

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

B Mutual exclusion: only one process at a time can use a
resource.

B Hold and wait: a process holding at least one resource
IS waiting to acquire additional resources held by other
processes.

B No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task.

m Circular wait: there exists a set {P,, P,, ..., Py} of waiting
processes such that P,is waiting for a resource that is
held by P,, P, is waiting for a resource that is held by

P,, ..., P,_; is waiting for a resource that is held by
P., and P, is waiting for a resource that is held by P,,.

Operating System Concepts 8.5 Silberschatz, Galvin and Gagne 020021}9.« 3_,
~

10

11

12

13

Deadlock Prevention (Cont.)

®m No Preemption —

-~ If a process that is holding some resources requests
another resource that cannot be immediately allocated to it,
then all resources currently being held are released.

- Preempted resources are added to the list of resources for
which the process is waiting.

- Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

m Circular Wait — impose a total ordering of all resource
types, and require that each process requests resources
in an increasing order of enumeration.

Operating System Concepts 8.14 Silberschatz, Galvin and Gagne 020021}9.« 3_,
~

14

Deadlock Avoidance

Requires that the system has some additional a priori information
available.

m Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.

B The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition.

B Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

Operating System Concepts 8.15 Silberschatz, Galvin and Gagne 020021}9.« 3_,
~

15

16

17

deadlock

unsafe

18

19

20

22

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

B Available: Vector of length m. If available [j] = k, there are
k instances of resource type R, available.

B Max: n x m matrix. If Max [i,j] = k, then process P, may
request at most k instances of resource type R;.

B Allocation: n x m matrix. If Allocation[i,j] = k then P; is
currently allocated k instances of R;

B Need: n x m matrix. If Need[i,j] = k, then P, may need k
more instances of R; to complete its task.

Need [i,j] = Max]i,j] — Allocation [i,j].

Operating System Concepts 8.23 Silberschatz, Galvin and Gagne OZOOZLH&
~ !

23

24

Resource-Request Algorithm for Process P,

Request = request vector for process P;. If Request;[j] = k
then process P; wants k instances of resource type R;

1. If Request; £ Need, go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Request, £ Available, go to step 3. Otherwise P, must
wait, since resources are not available.

3. Pretend to allocate requested resources to P; by modifying
the state as follows:

Available = Available - Request;;
Allocation; = Allocation; + Request;
Need, = Need; — Request,.

* If safe b the resources are allocated to P.

* If unsafe b P, must wait, and the old resource-allocation
state is restored

Operating System Concepts 8.25 Silberschatz, Galvin and Gagne 020021}9.« 3_,
~

25

26

27

28

29

30

(a)

31

32

33

34

35

36

37

38

39

40

