
1

Silberschatz, Galvin and Gagne 20025.1Operating System Concepts

Chapter 5: Threads

n Overview
n Multithreading Models

n Threading Issues
n Pthreads
n Solaris 2 Threads
n Windows 2000 Threads
n Linux Threads
n Java Threads

2

Silberschatz, Galvin and Gagne 20025.2Operating System Concepts

Single and Multithreaded Processes

Threads are lightweight processes – have own thread ID, PC, registers, stack

3

Silberschatz, Galvin and Gagne 20025.3Operating System Concepts

Benefits

n Responsiveness
F Can run even if one thread blocked or busy
F Web browser example – one thread per client

n Resource Sharing
n Economy

F Creating and context switching threads is low cost
F Solaris 2 : creating 30x, context switch 5x slower for procs

n Utilization of MP Architectures
F Run each thread on different CPU

4

Silberschatz, Galvin and Gagne 20025.4Operating System Concepts

User Threads

n Thread management done by user-level threads library
n No need for kernel intervention

n Drawback : all may run in single process. If one blocks, all
block.

n Examples
- POSIX Pthreads
- Mach C-threads
- Solaris threads

5

Silberschatz, Galvin and Gagne 20025.5Operating System Concepts

Kernel Threads

n Supported by the Kernel
n Generally slower to create than user threads

n If one blocks another in the application can be run
n Can be scheduled on different CPUs in multiprocessor
n Examples

- Windows 95/98/NT/2000
- Solaris
- Tru64 UNIX
- BeOS
- Linux

6

Silberschatz, Galvin and Gagne 20025.6Operating System Concepts

Multithreading Models

n Many-to-One

n One-to-One

n Many-to-Many

7

Silberschatz, Galvin and Gagne 20025.7Operating System Concepts

Many-to-One

n Many user-level threads mapped to single kernel thread.

n Used on systems that do not support kernel threads.

8

Silberschatz, Galvin and Gagne 20025.8Operating System Concepts

Many-to-One Model

9

Silberschatz, Galvin and Gagne 20025.9Operating System Concepts

One-to-One

n Each user-level thread maps to kernel thread.

n Examples
- Windows 95/98/NT/2000

- OS/2

10

Silberschatz, Galvin and Gagne 20025.10Operating System Concepts

One-to-one Model

11

Silberschatz, Galvin and Gagne 20025.11Operating System Concepts

Many-to-Many Model

n Allows many user level threads to be mapped to many
kernel threads.

n Allows the operating system to create a sufficient number
of kernel threads.

n Solaris 2
n IRIX
n HP-UX

n Tru64 Unix
n Windows NT/2000 with the ThreadFiber package

12

Silberschatz, Galvin and Gagne 20025.12Operating System Concepts

Many-to-Many Model

13

Silberschatz, Galvin and Gagne 20025.13Operating System Concepts

Threading Issues

n Semantics of fork() and exec() system calls
F Duplicate all threads or not
F Exec replaces all threads
F If call exec next no need to duplicate all threads.

n Thread cancellation.
F Asynchronous or deferred (target thread checks periodically)
F Resource reclamation problem

n Thread pools
F Create pool of threads to do work
F When server receives request awakens thread. Returns on finish.
F Advantages:

4 Faster than creating threads
4 Limits number of threads in server and hence load on CPU

n Thread specific data

14

Silberschatz, Galvin and Gagne 20025.14Operating System Concepts

Threading Issues

n Signal handling
F Signals can be synchronous (e.g. illegal memory access) or

asynchronous (e.g. i/o completion, ^C)
F Handled by default handler or user-defined handler
F Where should the thread be delivered?

4 To thread to which applies (synchronous signals)
4 To all threads in process
4 To certain threads in process
4 Assign a specific thread to receive all signals (Solaris 2)

15

Silberschatz, Galvin and Gagne 20025.15Operating System Concepts

Pthreads

n a POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization.

n API specifies behavior of the thread library,
implementation is up to developer of the library.

n Common in UNIX operating systems.

16

Silberschatz, Galvin and Gagne 20025.16Operating System Concepts

Pthreads example
#include <pthread.h>
#include <stdio.h>
int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* the thread */
main(int argc, char *argv[])
{
pthread_t tid; /* the thread identifier */
pthread_attr_t attr; /* set of attributes for the thread */
if (argc != 2) {

fprintf(stderr,"usage: a.out <integer value>\n");
exit();

}
if (atoi(argv[1]) < 0) {

fprintf(stderr,"Argument %d must be non-negative\n",atoi(argv[1]));
exit();

}
pthread_attr_init(&attr); /* get the default attributes */
pthread_create(&tid,&attr,runner,argv[1]); /* create the thread */
pthread_join(tid,NULL); /* now wait for the thread to exit */
printf("sum = %d\n",sum);
}

17

Silberschatz, Galvin and Gagne 20025.17Operating System Concepts

Pthreads example (ctd.)

/**
* The thread will begin control in this function
*/
void *runner(void *param)
{
int upper = atoi(param);
int i;
sum = 0;

if (upper > 0) {
for (i = 1; i <= upper; i++)

sum += i;
}
pthread_exit(0);

}

18

Silberschatz, Galvin and Gagne 20025.18Operating System Concepts

Solaris 2 Threads

n User and Kernel level threads, Light weight processes (LWP)
n Process : one or more LWPs
n Each LWP has kernel thread
n One LWP is needed for each user thread that may block
n If kernel thread blocks, LWP, and user level thread also block
n If all LWPs in process block, but there are user level threads

which could run, kernel creates new LWP
n Kernel “ages” LWPs and deletes unused ones after +-5 min
n Kernel threads may be bound to particular CPU

19

Silberschatz, Galvin and Gagne 20025.19Operating System Concepts

Solaris 2 Threads

20

Silberschatz, Galvin and Gagne 20025.20Operating System Concepts

Solaris Process

21

Silberschatz, Galvin and Gagne 20025.21Operating System Concepts

Windows 2000 Threads

n Implements the one-to-one mapping.
n Each thread contains

- a thread id
- register set
- separate user and kernel stacks
- private data storage area

22

Silberschatz, Galvin and Gagne 20025.22Operating System Concepts

Linux Threads

n Linux refers to them as tasks rather than threads.
n Thread creation is done through clone() system call.

n Clone() allows a child task to share the address space of
the parent task (process)

n The amount of parent process shared is determined by a
set of flags passed as parameter in clone() call
F None set, no sharing clone() is fork()
F All set, everything shared

23

Silberschatz, Galvin and Gagne 20025.23Operating System Concepts

Java Threads

n Java threads may be created by:

F Extending Thread class
F Implementing the Runnable interface

n Java threads are managed by the JVM.

24

Silberschatz, Galvin and Gagne 20025.24Operating System Concepts

Java Thread States

25

Silberschatz, Galvin and Gagne 20025.25Operating System Concepts

Java Thread Example

public class Summation extends Thread
{

public Summation(int n) {
upper = n;

}
public void run() {

int sum = 0;
if (upper > 0) {

for (int i = 1; i <= upper; i++)
sum += i;

}
System.out.println("The summation of " + upper + " is " + sum);

}

private int upper;
}

26

Silberschatz, Galvin and Gagne 20025.26Operating System Concepts

Java Thread Example (ctd.)

public class ThreadTester
{

public static void main(String[] args) {
if (args.length > 0) {

if (Integer.parseInt(args[0]) < 0)
System.err.println(args[0] + " must be non-negative.");

else {
Summation thrd = new Summation(Integer.parseInt(args[0]));
thrd.start();

}
}
else

System.err.println("Usage: Summation <integer value>");
}

}

