


Alternating Sequence of CPU And I/O Bursts
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Histogram of CPU-burst Times
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CPU (Short-term) Scheduler

B Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.
m CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.
3. Switches from waiting to ready.
4. Terminates.
B Scheduling under 1 and 4 is nonpreemptive
Process retains CPU until it releases it
Windows 3.1, MAC OS
m All other scheduling is preemptive.
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Issues with Preemptive Scheduling

B New mechanisms needed to ensure shared data is not in
an inconsistent state (partially updated)
m System calls may change important kernel parameters
What happens if process preempted
B Unix (most versions) wait for system call to complete or
i/o block to take place
m Also interrupts must be guarded from simultaneous use
Interrupts disabled at entry, reenabled at exit
B These are bad features for real time or multiprocessor
systems
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FCFES Scheduling (Cont.)

Suppose that the processes arrive in the order
P,,P;, P;.
B The Gantt chart for the schedule is:

P, Ps Py

0 5 6 30

Waiting time for P; =6;P,=0.P;=3

Average waiting time: (6 +0 + 3)/3=3

Much better than previous case.

Convoy effect short process behind long process
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- Shortest-Job-First (SJR) Scheduling

B Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

B Two schemes:

nonpreemptive — once CPU given to the process it cannot
be preempted until completes its CPU burst.
preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

B SJF is optimal — gives minimum average waiting time for

a given set of processes.
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- Determining Length of Next CPU Burst

B Can only estimate the length.

® Can be done by using the length of previous CPU bursts,
using exponential averaging.

1. t, =actuallenghtof n""CPUburst

2. t,,, =predictedvalue for the next CPUburst
3.a,0£a £l

4. Define:

t.,=a 1:n"-(l' a)n-
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Prediction of the Length of the
Next CPU Burst

12
yd ~
T 10 /
6 /
t 6 /
1 /
"
4
2
time —p
CPU burst (t) 6 4 6 4 13 13 13
"guess" () 10 8 6 6 5 9 1 12
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Round Robin (RR)

B Performance
g large P FIFO

Operating System Concepts

6.19

B Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

m [f there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time
in chunks of at most g time units at once. No process
waits more than (n-1)g time units.

g small b g must be large with respect to context switch,
otherwise overhead is too high.
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‘Example of RR with Time Quantum =20

Process Burst Time
B 53
P, 17
P 68
P 24
B The Gantt chart is:
P, P, [Py | Py | P | Ps| Py PPy | P

0 20 37 57

response.
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77 97 117 121 134 154 162

6.20

m Typically, higher average turnaround than SJF, but better
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Time Quantum and Context Switch Time

pracass lime = 10 quantum context
switches
‘ ‘ 12 0
a 10
| | 6 |
1] 5 10
1] 1 2 ] 4 5 & T a8 9 10
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Turnaround Time Varies With The Time Quantum
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Multilevel Queue

B Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

B Each queue has its own scheduling algorithm,
foreground — RR
background — FCFS

B Scheduling must be done between the queues.

Fixed priority scheduling; (i.e., serve all from foreground
then from background). Possibility of starvation.

~ Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR
20% to background in FCFS
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Multilevel Queue Scheduling

highest priority

system processes el

interactive editing processes

batch processes I:

1]

y

student processes | »

lowest priority
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Multilevel Feedback Queue

B A process can move between the various queues; aging
can be implemented this way.
m Multilevel-feedback-queue scheduler defined by the
following parameters:
number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter
when that process needs service
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- Example of Multilevel Feedback Queue

B Three queues:
Q, — time quantum 8 milliseconds
Q, — time quantum 16 milliseconds
Q,- FCFS

® Scheduling

A new job enters queue Q, which is served FCFS. When it
gains CPU, job receives 8 milliseconds. If it does not finish
in 8 milliseconds, job is moved to queue Q;.

At Q, job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted
and moved to queue Q,.
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Multilevel Feedback Queues

H

quantum = 8

quantum = 16 ?Z
FCFS ?
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Multiple-Processor Scheduling

B CPU scheduling more complex when multiple CPUs are
available.
B Assume:
Homogeneous processors within a multiprocessor.
Uniform memory access (UMA)
B Load sharing - use common ready queue
Symmetric — each processor examines ready queue

B Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing protection.
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Real-Time Scheduling

B Hard real-time systems — required to complete a critical
task within a guaranteed amount of time.
Need special purpose software on dedicated hardware
No secondary storage or virtual memory
m Soft real-time computing — requires that critical processes
receive priority over less fortunate ones.
Need priority scheduling
Need small dispatch latency —difficult
Unix: context switch only when systems calls complete or

1/O blocks

Can insert preemption points in system calls
Or make kernel preemptible
Read more on this.
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Dispatch Latency
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Conflict phase: preempt kernel processes/ release low priority
process resources needed by higher priority processes
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Algorithm Evaluation

B Deterministic modeling — takes a particular predetermined
workload and defines the performance of each algorithm
for that workload.

B Queueing models — obtain probability distribution from
measured CPU and I/O bursts. Treat computer as
network of queues of waiting processes with known
arrival and service rates

B Simulations — represent components by software data
structures.

Use random number generator to generate data.
Use trace tapes

B |mplementation
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-Evaluation of CPU Schedulers by Simulation

performance
simulatian - statistics
for FCFS
FCFS
CPU 10
1o 213
aciual CPU 12 performance
process = 110 112  re— simulation wjp  statistics
axgcufion CPU 2 for SJF
Vo 147 sIF
CPU 173
trace tape
parformance
simulation me  statistics

for RR(Q = 14)
RR(O=14)
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Solaris 2 Scheduling

class-
global scheduling specific scheduler run
priority order priorities classes queue
highest first real time kernel
o__. threads of real-
time LWPs
Q=
system kernel
Py service
o- threads
o
interactive and kernel
time sharing o__._. threads of
interactive and
time-sharing
LWPs
Py -
@ y
I l
last
—

lowest 3%!
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Windows 2000 Priorities

real- . above below idle

time high normal normal normal priority
time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1
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