74

... symbol
for continuing a command line 3-74

: symbol
for converting to a column vector 3-72
for generating a numeric sequence 3-71
for preserving array shape on assignment 3-72
for specifying an indexing range 3-72
generating a numeric sequence 1-10

; symbol
for separating rows of an array 3-77
for suppressing command output 3-77

@ symbol
for class directories 3-71
for constructing function handles 3-70

[] symbol
for concatenating arrays 3-79
for constructing an array 3-79
for specifying function return values 3-80

{ } symbol
for constructing a cell array 3-73
for indexing into a cell array 3-73

' symbol
for constructing a character array 3-78

A
access modes

HDF files 6-90
accuracy of calculations 3-10
addition operator 3-12
aggregation 8-37
and (M-file function equivalent for &) 3-16
anonymous functions 5-3

changing variables 5-9
constructing 5-3
evaluating variables 5-8
example — multiple anonymous functions

5-12
example — passing a function to quad 5-11
in cell arrays 5-5
using space characters in 5-6
with no input arguments 5-5

answer, assigned to ans 3-10

Index

Index-2

arguments
checking number of 4-21
function 4-10
order in argument list 4-25
order of outputs 4-23
passing 4-36
passing variable number 4-23

arithmetic operators
overloading 8-29

arrays
cell array of strings 2-27
concatenating diagonally 1-40
deleting rows and columns 1-30
diagonal 1-39
dimensions

inverse permutation 1-61
empty 1-41
expanding 1-26
flipping 1-32
functions

changing indexing style 1-72
creating a matrix 1-69
determining data type 1-70
finding matrix structure or shape 1-70
modifying matrix shape 1-69
multidimensional arrays 1-72
sorting and shifting 1-71

functions for diagonals 1-71
getting dimensions of 1-23
linear indexing 1-18
logical indexing 1-21
multidimensional 1-48
numeric

converting to cell array 2-78
of strings 2-26
reshaping 1-31
rotating 1-32

shifting 1-35
sorting column data 1-37
sorting row data 1-37
sorting row vectors 1-38
storage 1-18
transposing 1-32

ASCII data
definition of 6-3
exporting 6-36
exporting delimited data 6-37
exporting with diary function 6-39
formats 6-28
importing 6-28
importing delimited files 6-32
importing mixed alphabetic and numeric data

6-33
importing space-delimited data 6-31
reading formatted text 6-114
saving 6-37
specifying delimiter used in file 6-32
using the Import Wizard with 6-7
with text headers 6-32
writing 6-115

assignment statements
building structure arrays with 2-50
local and global variables 3-7

attributes
retrieving from HDF files 6-91
writing to an HDF file 6-100

B
base (numeric), converting 2-35
base date 2-42
binary data

controlling data type of values read 6-109
using the Import Wizard 6-7

Index

Index-3

using the Import Wizard with 6-13
writing to 6-110

binary files
importing 6-13

binary from decimal conversion 2-35
blanks

finding in string arrays 2-32
removing from strings 2-27

break 3-66
built-in functions 3-82

forcing a built-in call 3-83
identifying 3-82

C
C++ and MATLAB OOP 8-7
caching

MATLAB directory 4-14
callback functions

creating 9-14
specifying 9-16

calling context 4-17
calling MATLAB functions

storing as pseudocode 4-15
canonical class 8-9
case 3-62
case conversion 2-38, 2-39
cat 1-52
catch 3-67
cell

building nested arrays with 2-76
preallocating empty arrays with 2-70

cell arrays 2-66
accessing a subset of cells 2-71
accessing data 2-70
adding cells to 2-68
applying functions to 2-74

cell indexing 2-67
concatenating 2-69
content indexing 2-68
converting to numeric array 2-78
creating 2-67

using assignments 2-67
with cells function 2-70
with curly braces 2-69

deleting cells 2-72
deleting dimensions 2-72
displaying 2-68
expanding 2-68
flat 2-76
functions 2-79
growing 1-27, 1-29
indexing 2-68
multidimensional 1-66
nested 2-76

building with the cells function 2-76
indexing 2-77

of strings 2-27
comparing strings 2-31
functions 2-29

of structures 2-78
organizing data 2-75
preallocating 2-70, 10-8
replacing comma-separated list with 2-72
reshaping 2-72
visualizing 2-68
with anonymous function elements 5-5

cell indexing 2-67
accessing a subset of cells 2-71

celldisp 2-68
cellplot 2-68
char data type 6-109

Index

Index-4

character arrays
categorizing characters of 2-32
comparing 2-30
comparing values on cell arrays 2-31
concatenating 3-22
conversion 2-34
converting to cell arrays 2-27
creating 2-25
delimiting character 2-33
evaluating 3-22
finding a substring 2-33
functions 2-39
functions that create 2-38
functions that modify 2-38
in cell arrays 2-27
padding for equal row length 2-26
removing trailing blanks 2-27
representation 2-25
scalar 2-31
searching and replacing 2-33
searching or comparing 2-39
token 2-33
two-dimensional 2-26
using relational operators on 2-31

characters
corresponding ASCII values 2-36
finding in string 2-32
used as delimiters 6-28

characters and strings 2-25
class 8-11
class directories 8-6
classes

clearing definition 8-6
constructor method 8-10
debugging 8-5
designing 8-9
matlab 2-82

methods required by MATLAB 8-9
object-oriented methods 8-2
overview 8-2

clear 4-31, 10-12
clipboard

importing binary data 6-7
closing

files 6-117
colon operator 1-10

for multidimensional array subscripting 1-55
scalar expansion with 1-51

column separators
defined 6-28

command/function duality 4-35
comma-separated lists 3-54

FFT example 3-58
generating from cell array 3-54
generating from structure 3-55
replacing with cell array 2-72
usage 3-56

concatenation 3-57
constructing arrays 3-56
displaying arrays 3-56
function call arguments 3-57
function return values 3-58

comments
in code 4-12
in scripts and functions 4-8

comparing
strings 2-30

complex conjugate transpose operator 3-12
complex number functions 2-18
complex numbers 2-11

creating 2-11
computational functions

applying to cell arrays 2-74
applying to multidimensional arrays 1-62

Index

Index-5

applying to structure fields 2-56
in M-file 4-8

computer 3-10
computer type 3-10
concatenating

cell arrays 2-69
diagonal matrices 1-40
matrices 1-7
strings 3-22

concatenation 1-3
of unlike data types 1-11

concatenation functions 1-8
conditional statements 4-21
constructor methods 8-10

guidelines 8-10
using class in 8-11

containment 8-37
content indexing 2-68

to access cell contents 2-70
Contents.m file 4-15
continue 3-66
control statements

break 3-66
case 3-62
catch 3-67
continue 3-66
else 3-60
elseif 3-60
for 3-64
if 3-60
otherwise 3-62
return 3-68
switch 3-62
try 3-67
while 3-65

conv 2-73
converter methods 8-20

converting
cases of strings 2-38, 2-39
dates 2-41
numbers 2-34
strings 2-34

converting numeric and string data types 2-40
converting numeric to string 2-34
converting string to numeric 2-36
cos 4-16
creating

cell array 2-67
multidimensional array 1-50
string array 2-27
strings 2-25
structure array 2-50
timer objects 9-4

cross 1-62
curly braces

for cell array indexing 2-67
in cell array syntax 2-69
to build cell arrays 2-69
to nest cell arrays 2-76

D
data

binary, dependence upon array size and type
6-23

data class hierarchy 8-3
data organization

cell arrays 2-75
multidimensional arrays 1-64
structure arrays 2-59

data sets
See HDF data sets

Index

Index-6

data types 2-2
cell arrays 2-66
cell arrays of strings 2-27
combining unlike data types 1-11
complex numbers 2-11
dates and times 2-41
determining 2-39
double precision 6-109
floating point 2-6

double-precision 2-7
single-precision 2-9

infinity 2-12
integers 2-4
java classes 2-83
logical 2-20
logicals 2-20
NaN 2-12
numeric 2-4
precision 6-109
reading files 6-109
specifying for input 6-109
structure arrays 2-49
user-defined classes 8-3

date 2-46
date and time functions 2-47
datenum 2-43
dates

base 2-42
conversions 2-43
handling and converting 2-41
number 2-42
string, vector of input 2-44

dates and times 2-41
datestr 2-43
datevec 2-43
deblank 2-27

debugging
errors and warnings 7-23

debugging class methods 8-5
decimal representation

to binary 2-35
to hexadecimal 2-35

delaying program execution
using timers 9-2

deleting
cells from cell array 2-72
fields from structure arrays 2-56
matrix rows and columns 1-30

deleting array elements 1-30
deletion operator 1-30
delimiter in string 2-33
delimiters

defined 6-28
diagonal matrices 1-39
diary 6-39
dim argument for cat 1-52
dimensions

deleting 2-72
permuting 1-60
removing singleton 1-59

directories
adding to path 8-6
class 8-6
Contents.m file 4-15
help for 4-15
MATLAB

caching 4-14
private functions for 5-33
private methods for 8-5
temporary 6-108

disp 2-63
dispatch type 8-68

Index

Index-7

display method 8-12
examples 8-13

displaying
cell arrays 2-68
field names for structure array 2-51

division operators
left division 3-12
matrix left division 3-13
matrix right division 3-13
right division 3-12

double precision 6-109
double-precision matrix 2-4
downloading files 6-118
duality, command/function 4-35
dynamic field names in structure arrays 2-54

E
Earth Observing System (EOS) 6-69
editor

accessing 4-13
for creating M-files 4-13

eig 1-63
element-by-element organization for structures

2-61
else 3-60
else, elseif 3-61
elseif 3-60
empty arrays

and if statement 3-62
and relational operators 3-14
and while loops 3-66

empty matrices 1-41
end 1-20
end method 8-19
end of file 6-111

EOS (Earth Observing System)
sources of information 6-69

eps 3-10
epsilon 3-10
equal to operator 3-14
error 4-18
error handling

debugging 7-23
error recovery 7-4
formatted message strings 7-4
identifying errors 7-5
message identifiers 7-4
regenerating errors 7-7
reporting errors 7-4
with try-catch 7-2

error messages
formatted message strings 7-4

evaluating
string containing function name 3-23
string containing MATLAB expression 3-22

examples
checking number of function arguments 4-22
container class 8-54
for 3-64
function 4-17
if 3-61
inheritance 8-38
M-file for structure array 2-57
polynomial class 8-24
script 4-16
switch 3-63
vectorization 10-4
while 3-65

expanding
cell arrays 2-68
structure arrays 2-50

expanding cell arrays 1-27, 1-29

Index

Index-8

expanding structure arrays 1-27, 1-29
exporting

ASCII data 6-36
in HDF4 format 6-96
in HDF5 format 6-65
overview 6-3

expressions
involving empty arrays 3-14
most recent answer 3-10
overloading 8-21
scalar expansion with 3-13

external program, running from MATLAB 3-23

F
fclose 6-117
feof 6-110
fid

See file identifiers
field names

dynamic 2-54
fieldnames 2-51
fields 2-49, 2-50

accessing data within 2-53
adding to structure array 2-56
applying functions to 2-56

all like-named fields 2-57
assigning data to 2-50
deleting from structures 2-56
indexing within 2-54
names 2-51
size 2-55
writing M-files for 2-57

fields 2-51
file exchange

over Internet 6-118

file formats
importing and exporting 6-3

file identifiers
clearing 6-117
defined 6-106

file operations
FTP 6-123

filenames
wildcards 3-70

files
ASCII

reading 6-112
reading formatted text 6-114
writing 6-115

beginning of 6-111
binary

controlling data type values read 6-109
data types 6-109
reading 6-108
writing to 6-110

closing 6-117
current position 6-111
end of 6-111
failing to open 6-107
file identifiers (FID) 6-106
MAT 6-26
opening 6-106
permissions 6-106
position 6-110
specifying delimiter used in ASCII files 6-32
temporary 6-108

find function
and subscripting 3-17

finding
substring within a string 2-33

flipping matrices 1-32
float 6-109

Index

Index-9

floating point 2-6
floating point, double-precision 2-7

converting to 2-8
creating 2-8
maximum and minimum values 2-7

floating point, single-precision 2-9
converting to 2-10
creating 2-10
maximum and minimum values 2-9

floating-point functions 2-17
floating-point numbers

largest 3-10
smallest 3-10

floating-point precision 6-109
floating-point relative accuracy 3-10
flow control

break 3-66
case 3-62
catch 3-67
continue 3-66
else 3-60
elseif 3-60
for 3-64
if 3-60
otherwise 3-62
return 3-68
switch 3-62
try 3-67
while 3-65

fopen 6-106
failing 6-107

for 2-78, 3-64
example 3-64
indexing 3-65
nested 3-64
syntax 3-64

format for numeric values 2-14

fread 6-108
frewind 6-110
fseek 6-110
ftell 6-110
FTP file operations 6-123
function definition line

for subfunction 5-31
in an M-file 4-8
syntax 4-9

function handles
example 4-28
for nested functions 5-20
maximum name length 4-29
naming 4-29
operations on 4-29
overview of 4-27

function workspace 4-17
functions

applying
to multidimensional structure arrays 1-68
to structure contents 2-56

applying to cell arrays 2-74
arguments

passing variable number of 4-23
body 4-8, 4-11
built-in 3-82

forcing a built-in call 3-83
identifying 3-82

calling
command syntax 4-35
function syntax 4-35
passing arguments 4-36

calling context 4-17
cell arrays 2-79
cell arrays of strings 2-29
changing indexing style 1-72
character arrays 2-39

Index

Index-10

clearing from memory 4-31
comments 4-8
comparing character arrays 2-39
complex number 2-18
computational, applying to structure fields

2-56
creating a matrix 1-69
creating arrays with 1-52
creating matrices 1-4
date and time 2-47
determining data type 1-70
example 4-17
executing function name string 3-23
finding matrix structure or shape 1-70
floating-point 2-17
for diagonal matrices 1-71
infinity 2-18
integer 2-16
logical array 2-21
matrix concatenation 1-8
M-file 3-81
modifying character arrays 2-38
modifying matrix shape 1-69
multidimensional arrays 1-72
multiple output arguments 4-10
NaN 2-18
numeric and string conversion 2-40
numeric to string conversion 2-34
output formatting 2-19
overloaded 3-83
overloading 8-23
primary 5-31
searching character arrays 2-39
sorting and shifting 1-71
sparse matrix 1-46
storing as pseudocode 4-15
string to numeric conversion 2-36

structures 2-65
that determine data type 2-39
type identification 2-18
types of 4-18

anonymous 5-3
nested 5-15
overloaded 5-34
primary 5-14
private 5-33
subfunctions 5-31

fwrite 6-110

G
get method 8-13
global attributes

HDF files 6-91
global variables 3-3

alternatives 3-4
creating 3-3
displaying 3-4
suggestions for use 3-4

graphics files
getting information about 6-41
importing and exporting 6-41

greater than operator 3-14
greater than or equal to operator 3-14
growing an array 1-26
growing cell array 1-27, 1-29
growing structure arrays 1-27, 1-29

H
H1 line 4-8, 4-10

and help command 4-8
and lookfor command 4-8

Index

Index-11

HDF (Hierarchical Data Format)
exporting in HDF4 format 6-96
exporting in HDF5 format 6-65
importing into MATLAB 6-69
importing subsets of data 6-72
MATLAB utility API 6-103
output arguments 6-89
programming model 6-88
selecting data sets to import 6-71

HDF data sets
accessing 6-92
associating attributes with 6-100
closing access 6-95
creating 6-97
getting information about 6-92
reading 6-93
using predefined attributes 6-101

HDF files
access modes 6-90
associating attributes with 6-100
closing 6-95
closing all open identifiers 6-104
creating 6-96
getting information about 6-91
listing open identifiers 6-103
opening 6-90
reading global attributes 6-91
writing data 6-98

HDF5
reading files 6-59

HDF-EOS
Earth Observing System 6-69

help
M-file 4-11

help

and H1 line 4-8
help text 4-8

hexadecimal, converting from decimal 2-35
Hierarchical Data Format

reading HDF5 files 6-59
hierarchy of data classes 8-3

I
if 3-60

and empty arrays 3-62
example 3-61
nested 3-61

imaginary unit 3-10
Import Data option 6-7
import functions

comparison of features 6-30
Import Wizard

importing binary data 6-7
with ASCII data 6-7
with binary data 6-13

importing
ASCII data 6-28
HDF data 6-69

from the command line 6-88
Import Wizard 6-7
overview 6-3
selecting HDF data sets 6-71
subsets of HDF data 6-72

indexed reference 8-14
indexing

cell array 2-67
content 2-68
for loops 3-65
multidimensional arrays 1-54
nested cell arrays 2-77
nested structure arrays 2-64
structures within cell arrays 2-79
within structure fields 2-54

Index

Index-12

indices, how MATLAB calculates 1-57
Inf 3-10
inferiorto 8-66
inferiorto function 8-66
infinity 2-12

functions 2-18
represented in MATLAB 3-10

inheritance
example class 8-38
multiple 8-37
simple 8-35

integer data type 6-115
integer functions 2-16
integers 2-4

creating 2-5
largest system can represent 3-10
smallest system can represent 3-10

Internet functions 6-118
intmax 3-10
intmin 3-10
inverse permutation of array dimensions 1-61
ipermute 1-61
isa 8-11

J
Java and MATLAB OOP 8-7

K
keywords 3-9

checking for 11-24

L
lasterr

using with message identifiers 7-9

less than operator 3-13
less than or equal to operator 3-13
load 10-12
loading data

overview 6-3
loading objects 8-60
loadobj example 8-62
local variables 3-2
logical array functions 2-21
logical data type 2-20
logical expressions

and subscripting 3-17
logical operators 3-15

bit-wise 3-18
element-wise 3-15
short-circuit 3-19

logical types 2-20
logical vectors 1-21
long 6-109
long integer 6-109
lookfor 4-8, 4-11

and H1 line 4-8
loops

for 3-64
while 3-65

M
MATLAB

data type classes 8-3
programming

M-files 4-7
scripts 4-16

structures 8-7
version 3-10

Index

Index-13

matrices
accessing multiple elements 1-19
accessing single elements 1-17
concatenating 1-7
concatenating diagonally 1-40
constructing a matrix operations

constructing 1-4
data structure query 1-25
data type query 1-24
deleting rows and columns 1-30
diagonal 1-39
empty 1-41
expanding 1-26
flipping 1-32
functions

changing indexing style 1-72
creating a matrix 1-69
determining data type 1-70
finding matrix structure or shape 1-70
modifying matrix shape 1-69
sorting and shifting 1-71

functions for creating 1-4
functions for diagonals 1-71
getting dimensions of 1-23
linear indexing 1-18
logical indexing 1-21
reshaping 1-31
rotating 1-32
scalar 1-44
shifting 1-35
sorting column data 1-37
sorting row data 1-37
sorting row vectors 1-38
transposing 1-32
vectors 1-44

matrix
double-precision 2-4
for loop index 3-65
single-precision 2-4
See also matrices

matrix operations
concatenating matrices 1-3
creating matrices 1-3

mean 1-62
memory

function workspace 4-17
management 10-12
Out of Memory message 10-16

message identifiers
using with errors 7-4
using with lasterr 7-9
using with warnings 7-16

methods 8-2
converters 8-20
determining which is called 4-34
display 8-12
end 8-19
get 8-13
invoking on objects 8-4
listing 8-33
precedence 8-67
required by MATLAB 8-9
set 8-13
subsasgn 8-14
subsref 8-14

M-file functions
identifying 3-81

M-files
comments 4-12
contents 4-8
corresponding to functions 8-22

Index

Index-14

creating
in MATLAB directory 4-14

creating with text editor 4-13
kinds 4-7
naming 4-7
operating on structures 2-57
overview 4-8
primary function 5-14
subfunction 5-31
superseding existing names 5-32

multidimensional arrays
applying functions 1-62

element-by-element functions 1-62
matrix functions 1-63
vector functions 1-62

cell arrays 1-66
computations on 1-62
creating 1-50

at the command line 1-50
with functions 1-52
with the cat function 1-52

extending 1-51
format 1-54
indexing 1-54

avoiding ambiguity 1-58
with the colon operator 1-55

number of dimensions 1-54
organizing data 1-64
permuting dimensions 1-60
removing singleton dimensions 1-59
reshaping 1-58
size of 1-54
storage 1-54
structure arrays 1-67

applying functions 1-68
subscripts 1-49

multiple conditions for switch 3-63

multiple inheritance 8-37
multiplication operators

matrix multiplication 3-12
multiplication 3-12

N
names

structure fields 2-51
superseding 5-32

NaN 2-12
functions 2-18
logical operations on 2-13

NaN 3-10
nargin 4-21
nargout 4-21
ndgrid 1-72
ndims 1-54
nested functions 5-15

creating 5-15
example — creating a function handle 5-26
example — function-generating functions 5-27
separate variable instances 5-24
using function handles with 5-20
variable scope in 5-18

nesting
cell arrays 2-76
for loops 3-64
if statements 3-61
structures 2-63

newlines in string arrays 2-32
not (M-file function equivalent for ~) 3-16
not a number (NaN) 2-12
not equal to operator 3-14
Not-a-Number 3-10
now 2-46
number of arguments 4-21

Index

Index-15

numbers
date 2-42
time 2-42

numeric data types 2-4
conversion functions 2-40
setting display format 2-14

numeric to string conversion
functions 2-34

O
object-oriented programming

features of 8-2
inheritance

multiple 8-37
simple 8-35

overloading 8-21
subscripting 8-15

See also classes and objects
objects

accessing data in 8-13
as indices into objects 8-19
creating 8-4
invoking methods on 8-4
loading 8-60
overview 8-2
precedence 8-65
saving 8-60

offsets for indexing 1-57
ones 1-21
online help 4-11
opening

files
failing 6-107
HDF files 6-90
permissions 6-106
using low-level functions 6-106

operator precedence 3-20
overriding 3-21

operators
addition 3-12
applying to cell arrays 2-74
applying to structure fields 2-56
colon 3-12
complex conjugate transpose 3-12
deletion 1-30
equal to 3-14
greater than 3-14
greater than or equal to 3-14
left division 3-12
less than 3-13
less than or equal to 3-13
logical 3-15

bit-wise 3-18
element-wise 3-15
short-circuit 3-19

matrix left division 3-13
matrix multiplication 3-12
matrix power 3-13
matrix right division 3-13
multiplication 3-12
not equal to 3-14
overloading 8-2
power 3-12
right division 3-12
subtraction 3-12
table of 8-22
transpose 3-12
unary minus 3-12
unary plus 3-12

optimization
preallocation, array 10-7, 10-13
vectorization 10-4

or (M-file function equivalent for |) 3-16

Index

Index-16

organizing data
cell arrays 2-75
multidimensional arrays 1-64
structure arrays 2-59

otherwise 3-62
Out of Memory message 10-16
output arguments 4-10

order of 4-23
output formatting functions 2-19
overloaded functions 3-83
overloading 8-15

arithmetic operators 8-29
functions 8-23
loadobj 8-61
operators 8-2
pie3 8-57
saveobj 8-61

P
pack 10-12
page subscripts 1-49
parentheses

for input arguments 4-10
overriding operator precedence with 3-21

Paste Special option 6-7
path

adding directories to 8-6
pcode 4-15
percent sign (comments) 4-12
performance

analyzing 10-2
permission strings 6-106
permute 1-60
permuting array dimensions 1-60

inverse 1-61
persistent variables 3-5

pi 3-10
pie3 function overloaded 8-57
plane organization for structures 2-60
polar 4-16
polynomials

example class 8-24
power operators

matrix power 3-13
power 3-12

preallocation
arrays 10-7, 10-13
cell array 10-8

precedence
object 8-65
operator 3-20

overriding 3-21
precision

char 6-109
data types 6-109
double 6-109
float 6-109
long 6-109
short 6-109
single 6-109
uchar 6-109

primary functions 5-14
private directory 5-33
private functions 5-33

precedence of in classes 8-68
precedence of when calling 4-33

private methods 8-5
program control

break 3-66
case 3-62
catch 3-67
continue 3-66
else 3-60

Index

Index-17

elseif 3-60
for 3-64
if 3-60
otherwise 3-62
return 3-68
switch 3-62
try 3-67
while 3-65

programs
running external 3-23

pseudocode 4-15

Q
quit 10-13

R
randn 1-52
reading

HDF data 6-69
from the command line 6-88

selecting HDF data sets 6-71
subsets of HDF data 6-72

realmax 3-10
realmin 3-10
reference, subscripted 8-15
regexp 3-25
regexpi 3-25
regexprep 3-25
regular expression metacharacters

character classes
match alphanumeric character (\w) 3-28
match any character (period) 3-27
match any characters but these ([^c1c2c3])

3-26

match any of these characters ([c1c2c3])
3-28

match characters in this range ([c1-c2])
3-28

match digit character (\d) 3-29
match nonalphanumeric character (\W)

3-27
match nondigit character (\D) 3-27
match nonwhitespace character (\S) 3-27
match whitespace character (\s) 3-28

character representation
alarm character (\a) 3-29
backspace character (\b) 3-29
carriage return character (\r) 3-29
escape character (\e) 3-29
form feed character (\f) 3-29
hexadecimal character (\x) 3-30
horizontal tab character (\t) 3-29
literal character (\char) 3-30
new line character (\n) 3-29
octal character (\o) 3-30
vertical tab character (\v) 3-29

logical operators
atomic group ((?>expr)) 3-31
comment ((?#expr)) 3-32
match exact word (\<expr\>) 3-33
match expr1 or expr2 (expr1|expr2) 3-32
match if expression begins string (^expr)

3-33
match if expression begins word (\<expr)

3-33
match if expression ends string (expr$)

3-33
match if expression ends word (expr\>)

3-33
noncapturing group ((?:expr)) 3-30
standard group ((expr)) 3-31

Index

Index-18

lookaround operators
match expr1, if followed by expr2

(expr1(?=expr2)) 3-35
match expr1, if not followed by expr2

(expr1(?!expr2)) 3-35
match expr2, if not preceded by expr1

(expr1(?<!expr2)) 3-35
match expr2, if preceded by expr1

(expr1(?<=expr2)) 3-35
operator summary 3-50
quantifiers

greedy quantifier (qu_expr*) 3-39
lazy quantifier (qu_expr?) 3-40
match 0 or 1 instance (expr?) 3-37
match 0 or more instances (expr?*) 3-38
match 1 or more instances (expr?+) 3-38
match n instances (expr{n}) 3-37
match n to m instances (expr{n‚m}) 3-39
possessive quantifier (qu_expr+) 3-39

token operators
create named token ((?<name>expr)) 3-44
create token ((expr)) 3-42
if token, match expr ((?(token)expr)) 3-42
if token, match expr1, else expr2

((?(token)expr1|expr2)) 3-45
match named token (\k<name>) 3-42
match Nth token (\N) 3-42
replace Nth token ($N) 3-42

regular expressions
[c1 - c2] 3-28
[c1c2c3] 3-28
character classes 3-26
character representation 3-29
conditional expressions 3-45
functions

regexp 3-25
regexpi 3-25

regexprep 3-25
introduction 3-25
logical operators 3-30
lookaround operators 3-33
multiple strings

finding a single pattern 3-47
finding multiple patterns 3-48
matching 3-46
replacing 3-49

quantifiers 3-36
greedy 3-39
lazy 3-40
possessive 3-39

tokens 3-40
example 1 3-43
example 2 3-43
named capture 3-44
operators 3-42
use in replacement string 3-44
using token parameter 3-41

relational operators
empty arrays 3-14
strings 2-31

removing
cells from cell array 2-72
fields from structure arrays 2-56
singleton dimensions 1-59

replacing substring within string 2-33
repmap 1-52
reshape 1-58, 2-72
reshaping

cell arrays 2-72
multidimensional arrays 1-58

reshaping matrices 1-31
return 3-68
rmfield 2-56
rotating matrices 1-32

Index

Index-19

S
save 10-12
saveobj example 8-62
saving

objects 8-60
scalar

and relational operators 2-31
expansion 3-13
string 2-31

scalars 1-44
scheduling program execution

using timers 9-2
Scientific Data API

programming model 6-89
scripts 4-7

example 4-16
executing 4-17

search path
M-files on 5-32

set method 8-13
shell escape functions 3-23
shiftdim 1-72
shifting matrix elements 1-35
short 6-109
short integer 6-109
simple inheritance 8-35
sin 1-62
single precision 6-109
single-precision matrix 2-4
size

structure arrays 2-55
structure fields 2-55

size 2-55
smallest value system can represent 3-10
sorting matrix column data 1-37
sorting matrix row data 1-37
sorting matrix row vectors 1-38

sparse matrix functions 1-46
sprintf 6-116
square brackets

for output arguments 4-10
squeeze 1-59

with multidimensional arguments 1-63
sscanf 6-115
starting

timers 9-9
statements

conditional 4-21
stopping

timers 9-9
strcmp 2-30
string to numeric conversion

functions 2-36
strings 2-25

functions to create 2-38
strings, cell arrays of 2-27
structs 2-51

for nested structures 2-63
structure arrays 2-49

accessing data 2-53
adding fields to 2-56
applying functions to 2-56
building 2-50

using structs 2-51
data organization 2-59
deleting fields 2-56
dynamic field names 2-54
element-by-element organization 2-61
expanding 2-50
fields 2-49

assigning data to 2-50
growing 1-27, 1-29

Index

Index-20

indexing
nested structures 2-64
within fields 2-54

multidimensional 1-67
applying functions 1-68

nesting 2-63
obtaining field names 2-51
organizing data 2-59

example 2-62
plane organization 2-60
size 2-55
subarrays, accessing 2-53
subscripting 2-50
used with classes 8-7
within cell arrays 2-78
writing M-files for 2-57

example 2-57
structures

field names
dynamic 2-54

functions 2-65
subfunctions 5-31

accessing 5-32
creating 5-31
debugging 5-32
definition line 5-31
precedence of 4-32

subsasgn

for index reference 8-14
for subscripted assignment 8-17

subscripted assignment 8-17
subscripting

how MATLAB calculates indices 1-57
multidimensional arrays 1-49
overloading 8-15
page 1-49
structure arrays 2-50

with logical expression 3-17
with logical vectors 1-21
with the find function 3-17

subsref 8-15
subsref method 8-14
substring within a string 2-33
subtraction operator 3-12
sum 1-62
superiorto 8-66
superseding existing M-file names 5-32
switch 3-62

case groupings 3-62
example 3-63
multiple conditions 3-63

symbols 3-69
asterisk * 3-70
at sign @ 3-70
colon : 3-71
comma , 3-72
curly braces { } 3-73
dot . 3-73
dot-dot .. 3-74
dot-dot-dot ... 3-74
dot-parentheses .() 3-75
exclamation point ! 3-75
parentheses () 3-76
percent % 3-76
percent-brace %{ and %} 3-77
semicolon ; 3-77
single quotes ' 3-78
space character 3-78
square brackets [] 3-79

T
tabs in string arrays 2-32
tempdir 6-108

Index

Index-21

tempname 6-108
temporary files

creating 6-108
text files

importing 6-7
reading 6-112

time
numbers 2-42

time and date functions 2-47
timer objects

blocking the command line 9-11
callback functions 9-13
creating 9-4
deleting 9-4
execution modes 9-18
finding all existing timers 9-23
naming convention 9-5
overview 9-2
properties 9-6
starting 9-9
stopping 9-9

timers
starting and stopping 9-9
using 9-2

times and dates 2-41
tips, programming

additional information 11-53
command and function syntax 11-3
debugging 11-19
demos 11-52
development environment 11-10
evaluating expressions 11-30
files and filenames 11-43
function arguments 11-14
help 11-6
input/output 11-46
MATLAB path 11-32

M-file functions 11-12
operating system compatibility 11-50
program control 11-36
program development 11-16
save and load 11-40
starting MATLAB 11-49
strings 11-27
variables 11-23

token in string 2-33
tokens

regular expressions 3-40
tolerance 3-10
transpose 1-61
transpose operator 3-12
transposing matrices 1-32
trigonometric functions 1-62
try 3-67
try-catch 7-2
type identification functions 2-18

U
uchar data type 6-109
unary minus operator 3-12
unary plus operator 3-12
user classes, designing 8-9

V
value

data type 6-109
largest system can represent 3-10

varargin 2-74, 4-24
in argument list 4-25
unpacking contents 4-24

Index

Index-22

varargout 4-24
in argument list 4-25
packing contents 4-24

variables
global 3-3

alternatives 3-4
creating 3-3
displaying 3-4
suggestions for use 3-4

local 3-2
naming 3-6
persistent 3-5
replacing list with a cell array 2-72
usage guidelines 3-7

vector
logical 1-21
of dates 2-44
preallocation 10-7, 10-13

vectorization 10-4
example 10-4
replacing for

vectorization 3-60
vectors 1-44
version

obtaining 3-10
version 3-10
visualizing

cell array 2-68

W
warning control 7-14

saving and restoring state 7-20
warning control statements

message identifiers 7-16
output from 7-17
output structure array 7-18

warnings
debugging 7-23
identifying 7-13
syntax 7-14
warning control statements 7-15
warning states 7-16

Web content access 6-118
which 4-34

used with methods 8-70
while 3-65

empty arrays 3-66
example 3-65
syntax 3-65

white space
finding in string 2-32

whos 1-54
interpreting memory use 10-12

wildcards, in filenames 3-70
workspace

context 4-17
of individual functions 4-17

writing
ASCII data 6-36
HDF data 6-98
in HDF4 format 6-96
in HDF5 format 6-65

Z
zeros 1-52

	Data Structures
	Creating and Concatenating Matrices
	Constructing a Simple Matrix
	Specialized Matrix Functions
	Concatenating Matrices
	Matrix Concatenation Functions
	Generating a Numeric Sequence
	Combining Unlike Data Types

	Matrix Indexing
	Accessing Single Elements
	Linear Indexing
	Functions That Control Indexing Style
	Accessing Multiple Elements
	Logical Indexing
	Indexing on Assignment

	Getting Information About a Matrix
	Dimensions of the Matrix
	Data Types Used in the Matrix
	Data Structures Used in the Matrix

	Resizing and Reshaping Matrices
	Expanding the Size of a Matrix
	Diminishing the Size of a Matrix
	Reshaping a Matrix
	Preallocating Memory

	Shifting and Sorting Matrices
	Shift and Sort Functions
	Shifting the Location of Matrix Elements
	Sorting the Data in Each Column
	Sorting the Data in Each Row
	Sorting Row Vectors

	Operating on Diagonal Matrices
	Constructing a Matrix from a Diagonal Vector
	Returning a Triangular Portion of a Matrix
	Concatenating Matrices Diagonally

	Empty Matrices, Scalars, and Vectors
	The Empty Matrix
	Scalars
	Vectors

	Full and Sparse Matrices
	Sparse Matrix Functions

	Multidimensional Arrays
	Overview
	Creating Multidimensional Arrays
	Accessing Multidimensional Array Properties
	Indexing Multidimensional Arrays
	Reshaping Multidimensional Arrays
	Permuting Array Dimensions
	Computing with Multidimensional Arrays
	Organizing Data in Multidimensional Arrays
	Multidimensional Cell Arrays
	Multidimensional Structure Arrays

	Summary of Matrix and Array Functions

	Data Types
	Overview of MATLAB Data Types
	Numeric Types
	Integers
	Floating-Point Numbers
	Complex Numbers
	Infinity and NaN
	Identifying Numeric Types
	Display Format for Numeric Values
	Function Summary

	Logical Types
	Creating a Logical Array
	How Logical Arrays Are Used
	Identifying Logical Arrays

	Characters and Strings
	Creating Character Arrays
	Cell Arrays of Strings
	String Comparisons
	Searching and Replacing
	Converting from Numeric to String
	Converting from String to Numeric
	Function Summary

	Dates and Times
	Types of Date Formats
	Conversions Between Date Formats
	Date String Formats
	Output Formats
	Current Date and Time
	Function Summary

	Structures
	Building Structure Arrays
	Accessing Data in Structure Arrays
	Using Dynamic Field Names
	Finding the Size of Structure Arrays
	Adding Fields to Structures
	Deleting Fields from Structures

	Applying Functions and Operators
	Writing Functions to Operate on Structures
	Organizing Data in Structure Arrays
	Nesting Structures
	Function Summary

	Cell Arrays
	Creating Cell Arrays
	Obtaining Data from Cell Arrays
	Deleting Cells
	Reshaping Cell Arrays

	Replacing Lists of Variables with Cell Arrays
	Applying Functions and Operators
	Organizing Data in Cell Arrays
	Nesting Cell Arrays
	Converting Between Cell and Numeric Arrays
	Cell Arrays of Structures
	Function Summary

	Function Handles
	Constructing and Invoking a Function Handle
	Calling a Function Using Its Handle
	Simple Function Handle Example

	MATLAB Classes
	Java Classes

	Basic Program Components
	Variables
	Types of Variables
	Naming Variables
	Guidelines to Using Variables
	Scope of a Variable
	Lifetime of a Variable

	Keywords
	Special Values
	Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Operator Precedence

	MATLAB Expressions
	String Evaluation
	Shell Escape Functions

	Regular Expressions
	MATLAB Regular Expression Functions
	Elements of an Expression
	Character Classes
	Character Representation
	Logical Operators
	Lookaround Operators
	Quantifiers
	Tokens
	Handling Multiple Strings
	Operator Summary

	Comma-Separated Lists
	Generating a List from a Cell Array
	Generating a List from a Structure
	How to Use the Comma-Separated List
	Fast Fourier Transform Example

	Program Control Statements
	Conditional Control — if, switch
	Loop Control — for, while, continue, break
	Error Control — try, catch
	Program Termination — return

	Symbol Reference
	Asterisk — *
	At — @
	Colon — :

	Comma — ,
	Curly Braces — { }
	Dot — .
	Dot-Dot — ..

	Dot-Dot-Dot (Ellipsis) — ...
	Dot-Parentheses — .()
	Exclamation Point — !
	Parentheses — ()

	Percent — %
	Percent-Brace — %{ %}
	Semicolon — ;
	Single Quotes — ' '

	Space Character
	Slash and Backslash — / \
	Square Brackets — []

	MATLAB Functions
	M-File Functions
	Built-In Functions
	Overloaded MATLAB Functions

	M-File Programming
	Program Development
	Creating a Program
	Getting the Bugs Out
	Cleaning Up the Program
	Improving Performance
	Checking It In

	Working with M-Files
	Types of M-Files
	Basic Parts of an M-File
	Creating a Simple M-File
	Providing Help for Your Program
	Creating P-Code Files

	M-File Scripts and Functions
	M-File Scripts
	M-File Functions
	Types of Functions
	Identifying Dependencies

	Function Arguments
	Checking the Number of Input Arguments
	Passing Variable Numbers of Arguments
	Returning Output Arguments

	Function Handles
	Constructing a Function Handle
	Calling a Function Using Its Handle
	Functions That Operate on Function Handles
	Additional Information on Function Handles

	Calling Functions
	What Happens When You Call a Function
	Determining Which Function Is Called
	MATLAB Calling Syntax

	Passing Certain Argument Types
	Passing Arguments in Structures or Cell Arrays
	Calling External Functions

	Types of Functions
	Overview of MATLAB Function Types
	Anonymous Functions
	Constructing an Anonymous Function
	Arrays of Anonymous Functions
	Outputs from Anonymous Functions
	Variables Used in the Expression
	Examples of Anonymous Functions

	Primary M-File Functions
	Nested Functions
	Writing Nested Functions
	Calling Nested Functions
	Variable Scope in Nested Functions
	Using Function Handles with Nested Functions
	Examples of Nested Functions

	Subfunctions
	Calling Subfunctions
	Accessing Help for a Subfunction

	Private Functions
	Private Directories
	Accessing Help for a Private Function

	Overloaded Functions
	Class Directories

	Data Import and Export
	Overview
	Text Data
	Graphics Files
	Audio and Audio/Video Data
	Spreadsheets
	Scientific Formats
	The Internet
	Low-Level File I/O
	Large Data Sets
	Toolboxes for Importing Data

	Using the Import Wizard
	Using the Import Wizard with Text Data�
	Using the Import Wizard with Binary Data

	Supported File Formats
	Saving and Loading MAT-Files
	Exporting Data to MAT-Files
	Importing Data from MAT-Files

	Importing Text Data��
	The MATLAB Import Wizard
	Using Import Functions with Text Data
	Importing Numeric Text Data
	Importing Delimited ASCII Data Files
	Importing Numeric Data with Text Headers
	Importing Mixed Alphabetic and Numeric Data
	Importing from XML Documents

	Exporting Text Data
	Exporting Delimited ASCII Data Files
	Using the diary Function to Export Data
	Exporting to XML Documents

	Working with Graphics Files
	Getting Information About Graphics Files
	Importing Graphics Data
	Exporting Graphics Data

	Working with Audio and Video Data
	Getting Information About Audio/Video Files
	Importing Audio/Video Data
	Exporting Audio/Video Data

	Working with Spreadsheets
	Microsoft Excel Spreadsheets
	Lotus 123 Spreadsheets

	Working with Scientific Data Formats
	Working with Common Data Format (CDF) Files
	Working with Flexible Image Transport System (FITS) Files
	Working with Hierarchical Data Format (HDF5) Files

	Importing HDF4 and HDF-EOS Data
	Using the HDF Import Tool
	Using the HDF4 Import Tool Subsetting Options
	Using the MATLAB hdfread Function
	Using the HDF4 Command-Line Interface

	Exporting MATLAB Data to an HDF4 File
	Example: Exporting Data to an HDF4 File
	Using the MATLAB HDF Utility API

	Using Low-Level File I/O Functions
	Opening Files
	Reading Binary Data
	Writing Binary Data
	Controlling Position in a File
	Reading Strings Line by Line from Text Files
	Reading Formatted ASCII Data
	Writing Formatted Text Files
	Closing a File

	Exchanging Files over the Internet
	Downloading Web Content and Files
	Creating and Uncompressing Zip Archives
	Sending E-Mail
	Performing FTP File Operations

	Error Handling
	Checking for Errors with try-catch
	Nested try-catch Blocks

	Handling and Recovering from an Error
	Reporting an Error
	Identifying the Cause
	Regenerating an Error

	Message Identifiers
	Identifier Format
	Using Message Identifiers with lasterr

	Warnings
	Reporting a Warning
	Identifying the Cause

	Warning Control
	Warning Statements
	Warning Control Statements
	Output from Control Statements
	Saving and Restoring State
	Debug, Backtrace, and Verbose Modes

	Debugging Errors and Warnings

	Classes and Objects
	Classes and Objects: An Overview
	Features of Object-Oriented Programming
	MATLAB Data Class Hierarchy
	Creating Objects
	Invoking Methods on Objects

	Private Methods
	Helper Functions

	Debugging Class Methods
	Setting Up Class Directories
	Data Structure

	Tips for C++ and Java Programmers

	Designing User Classes in MATLAB
	The MATLAB Canonical Class
	The Class Constructor Method
	Examples of Constructor Methods

	Identifying Objects Outside the Class Directory
	The display Method
	Accessing Object Data
	The set and get Methods
	Indexed Reference Using subsref and subsasgn
	Handling Subscripted Reference
	Handling Subscripted Assignment
	Object Indexing Within Methods
	Defining end Indexing for an Object
	Indexing an Object with Another Object
	Converter Methods

	Overloading Operators and Functions
	Overloading Operators
	Overloading Functions

	Example — A Polynomial Class
	Polynom Data Structure
	Polynom Methods
	The Polynom Constructor Method
	Converter Methods for the Polynom Class
	The Polynom display Method
	The Polynom subsref Method
	Overloading Arithmetic Operators for polynom
	Overloading Functions for the Polynom Class
	Listing Class Methods

	Building on Other Classes
	Simple Inheritance
	Multiple Inheritance
	Aggregation

	Example — Assets and Asset Subclasses
	Inheritance Model for the Asset Class
	Asset Class Design
	Other Asset Methods
	The Asset Constructor Method
	The Asset get Method
	The Asset set Method
	The Asset subsref Method
	The Asset subsasgn Method
	The Asset display Method
	The Asset fieldcount Method
	Designing the Stock Class
	The Stock Constructor Method
	The Stock get Method
	The Stock set Method
	The Stock subsref Method
	The Stock subsasgn Method
	The Stock display Method

	Example — The Portfolio Container
	Designing the Portfolio Class
	The Portfolio Constructor Method
	The Portfolio display Method
	The Portfolio pie3 Method
	Creating a Portfolio

	Saving and Loading Objects
	Modifying Objects During Save or Load

	Example — Defining saveobj and loadobj for Portfolio
	Summary of Code Changes
	The saveobj Method
	The loadobj Method
	Changing the Portfolio Constructor
	The Portfolio subsref Method

	Object Precedence
	Specifying Precedence of User-Defined Classes

	How MATLAB Determines Which Method to Call
	Selecting a Method
	Querying Which Method MATLAB Will Call

	Scheduling Program Execution with Timers
	Using a MATLAB Timer Object
	Example: Displaying a Message

	Creating Timer Objects
	Timer Object Naming

	Working with Timer Object Properties
	Retrieving the Value of Timer Object Properties
	Setting the Value of Timer Object Properties

	Starting and Stopping Timers
	Starting a Timer
	Starting a Timer at a Specified Time
	Stopping Timer Objects
	Blocking the MATLAB Command Line

	Creating and Executing Callback Functions
	Associating Commands with Timer Object Events
	Creating Callback Functions
	Specifying the Value of Callback Function Properties

	Timer Object Execution Modes
	Executing a Timer Callback Function Once
	Executing a Timer Callback Function Multiple Times
	Handling Callback Function Queuing Conflicts

	Deleting Timer Objects from Memory
	Testing the Validity of a Timer Object
	Deleting All Existing Timer Objects

	Finding All Timer Objects in Memory
	Finding Invisible Timer Objects

	Improving Performance and Memory Usage
	Analyzing Your Program’s Performance
	The M-File Profiler Utility
	Stopwatch Timer Functions

	Techniques for Improving Performance
	Vectorizing Loops
	Preallocating Arrays
	Coding Loops in a MEX-File
	Assigning to Variables
	Operating on Real Data
	Using Appropriate Logical Operators
	Overloading Built-In Functions
	Functions Are Generally Faster Than Scripts
	Load and Save Are Faster Than File I/O Functions
	Avoid Large Background Processes

	Making Efficient Use of Memory
	Memory Management Functions
	Preallocating Arrays to Reduce Fragmentation
	Enlarging Arrays with repmat
	Working with Variables
	Converting Full Matrices into Sparse
	Structure of Arrays vs. Array of Structures
	Working with Large Amounts of Data

	Resolving “Out of Memory” Errors
	General Suggestions For Reclaiming Memory
	Compressing Data in Memory
	Increasing System Swap Space
	Freeing Up System Resources on Windows Systems
	Reloading Variables on UNIX Systems

	Programming Tips
	Command and Function Syntax
	Syntax Help
	Command and Function Syntaxes
	Command Line Continuation
	Completing Commands Using the Tab Key
	Recalling Commands
	Clearing Commands
	Suppressing Output to the Screen

	Help
	Using the Help Browser
	Help on Functions from the Help Browser
	Help on Functions from the Command Window
	Topical Help
	Paged Output
	Writing Your Own Help
	Help for Subfunctions and Private Functions
	Help for Methods and Overloaded Functions

	Development Environment
	Workspace Browser
	Using the Find and Replace Utility
	Commenting Out a Block of Code
	Creating M-Files from Command History
	Editing M-Files in EMACS

	M-File Functions
	M-File Structure
	Using Lowercase for Function Names
	Getting a Function’s Name and Path
	What M-Files Does a Function Use?
	Dependent Functions, Built-Ins, Classes

	Function Arguments
	Getting the Input and Output Arguments
	Variable Numbers of Arguments
	String or Numeric Arguments
	Passing Arguments in a Structure
	Passing Arguments in a Cell Array

	Program Development
	Planning the Program
	Using Pseudo-Code
	Selecting the Right Data Structures
	General Coding Practices
	Naming a Function Uniquely
	The Importance of Comments
	Coding in Steps
	Making Modifications in Steps
	Functions with One Calling Function
	Testing the Final Program

	Debugging
	The MATLAB Debug Functions
	More Debug Functions
	The MATLAB Graphical Debugger
	A Quick Way to Examine Variables
	Setting Breakpoints from the Command Line
	Finding Line Numbers to Set Breakpoints
	Stopping Execution on an Error or Warning
	Locating an Error from the Error Message
	Using Warnings to Help Debug
	Making Code Execution Visible
	Debugging Scripts

	Variables
	Rules for Variable Names
	Making Sure Variable Names Are Valid
	Don’t Use Function Names for Variables
	Checking for Reserved Keywords
	Avoid Using i and j for Variables
	Avoid Overwriting Variables in Scripts
	Persistent Variables
	Protecting Persistent Variables
	Global Variables

	Strings
	Creating Strings with Concatenation
	Comparing Methods of Concatenation
	Store Arrays of Strings in a Cell Array
	Converting Between Strings and Cell Arrays
	Search and Replace Using Regular Expressions

	Evaluating Expressions
	Find Alternatives to Using eval
	Assigning to a Series of Variables
	Short-Circuit Logical Operators
	Changing the Counter Variable within a for Loop

	MATLAB Path
	Precedence Rules
	File Precedence
	Adding a Directory to the Search Path
	Handles to Functions Not on the Path
	Making Toolbox File Changes Visible to MATLAB
	Making Nontoolbox File Changes Visible to MATLAB
	Change Notification on Windows

	Program Control
	Using break, continue, and return
	Using switch Versus if
	MATLAB case Evaluates Strings
	Multiple Conditions in a case Statement
	Implicit Break in switch-case
	Variable Scope in a switch
	Catching Errors with try-catch
	Nested try-catch Blocks
	Forcing an Early Return from a Function

	Save and Load
	Saving Data from the Workspace
	Loading Data into the Workspace
	Viewing Variables in a MAT-File
	Appending to a MAT-File
	Save and Load on Startup or Quit
	Saving to an ASCII File

	Files and Filenames
	Naming M-files
	Naming Other Files
	Passing Filenames as Arguments
	Passing Filenames to ASCII Files
	Determining Filenames at Run-Time
	Returning the Size of a File

	Input/Output
	File I/O Function Overview
	Common I/O Functions
	Readable File Formats
	Using the Import Wizard
	Loading Mixed Format Data
	Reading Files with Different Formats
	Reading ASCII Data into a Cell Array
	Interactive Input into Your Program

	Starting MATLAB
	Getting MATLAB to Start Up Faster

	Operating System Compatibility
	Executing O/S Commands from MATLAB
	Searching Text with grep
	Constructing Paths and Filenames
	Finding the MATLAB Root Directory
	Temporary Directories and Filenames

	Demos
	Demos Available with MATLAB

	For More Information

	External Interfaces
	Finding the Documentation in Online Help
	Reference Documentation

	Index

