

Alternating Sequence of CPU And I/O Bursts

Operating System Concepts

load store
add store
read from file

wail for 'O

. A . R W W N —

store increment

index
write to file

wair for I'0

load store
add store
read from file

wait for 'O

CPU burst

10 burst

CPU burst

110 burst

CPU burst

170 burst

fre
o
w

Silberschatz, Galvin and Gagne O 2002

Histogram of CPU-burst Times

frequency

160

140

120

100

80

60

40

20

\
\
\
\
\

\

16

burst duration (milliseconds)

24 32 40

Operating System Concepts

Silberschatz, Galvin and Gagne O 2002

-

CPU (Short-term) Scheduler

B Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.
m CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.
3. Switches from waiting to ready.
4. Terminates.
B Scheduling under 1 and 4 is nonpreemptive
Process retains CPU until it releases it
Windows 3.1, MAC OS
m All other scheduling is preemptive.

-
b
[

i
) :) é‘-% e
Operating System Concepts 6.5 Silberschatz, Galvin and Gagne O 2002 Bt

Issues with Preemptive Scheduling

B New mechanisms needed to ensure shared data is not in
an inconsistent state (partially updated)
m System calls may change important kernel parameters
What happens if process preempted
B Unix (most versions) wait for system call to complete or
i/o block to take place
m Also interrupts must be guarded from simultaneous use
Interrupts disabled at entry, reenabled at exit
B These are bad features for real time or multiprocessor
systems

e
A
ll-
w)
. . , P
Operating System Concepts 6.6 Silberschatz, Galvin and Gagne O 2002 0 1

FCFES Scheduling (Cont.)

Suppose that the processes arrive in the order
P,,P;, P;.
B The Gantt chart for the schedule is:

P, Ps Py

0 5 6 30

Waiting time for P; =6;P,=0.P;=3

Average waiting time: (6 +0 + 3)/3=3

Much better than previous case.

Convoy effect short process behind long process

-
b
[

i
) :) é‘-% e
Operating System Concepts 6.11 Silberschatz, Galvin and Gagne O 2002 Bt

- Shortest-Job-First (SJR) Scheduling

B Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

B Two schemes:

nonpreemptive — once CPU given to the process it cannot
be preempted until completes its CPU burst.
preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

B SJF is optimal — gives minimum average waiting time for

a given set of processes.

e
A
ll-
w)
. . , P
Operating System Concepts 6.12 Silberschatz, Galvin and Gagne O 2002 0 1

ARG

- Determining Length of Next CPU Burst

B Can only estimate the length.

® Can be done by using the length of previous CPU bursts,
using exponential averaging.

1. t, =actuallenghtof n""CPUburst

2. t,,, =predictedvalue for the next CPUburst
3.a,0£a £l

4. Define:

t.,=a 1:n"-(l' a)n-

-
b
[

i
; ') &‘-% -
Operating System Concepts 6.15 Silberschatz, Galvin and Gagne O 2002 Bt y

Prediction of the Length of the
Next CPU Burst

12
yd ~
T 10 /
6 /
t 6 /
1 /
"
4
2
time —p
CPU burst (t) 6 4 6 4 13 13 13
"guess" () 10 8 6 6 5 9 1 12

e
A
ll-
o
. . , P
Operating System Concepts 6.16 Silberschatz, Galvin and Gagne O 2002 0 1

Round Robin (RR)

B Performance
g large P FIFO

Operating System Concepts

6.19

B Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

m [f there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time
in chunks of at most g time units at once. No process
waits more than (n-1)g time units.

g small b g must be large with respect to context switch,
otherwise overhead is too high.

gb

)
I
Silberschatz, Galvin and Gagne O 2002]

‘Example of RR with Time Quantum =20

Process Burst Time
B 53
P, 17
P 68
P 24
B The Gantt chart is:
P, P, [Py | Py | P | Ps| Py PPy | P

0 20 37 57

response.

Operating System Concepts

77 97 117 121 134 154 162

6.20

m Typically, higher average turnaround than SJF, but better

@
b
lr
w)
. , SN,
Silberschatz, Galvin and Gagne 02002 &= % 1

10

Time Quantum and Context Switch Time

pracass lime = 10 quantum context
switches
‘ ‘ 12 0
a 10
| | 6 |
1] 5 10
1] 1 2] 4 5 & T a8 9 10

Operating System Concepts 6.21 Silberschatz, Galvin and Gagne O 2002

Turnaround Time Varies With The Time Quantum

process time
125
/\ P, 6
12.0 Py 3
\ S
B 4
ué 1.5 \
el
é 11.0 \V4
g 105
=
S 100
9]
>
© 95
9.0
1 2 3 4 5 6 7
time quantum

Operating System Concepts 6.22 Silberschatz, Galvin and Gagne O 2002

-

Multilevel Queue

B Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

B Each queue has its own scheduling algorithm,
foreground — RR
background — FCFS

B Scheduling must be done between the queues.

Fixed priority scheduling; (i.e., serve all from foreground
then from background). Possibility of starvation.

~ Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR
20% to background in FCFS

Operating System Concepts 6.23 Silberschatz, Galvin and Gagne O 2002

Multilevel Queue Scheduling

highest priority

system processes el

interactive editing processes

batch processes I:

1]

y

student processes | »

lowest priority

Operating System Concepts 6.24 Silberschatz, Galvin and Gagne O 2002

-

12

Multilevel Feedback Queue

B A process can move between the various queues; aging
can be implemented this way.
m Multilevel-feedback-queue scheduler defined by the
following parameters:
number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter
when that process needs service

-
b
[

i
) :) é‘-% e
Operating System Concepts 6.25 Silberschatz, Galvin and Gagne O 2002 Bt

- Example of Multilevel Feedback Queue

B Three queues:
Q, — time quantum 8 milliseconds
Q, — time quantum 16 milliseconds
Q,- FCFS

® Scheduling

A new job enters queue Q, which is served FCFS. When it
gains CPU, job receives 8 milliseconds. If it does not finish
in 8 milliseconds, job is moved to queue Q;.

At Q, job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted
and moved to queue Q,.

e
A
ll-
w)
. . , P
Operating System Concepts 6.26 Silberschatz, Galvin and Gagne O 2002 0 1

Multilevel Feedback Queues

H

quantum = 8

quantum = 16 ?Z
FCFS ?
b
1

i
; ') &‘-% -
Operating System Concepts 6.27 Silberschatz, Galvin and Gagne O 2002 Bt

\ 4

\ 4

A 4

-

Multiple-Processor Scheduling

B CPU scheduling more complex when multiple CPUs are
available.
B Assume:
Homogeneous processors within a multiprocessor.
Uniform memory access (UMA)
B Load sharing - use common ready queue
Symmetric — each processor examines ready queue

B Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing protection.

e
A
ll-
o
. . , P
Operating System Concepts 6.28 Silberschatz, Galvin and Gagne O 2002 0 1

14

Real-Time Scheduling

B Hard real-time systems — required to complete a critical
task within a guaranteed amount of time.
Need special purpose software on dedicated hardware
No secondary storage or virtual memory
m Soft real-time computing — requires that critical processes
receive priority over less fortunate ones.
Need priority scheduling
Need small dispatch latency —difficult
Unix: context switch only when systems calls complete or

1/O blocks

Can insert preemption points in system calls
Or make kernel preemptible
Read more on this.

Operating System Concepts

6.29

-

Silberschatz, Galvin and Gagne O 2002

b
[

P

Dispatch Latency

avent

intarrupt
processing

process made
available

w— confiicts

time

——— dispatch latancy ——————m

dispatch —m

f—————————————————— rasponse inerval —————————————

response fo event

real-time
process
exacution

Operating System Concepts

6.30

Conflict phase: preempt kernel processes/ release low priority
process resources needed by higher priority processes

Silberschatz, Galvin and Gagne O 2002

P

15

Algorithm Evaluation

B Deterministic modeling — takes a particular predetermined
workload and defines the performance of each algorithm
for that workload.

B Queueing models — obtain probability distribution from
measured CPU and I/O bursts. Treat computer as
network of queues of waiting processes with known
arrival and service rates

B Simulations — represent components by software data
structures.

Use random number generator to generate data.
Use trace tapes

B |mplementation

-
b
[

i
; ') &‘-% -
Operating System Concepts 6.31 Silberschatz, Galvin and Gagne O 2002 Bt

-Evaluation of CPU Schedulers by Simulation

performance
simulatian - statistics
for FCFS
FCFS
CPU 10
1o 213
aciual CPU 12 performance
process = 110 112 re— simulation wjp statistics
axgcufion CPU 2 for SJF
Vo 147 sIF
CPU 173
trace tape
parformance
simulation me statistics

for RR(Q = 14)
RR(O=14)

e
A
ll-
o
. . , P
Operating System Concepts 6.32 Silberschatz, Galvin and Gagne O 2002 0 1

16

Solaris 2 Scheduling

class-
global scheduling specific scheduler run
priority order priorities classes queue
highest first real time kernel
o__. threads of real-
time LWPs
Q=
system kernel
Py service
o- threads
o
interactive and kernel
time sharing o__._. threads of
interactive and
time-sharing
LWPs
Py -
@ y
I l
last
—

lowest 3%!
i
Operating System Concepts 6.33 Silberschatz, Galvin and Gagne O 2002 _‘ RPN

Windows 2000 Priorities

real- . above below idle

time high normal normal normal priority
time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1

N

A
ll-
w)
. . , s BT
Operating System Concepts 6.34 Silberschatz, Galvin and Gagne O 2002 0

