














The Critical-Section Problem

B n processes all competing to use some shared data

B Each process has a code segment, called critical section,
in which the shared data is accessed.

B Problem — ensure that when one process is executing in
its critical section, no other process is allowed to execute
in its critical section.

-
b
[

M)
' ; ; l&‘g -
Operating System Concepts 7.11 Silberschatz, Galvin and Gagne O 2002 Bt

Solution to Critical-Section Problem

1. Mutual Exclusion. If process P;is executing in its critical
section, then no other processes can be executing in their
critical sections.

2. Progress. If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the processes that
will enter the critical section next cannot be postponed
indefinitely.

3. Bounded Waiting. A bound must exist on the number of
times that other processes are allowed to enter their
critical sections after a process has made a request to
enter its critical section and before that request is
granted.

® Assume that each process executes at a nonzero speed
® No assumption concerning relative speed of the n
processes.

e
A
ll-
w )
. . , s BT
Operating System Concepts 7.12 Silberschatz, Galvin and Gagne O 2002 0













10



11



12



13



Semaphores — Operation & Values

B Semaphores (simplified slightly):

wait (S): signal (s):
s=s-1 s=s+1
if (s<0) if (s£0)
block the thread wake up & run one of
that called wait(s) the waiting threads
otherwise

continue into CS
B Semaphore values:

Positive semaphore = number of (additional) threads that
can be allowed into the critical section

Negative semaphore = number of threads blocked (note —
there’s also one in CS)

Binary semaphore has an initial value of 1

Counting semaphore has an initial value greater than 1

-
b
[

i
) : ) é‘-% e
Operating System Concepts 7.27 Silberschatz, Galvin and Gagne O 2002 Bt

Semaphore Variants

B Semaphores from last time (simplified):

wait (S): signal (s):
s=s-1 s=s+1
if (s < 0) if (s £0)
block the thread wake up one of
that called wait(s) the waiting threads
otherwise

continue into CS
m "Classical" version of semaphores:

wait (S): signal (s):

if (s£0) if (a thread is waiting)
block the thread wake up one of
that called wait(s) the waiting threads

s=s-1 s=s+1

continue into CS
B Do both work? What is the difference??

e
A
ll-
w )
. . , P
Operating System Concepts 7.28 Silberschatz, Galvin and Gagne O 2002 0 1

14



Semaphore Implementation 1

B Implementing semaphores using busy-waiting:

wait (s): signal (s):

while (s£ 0) s=s+1
do nothing;

s=s-1

B Evaluation:

" Doesn’t support queue of blocked threads waiting on the
semaphore

! Waiting threads wastes time busy-waiting (doing nothing
useful, wasting CPU time)

“"IThe code inside wait(s ) andsignal(s ) is a critical section
also, and it's not protected

-
b
[

i
) : ) é‘-% e
Operating System Concepts 7.29 Silberschatz, Galvin and Gagne O 2002 Bt

Semaphore Implementation 2

B |Implementing semaphores (not fully) by disabling interrupts:

wait (s): signal (s):
disable interrupts disable interrupts
while (s£ 0) s=s+1

do nothing;
s=s-1
enable interrupts enable interrupts

® Evaluation:

““'Doesn’t support queue of blocked threads waiting on the
semaphore

““IWaiting threads wastes time busy-waiting (doing nothing useful,
wasting CPU time)

““IDoesn’t work on multiprocessors

 Can interfere with timer, which might be needed by other
applications

“7OK for OS to do this, but users aren’t allowed to disable

interrupts! (Why not?)

e
A
ll-
w )
. . , P
Operating System Concepts 7.30 Silberschatz, Galvin and Gagne O 2002 0 1

15



16



17



18



19



20



21



22



23



24



25



26



27



28



29



shared data

AN

T

Y

operations

initialization
code

entry queue

30



entry queue

shared data

queues associated with
X, y conditions

operations

initialization
code

31



32



33



34



Solaris 2 Synchronization

B Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing.

Uses adaptive mutexes for efficiency when protecting
data from short code segments.

Uses condition variables and readers-writers locks when
longer sections of code need access to data.

Uses turnstiles to order the list of threads waiting to
acquire either an adaptive mutex or reader-writer lock.

-
b
[

i
) : ) é‘-% e
Operating System Concepts 7.69 Silberschatz, Galvin and Gagne O 2002 Bt

K Windows 2000 Synchronization

B Uses interrupt masks to protect access to global
resources on uniprocessor systems.

Uses spinlocks on multiprocessor systems.

Also provides dispatcher objects which may act as wither
mutexes and semaphores.

Dispatcher objects may also provide events. An event
acts much like a condition variable.

e
A
ll-
w )
. . , P
Operating System Concepts 7.70 Silberschatz, Galvin and Gagne O 2002 0 1

35



