
Ceng 328 Operating System_ Lab4

Sed Statement

sed is basically a find and replace program. It reads text from standard input (e.g from a pipe) and writes the result to stdout (normally the screen).

The search pattern is a regular expression. This search pattern should not be confused with shell wildcard syntax.

To replace the string linuxfocus with LinuxFocus in a text file use:
cat text.file | sed 's/linuxfocus/LinuxFocus/' > newtext.file

This replaces the first occurance of the string linuxfocus in each line with LinuxFocus. If there are lines where linuxfocus appears several times and you want to replace all use:

cat text.file | sed 's/linuxfocus/LinuxFocus/g' > newtext.file

Cut Statement

Usage: cut [OPTION]... [FILE]...

Print selected parts of lines from each FILE to standard output.

 -b, --bytes=LIST output only these bytes

 -c, --characters=LIST output only these characters

 -d, --delimiter=DELIM use DELIM instead of TAB for field delimiter

 -f, --fields=LIST output only these fields; also print any line

 that contains no delimiter character, unless

 the -s option is specified

 -n with -b: don't split multibyte characters

 -s, --only-delimited do not print lines not containing delimiters

 --output-delimiter=STRING use STRING as the output delimiter

 the default is to use the input delimiter

 --help display this help and exit

 --version output version information and exit

With no FILE, or when FILE is -, read standard input.

Examples:

1) $cut –c 4-7 file2

2) $cat > courses

 ceng112;ceng114;ceng102;

 ceng218;ceng212

 ̂ D

 $cut –f2 –d ‘;’ courses

 ceng114

 ceng212

 $

3)

 a) # wc puts some space behind the output this is why we need sed:

 numofchar=`echo -n "Ceng328" | wc -c | sed 's/ //g' ̀

 # now cut out the last char

 rval=`echo -n "$1" | cut -b $numofchar̀

 b) numofcharminus1=`expr $numofchar "-" 1`

 # now cut all but the last char:

 rval=`echo -n "$1" | cut -b 0-${numofcharminus1}̀

Functions in Shell Script

functionname(){

 # inside the body $1 is the first argument given to the function

 # $2 the second ...

 body

}

You need to "declare" functions at the beginning of the script before you use them.

Example: Write Script to find out biggest number from given three numbers. Numbers are supplies as command line argument. Print error if sufficient arguments are not supplied.

help(){

 cat << HELP

 findBiggest -- find the biggest of the three numbers

 USAGE: findBiggest #1 #2 #3

 EXAMPLE: findBiggest 12 5 33

 HELP

 exit 0

}

we have less than 3 arguments. Print the help text:

if [$# -lt 3] ; then

 help

else

 max=$1

 for i in $2 $3

 if test $i –gt $max

 then

 max=$i

 fi

 echo “Biggest number is $max”

fi

Exercise1: Write a shell script that writes “I love operating system Lectures” into a file then ask user, the word that will be changed and the new word that will be replaced with the old one.

Ans:

echo –n “input file name:”; read inputfile

echo –n “output filename:”; read outputfile

echo “I love operating system lecture” > $inputfile

echo –n “Enter the word that you want to replace: “

read word1

echo –n “Enter the word that will be replaced with old one:“;

read word2

for I in ‘cat $inputfile’

do

 if test $i=$word1

 then

 echo –n $word2 >> $outputfile

 else

 echo –n $i >> $outputfile

 fi

 echo –n ‘’ >> $outputfile

done

echo –n “.” >> $outputfile

Exercise2: Write a shell script that renames multiple files.

Ans:

OLD="$1"

NEW="$2"

The shift command removes one argument from the list of

command line arguments.

shift

shift

$* contains now all the files:

for file in $*; do

 if [-f "$file"] ; then

 newfile=`echo "$file" | sed "s/${OLD}/${NEW}/g"̀

 if [-f "$newfile"]; then

 echo "ERROR: $newfile exists already"

 else

 echo "renaming $file to $newfile ..."

 mv "$file" "$newfile"

 fi

 fi

done

Question: Write a shell script that converts the binary numbers into its decimals equivalents.

