

admitted interrupt terminated

scheduler dispatch
1/0 or event completion 1/0 or event wait

x Process Control Block (PCB)

pointer

process
state

process number

program counter

registers

memory limits

list of open files

Operating System Concepts

4.6

Silberschatz, Galvin and Gagne OZOOZL‘}’?.
~

CPU Switch From Process to Process

process P, operating system process P,

executing R

interrupt or system call

h | save state into PCB, |

idle

| reload state from PCB, | 1
interrupt or system call

P T~

| save state into PCB, |

> idle executing

idle

reload state from PCB |

executing I‘¥ .
Silberschatz, Galvin and Gagne OZOOZEY?

Operating System Concepts 4.7

‘Ready Queue And Various I/O Device Queues

queue header PCB, PCB,

ready head > - T
queue tail N registers registers

mag head +—a

tape - =
unit 0 il —a

{nag head +—a

ape =
unif1 e — PCB, PCB,, PCB,

A 4
A 4

disk head 1
unit 0 tail

PCB

terminal head

unit 0 tail 11—

Operating System Concepts 4.9 Silberschatz, Galvin and Gagne 02002 ‘ "Y?,« Sj
~

Representation of Process Scheduling

ready queue

»{ CPU j

! §

BN EEEEN———
I/0 queue - I/O request
B
time slice
expired
B
child fork a
executes child
BN
interrupt wait for an
occurs interrupt

Operating System Concepts

4.10

Silberschatz, Galvin and Gagne OZOOZl;Y?,« 3_,
~

Addition of Medium Term Scheduling

swap in

partially executed) swap out
swapped-out processes N

Yy

ready queue

-

CPU » end||

I

I/O waiting

queues

Operating System Concepts

4.12

Silberschatz, Galvin and Gagne 02002 ";Y?.« 3_,
-

&rocesses Tree on a UNIX System

| |
pagedaemoﬂ swapper1 init 1

m
0 | |

Operating System Concepts 4.18 Silberschatz, Galvin and Gagne OZOOZLB&!!
-

Interprocess Communication (IPC)

Mechanism for processes to communicate and to
synchronize their actions.

Message system — processes communicate with each
other without resorting to shared variables.
IPC facility provides two operations:
- send(message) — message size fixed or variable
- receive(message)
If P and Q wish to communicate, they need to:
- establish a communication link between them
- exchange messages via send/receive
Implementation of communication link

physical (e.g., shared memory, hardware bus) considered
later

- logical (e.g., logical properties) now

Operating System Concepts 4.25 Silberschatz, Galvin and Gagne 020021}9.« 3_,
~

Mach

B Mach kernel support creation of tasks — similar to processes but
with multiple threads of control
B |PC, even system calls, is by messages using mailboxes called
ports
B When task created, so are Kernel and Notify mailboxes
-~ The kernel communicates via kernel mailbox
- Events are notified via Notify mailbox
B Three system calls used for message transfer
- Msg_send, msg_receive, msg_rpc
- Msg_rcp executes RPC by sending a message and waiting for
exactly one return message

B Task creating mailbox using port_allocate owns/receives from it

B Messages from same sender are queued in FIFO order, but no
other guarantees given

Operating System Concepts 4.33 Silberschatz, Galvin and Gagne 020021}9.« 3_,
~

Mach

B Message headers contain destination mailbox and mailbox for
replies
m If mailbox not full the sending thread continues (non-blocking)
m |f full the sender can
Wait until there is room
- Wait at most n millisecs
- Return immediately
- Cache the message is OS temporarily (one only)
Receivers can receive from mailbox or mailbox set
Similar options for receiver
Can check # of msgs in mailbox with port_status syscall

Mach avoids performance penalties associated with double
copy (to/from mailbox) by using virtual-memory techniques to
map message into receiver's memory

Operating System Concepts 4.34 Silberschatz, Galvin and Gagne 020021}9.« 3_,
~

Socket Communication

host X
(146.86.5.20)

socket
(146.86.5.2/1625) web server

(161.25.19.8)

socket
(161.25.19.8/80)

Operating System Concepts 4.39 Silberschatz, Galvin and Gagne 020021}9.« 3_,
~

Remote Procedure Calls

® Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

® Messages in RPC are addressed to daemons listening on ports
on aremote system
m Stubs - client-side proxy for the actual procedure on the server.

m The client-side stub locates the server and marshalls the
parameters.

m The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on the
server.

® To avoid data representation problems (bigendian/littleendian)
many systems use XDR (external data representation)

® RPC can be used to implement a distributed file system (DFS)

Operating System Concepts 4.43 Silberschatz, Galvin and Gagne 020021}9.« 3_,
~

client

user calls kernel
to send RPC
message to
procedure X

kernel sends.
to

From: client
To: server

to
find port number

kemnel places
port Pin user
RPC
message

kernel sends
RPC

kernel receives

reply, passes
it to user

Port:
Re: address
for RPC X

From: server
To: client
Port: kernel
Re:RPC X
Port: P

From: client
To: server
Port: port P
<contents>

From: RPC
Port: PTo:
client
Port: kernel
<output>

matchmaker

matchmaker
replies to client
with port P

daemon
processes
request and
processes send
output

Remote Method Invocation

B Remote Method Invocation (RMI) is a Java mechanism
similar to RPCs.

® RMI allows a Java program on one machine to invoke a
method on a remote object.

JVM
JVM
Java @ femote
program Methoy i”VOCation
® remote
object

Operating System Concepts 4.45 Silberschatz, Galvin and Gagne 020021}9.« 3_,
~

Marshalling Parameters

client

remote object

val = server.someMethod(A,B)

stub

boolean someMethod (Object x, Object y)
{

implementation of someMethod

t |

skeleton
F 3

}

A, B, someMethod

boolean return value

Operating System Concepts

4.46 Silberschatz, Galvin and Gagne 02002 "}9,« Sé
~

