
1 OPERATING SYSTEMS LABORATORY

VI - Synchronization, Critical Section, In-

terProcessCommunications I

Examples:

• Compile and run the code.

• Analyze the code and output.

• You should compile with -lpthread whenever necessary.

1. Signal; code28.c

• Signals are mechanisms for communicating with and manipulating
processes.

• A signal is a special message sent to a process. Signals are asyn-
chronous; when a process receives a signal, it processes the signal
immediately, without finishing the current function or even the
current line of code.

• Each signal type is specified by its signal number, but in programs,
you usually refer to a signal by its name.

• How to terminate the program? Break with Ctrl+Z, you will get

[1]+ Stopped code28

then kill the stopped process with

kill %1

2. Signal Handling; - code29.c

• Even assigning a value to a global variable can be dangerous be-
cause the assignment may actually be carried out in two or more
machine instructions, and a second signal may occur between
them, leaving the variable in a corrupted state.

• If you use a global variable to flag a signal from a signal-handler
function, it should be of the special type sig atomic t.

• Assignments to variables of this type are performed in a single
instruction and therefore cannot be interrupted midway.

1

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code28.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code29.c


• This program uses a signal-handler function to count the number
of times that the program receives SIGUSR1, one of the signals
reserved for application use.

3. Semaphore; code34.c

• A common strategy to avoid race conditions is to use semaphores.

• The use of semaphores is important to prevent simultaneous ac-
cess to system resources by separate processes or separate threads
inside the same process.

• Three system calls to create, use, and release semaphores:

– semget - Returns an integer semaphore index that is assigned
by the kernel

– semop - Performs operations on the semaphore set

– semctl - Performs control operations on the semaphore set

• The program shows how to create a semaphore set and how to
access the elements of that set. Does the followings:

– Creates a unique key and creates a semaphore

– Checks to make sure that the semaphore is created OK

– Prints out the value of the semaphore at index 0 (should be
1)

– Sets the semaphore (decrements the value of semaphore at
index 0 to 0)

– Prints out the value of the semaphore at index 0 (should be
0)

– Unsets the semaphore (increments the value of semaphore at
index 0 back to 1)

– Prints out the value of the semaphore at index 0 (should be
1)

– Removes the semaphore

• Study the code.

• Execute several times and observe that how the output changes.

• Is there any possible race conditions? Explain.

4. Mutex; code32.c

• Several threads and shared data.

2

http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code34.c
http://siber.cankaya.edu.tr/OperatingSystems/cfiles/code32.c


• Mutex mechanism (pthread mutex lock) is used for concurrent ex-
ecuting.

• Execute code several times and observe that how the execution
order of the threads changes.

3


	OPERATING SYSTEMS LABORATORY VI - Synchronization, Critical Section, InterProcessCommunications I

