
0.1 Operating System Design Issues

• Efficiency

– Most I/O devices slow compared to main memory (and the CPU)

∗ Use of multiprogramming allows for some processes to be
waiting on I/O while another process executes

∗ Often I/O still cannot keep up with processor speed

∗ Swapping may used to bring in additional Ready processes;
More I/O operations

• Optimise I/O efficiency especially Disk & Network I/O

• The quest for generality/uniformity:

– Ideally, handle all I/O devices in the same way; Both in the OS
and in user applications

– Problem:

∗ Diversity of I/O devices

∗ Especially, different access methods (random access versus
stream based) as well as vastly different data rates.

∗ Generality often compromises efficiency!

– Hide most of the details of device I/O in lower-level routines so
that processes and upper levels see devices in general terms such
as read, write, open, close, lock, unlock

0.2 I/O Software Layers (see Fig. 1)

0.2.1 Interrupt Handlers

• Interrupt handlers are best hidden

– Can execute at almost any time

– Raise (complex) concurrency issues in the kernel

– Have similar problems within applications if interrupts are prop-
agated to user-level code (via signals, upcalls).

– Generally, have driver starting an I/O operation block until inter-
rupt notifies of completion; Example dev read() waits on semaphore
that the interrupt handler signals

• Interrupt procedure does its task then unblocks driver that started it

1



Figure 1: Layers of the I/O Software System.

• Steps must be performed in software upon occurance of an interrupt

– Save registers not already saved by hardware interrupt mechanism

– Set up context (address space) for interrupt service procedure

∗ Typically, handler runs in the context of the currently running
process; No expensive context switch

– Set up stack for interrupt service procedure

∗ Handler usually runs on the kernel stack of current process

∗ Implies handler cannot block as the unlucky current process
will also be blocked ⇒ might cause deadlock

– Ack/Mask interrupt controller, reenable other interrupts

– Run interrupt service procedure

∗ Acknowledges interrupt at device level

∗ Figures out what caused the interrupt; Received a network
packet, disk read finished, UART transmit queue empty

∗ If needed, it signals blocked device driver

– In some cases, will have woken up a higher priority blocked thread

∗ Choose newly woken thread to schedule next.

∗ Set up MMU context for process to run next

– Load new/original process’ registers

– Start running the new process

2



Figure 2: Logical positioning of device drivers. In reality all communications
between drivers and device controllers goes over the bus.

0.2.2 Device Drivers (see Fig. 2)

• Drivers (originally) compiled into the kernel

– Device installers were technicians

– Number and types of devices rarely changed

• Nowadays they are dynamically loaded when needed

– Linux modules

– Typical users (device installers) can’t build kernels

– Number and types vary greatly; Even while OS is running (e.g
hot-plug USB devices)

• Drivers classified into similar catagories; Block devices and character
(stream of data) device

• OS defines a standard (internal) interface to the different classes of
devices

• Device drivers job

– translate request through the device-independent standard inter-
face (open, close, read, write) into appropriate sequence of com-
mands (register manipulations) for the particular hardware

3



Figure 3: (a) Without a standard driver interface (b) With a standard driver
interface.

– Initialise the hardware at boot time, and shut it down cleanly at
shutdown

• After issue the command to the device, the device either

– Completes immediately and the driver simply return to the caller

– Or, device must process the request and the driver usually blocks
waiting for an I/O complete interrupt.

• Drivers are reentrant as they can be called by another process while a
process is already blocked in the driver

– Reentrant: Code that can be executed by more than one thread
(or CPU) at the same time

– Manages concurrency using synch primitives

0.2.3 Device Independent I/O Software(see Fig. 3)

• There is commonality between drivers of similar classes

• Divide I/O software into device-dependent and device-independent I/O
software

• Device independent software includes

– Buffer or Buffer-cache management

– Managing access to dedicated devices

– Error reporting

• Driver ⇔ Kernel Interface; Major Issue is uniform interfaces to devices
and kernel

4



Figure 4: (a) Unbuffered input (b) Buffering in user space (c) Single buffering

in the kernel followed by copying to user space (d) Double buffering in the
kernel.

– Uniform device interface for kernel code

∗ Allows differents devices to be used the same way

· No need to rewrite filesystem to switch between SCSI,
IDE or RAM disk

∗ Allows internal changes to device driver with fear of breaking
kernel code

– Uniform kernel interface for device code

∗ Drivers use a defined interface to kernel services (e.g. kmalloc,
install IRQ handler, etc.)

∗ Allows kernel to evolve without breaking existing drivers

– Together both uniform interfaces avoid a lot of programming im-
plementing new interfaces

• No Buffering (see Fig. 4)

– Process must read/write a device a byte/word at a time

– Each individual system call adds significant overhead

– Process must what until each I/O is complete

∗ Blocking/interrupt/waking adds to overhead.

∗ Many short runs of a process is inefficient (poor CPU cache
temporal locality)

• User-level Buffering (see Fig. 4)

5



– Process specifies a memory buffer that incoming data is placed in
until it fills

∗ Filling can be done by interrupt service routine

∗ Only a single system call, and block/wakeup per data buffer;
Much more efficient

– Issues

∗ What happens if buffer is paged out to disk

· Could lose data while buffer is paged in

· Could lock buffer in memory (needed for DMA), however
many processes doing I/O reduce RAM available for pag-
ing. Can cause deadlock as RAM is limited resource

∗ Consider write case, When is buffer available for re-use?

· Either process must block until potential slow device drains
buffer

· or deal with asynchronous signals indicating buffer drained

• Single Buffer (see Fig. 4)

– Operating system assigns a buffer in main memory for an I/O
request

– Stream-oriented

∗ Used a line at time

∗ User input from a terminal is one line at a time with carriage
return signaling the end of the line

∗ Output to the terminal is one line at a time

– Block-oriented

∗ Input transfers made to buffer

∗ Block moved to user space when needed

∗ Another block is moved into the buffer; Read ahead

∗ User process can process one block of data while next block
is read in

∗ Swapping can occur since input is taking place in system
memory, not user memory

∗ Operating system keeps track of assignment of system buffers
to user processes

– What happens if kernel buffer is full, the user buffer is swapped
out, and more data is received??? We start to lose characters or
drop network packets

6



Figure 5: Networking may involve many copies.

• Double Buffer (see Fig. 4)

– Use two system buffers instead of one

– A process can transfer data to or from one buffer while the oper-
ating system empties or fills the other buffer

– May be insufficient for really bursty traffic

∗ Lots of application writes between long periods of computa-
tion

∗ Long periods of application computation while receiving data

∗ Might want to read-ahead more than a single block for disk

• Notice that buffering, double buffering are all Bounded-Buffer Producer-
Consumer Problems

• Buffering in Fast Networks (see Fig. 5)

– Copying reduces performance; Especially if copy costs are similar
to or greater than computation or transfer costs

– Super-fast networks put significant effort into achieving zero-copy

– Buffering also increases latency

0.2.4 User Level Software

• library calls

– users generally make library cals that then make the system calls

– example:

∗ int count=write(fd,buffer,n);

∗ write function is run at the user level

7



∗ simply takes parameters and makes a system call

– another example:

∗ printf("My age: %d \n",age);

∗ takes a string, reformats it, and then calls the write system
call

• spooling

– user program places data in a special directory

– a daemon (background program) takes data from directoryy and
outputs it to a device

∗ the user doesn’t have permission to directly access the device

∗ daemon runs as a privileged user

– prevents users from tying up resources for extented periods of
time; printer example

– OS never has to get involved in working with the I/O device

0.3 Disks (see Fig. 6)

• Management and ordering of disk access requests is important:

– Huge speed gap between memory and disk

– Disk throughput is extremely sensitive to

∗ Request order =⇒ Disk Scheduling

∗ Placement of data on the disk =⇒ file system design

– Disk scheduler must be aware of disk geometry

• Disk management issues

– Formatting

∗ Physical: divide the blank slate into sectors identified by
headers containing such information as sector number; sec-
tor interleaving

∗ Logical: marking bad blocks; partitioning (optional) and writ-
ing a blank directory on disk; installing file allocation tables,
and other relevant information (file system initialization)

– Reliability

∗ disk interleaving or striping

8



Figure 6: Disk Structure.

∗ RAIDs (Redundant Array of Inexpensive Disks): various lev-
els, e.g., level 0 is disk striping)

– Controller caches newer disks have on-disk caches (128KB 512KB)

0.3.1 Disk Hardware

• Disk drives addressed as large 1-dimensional arrays of logical blocks

(smallest transfer unit)

• 1-dimensional array of logical blocks mapped onto sectors of disk se-
quentially

– sector 0: 1st sector of 1st track on outermost cylinder

– mapping in order through that track, then rest of tracks in that
cylinder, then through rest of cylinders from outermost to inner-
most

• Outer tracks can store more sectors than inner without exceed max
information density (see Fig. 7 Left)

• Evolution of Disk Hardware (see Fig. 7 Right)

– Average seek time is approx 12 times better

– Rotation time is 24 times faster

– Transfer time is 1300 times faster

9



Figure 7: Left: (a) Physical geometry of a disk with two zones (b) A possible
virtual geometry for this disk, Right: Disk parameters for the original IBM
PC floppy disk and a Western Digital WD 18300 hard disk.

Figure 8: Disk Performance.

– Most of this gain is due to increase in density

– Represents a gradual engineering improvement

• Disk Performance (see Fig. 8)

– Disk is a moving device; must be positioned correctly for I/O

– Execution of a disk operation involves

∗ Wait time: the process waits to be granted device access

· Wait for device: time the request spend in wait queue

· Wait for channel: time until a shared I/O channel is avail-
able

∗ Access time: time hardware need to position the head

· Seek time: position the head at the desire track

· Rotational delay (latency): spin disk to the desired sector

∗ Transfer time: sectors to be read/written rotate below head

• Estimating Access Time;

– Seek Time T
s
: Moving the head to the required tgrack not linear

in the number of tracks to traverse: startup time, settling time.
Typical avearge seek time: a few milliseconds

10



– Rotational delay: rotational speed, r, of 5000 to 10000 rpm. At
10000 rpm, one revolution per 6ms⇒ average delay 3ms

– Transfer time: to transfer b bytes, with N bytes per track;

T =
b

rN

Total average access time:

T
a

= T
s
+

1

2r
+

b

rN

• A Timing Comparison

– T
s
= 2 ms, r = 10000rpm, 512B sect, 320 sect/track

– read a file with 2560 sectors (=1.3MB)

– file stored compactly (8 adjacent tracks): Read first track
Average seek 2ms
Rot. Delay 3ms
Read 320 sectors 6ms
Total 11ms
All sectors 11+7*9=74ms

– Sectors distributed randomly over the disk: Read any sector
Average seek 2ms
Rot. Delay 3ms
Read 1 sectors 0.01875ms
Total 5.01875ms
All 2560*5.01875=20,328ms

• Disk Performance is Entirely Dominated by Seek and Rotational Delays

– Will only get worse as capacity increases much faster than increase
in seek time and rotation speed (it has been easier to spin the disk
faster than improve seek time)

– Operating System should minimise mechanical delays as much as
possible

0.3.2 Disk Formatting

• A hard disk consist of a stack of aliminum, aaloy, or glass platters
5.25 inch or 3.5 inch in diameter. On each platter is deposited a thin
magnetizable metal oxide

11



Figure 9: Left: Low-level Disk Formatting; A disk sector, Right: An illus-
tration of cylinder skew.

• Before the disk can be used, each platter must recieve a low-level
format , or physical formatting ; divide disk into sectors that disk
controller can read and write (see Fig. 9 left)

• To use disk to hold files, OS needs to record own data structures on
disk

– partition disk into ≥ 1 groups of cylinders logical formatting or
“making a file system”

• Boot block to start up system

– bootstrap code in ROM

– bootstrap loader program minimum in ROM

• When reading sequential blocks, the seek time can result in missing
block 0 in the next track

• Disk can be formatted using a cylinder skew to avoid this (see Fig. 9
right)

• Issue: After reading one sector, the time it takes to transfer the data
to the OS and receive the next request results in missing reading the
next sector

• To overcome this, we can use interleaving (see Fig. 10)

• Modern drives overcome interleaving type issues by simply reading the
entire track (or part thereof) into the on-disk controller and caching it.

12



Figure 10: a) No interleaving b) Single interleaving c) Double interleaving.

Figure 11: From left to right: First-in, First-out (FIFO); Shortest Seek Time
First; Elevator Algorithm (SCAN); Modified Elevator (Circular SCAN, C-
SCAN)

0.3.3 Disk Arm Scheduling Algorithms (see Fig. 11)

• Time required to read or write a disk block determined by 3 factors;
Seek time, Rotational delay, Actual transfer time

• Seek time dominates

• For a single disk, there will be a number of I/O requests

• Processing them in random order leads to worst possible performance

• First-in, First-out (FIFO)

– Process requests as they come

– Fair (no starvation)

– Good for a few processes with clustered requests

– Deteriorates to random if there are many processes

• Shortest Seek Time First

13



– Select request that minimises the seek time

– Generally performs much better than FIFO

– May lead to starvation

• Elevator Algorithm (SCAN)

– Move head in one direction; Services requests in track order until
it reaches the last track, then reverses direction

– Better than FIFO, usually worse than SSTF

– Avoids starvation

– Makes poor use of sequential reads (on down-scan)

• Modified Elevator (Circular SCAN, C-SCAN)

– Like elevator, but reads sectors in only one direction; When reach-
ing last track, go back to first track non-stop

– Better locality on sequential reads

– Better use of read ahead cache on controller

– Reduces max delay to read a particular sector

• Selecting a Disk-Scheduling Algorithm

– SSTF common, natural appeal

– SCAN and C-SCAN perform better if heavy load on disk

– Performance depends on number and types of requests

– Requests for disk service influenced by file-allocation method

– Disk-scheduling should be separate module of OS, allowing re-
placement with different algorithm if necessary

0.3.4 Error–Handling

• Bad blocks are usually handled transparently by the on-disk controller
(see Fig. 12)

14



Figure 12: a) A disk track with a bad sector b) Substituting a spare for the
bad sector c) Shifting all the sectors to bypass the bad one.

15


	Operating System Design Issues
	I/O Software Layers (see Fig. 1)
	Interrupt Handlers
	Device Drivers (see Fig. 2)
	Device Independent I/O Software(see Fig. 3) 
	User Level Software

	Disks (see Fig. 6)
	Disk Hardware
	Disk Formatting
	Disk Arm Scheduling Algorithms (see Fig. 11)
	Error--Handling


