
0.0.1 Process States

• There are a number of states that can be attributed to a process: in-
deed, the operation of a multiprogramming system can be described
by a state transition diagram on the process states. The states of a
process include:

– New–a process being created but not yet included in the pool of
executable processes (resource acquisition).

– Ready–processes that are prepared to execute when given the
opportunity.

– Active, Running–the process that is currently being executed
by the CPU.

– Blocked, Waiting–a process that cannot execute until some
event occurs, such as completion of an I/O service or reception
of a signal.

– Stopped–a special case of blocked where the process is sus-
pended by the operator or the user.

– Exiting, Terminated–a process that is about to be removed
from the pool of executable processes (resource release), a process
has finished execution and is no longer a candidate for assignment
to a processor, and its remaining resources and attributes are to
be disassembled and returned to the operating system’s “free”
resource structures.

• As a process executes, it can change state due to either an external
influence, e.g. it is forced to give up the CPU so that another process
can take a turn, or an internal reason, e.g. it has finished or is waiting
for a service from the operating system

• A process therefore takes part in a finite state system, and we typically
show this in a state diagram which highlights the conditions necessary
to transit from one state to another

0.1 Threads

• Process: Owner of resources allocated for individual program execu-
tion, can encompass more than one thread of execution

1

Figure 1: Diagram of Process State

• Thread: Unit of execution (unit of dispatching) and a collection of
resources, with which the unit of execution is associated, characterize
the notion of a process. A thread is the abstraction of a unit of execu-
tion. It is also referred to as a light-weight process LWP that share the
same text (program code) and global data, but possess their own CPU
register values and their own dynamic (or stack based) variables

• First look at the advantages of threads;

– a program does not stall when one of its operations blocks.

– save contents of a page to disk while downloading other page (for
web server example)

– Simplification of programming model

• Single process, single thread MS-DOS, old MacOS

• Single process, multiple threads OS/161

• Multiple processes, single thread traditional Unix

• Multiple processes, multiple threads modern Unices (Solaris, Linux),
Windows2000

• As a basic unit of CPU utilization, a thread consists of an instruction
pointer (also referred to as the PC or instruction counter), CPU register
set and a stack. A thread shares its code and data, as well as system
resources and other OS related information, with its peer group (other
threads of the same process)

2

Figure 2: Single and Multithreaded Processes

• Threads versus processes;

– A thread operates in much the same way as a process:

∗ can be one of the several states.

∗ executes sequentially (within a process and shares the CPU).

∗ can issue system calls.

– Economy of Overheads – managing processes is considerably more
expensive than managing threads so LWPs are better.

– Responsiveness – less setup work means faster response to re-
quests, and multiple thread of execution mean there can be re-
sponse from some threads even if other threads are busy or blocked.

– Resource Sharing – Threads within a process share resources (in-
cluding the same memory address space) conveniently and effi-
ciently compared to separate processes

– Threads within a process are NOT independent and are NOT
protected against each other

– Multiprocessor Use – if multiple processors are available, a mul-
tithreaded application can have its threads run in parallel which
means better utilization (especially if there are few other processes
present so that, without a multithreaded application, some CPUs
would be idle)

• A process utilizing multithreading is a process with multiple points of
execution–up to now, we have assumed that each process has only one
point of execution

3

Figure 3: Threads and Processes

Figure 4: A word processor with three threads, a multithreaded web server

• similarity between an operating system supporting multiple processes
and a process supporting multiple threads

• Figure 2 shows a traditional (or heavyweight) process, on the left, and
3 LWPs are drawn on the right in a way to emphasize their common
text and global data (i.e. data and heap)

• In practice, an application such as a web server that can have consid-
erable variations in the rate of requests can create additional threads
in response to serving load, yet minimize process creation load on the
host

• Less setup improves responsiveness, and shared text means more effi-
cient memory use

4

0.1.1 The Thread Model

• Many-to-One

– Many user-level threads mapped to single kernel thread.

– Thread management is done in user space but the whole process
blocks if any one user thread blocks.

– Used on systems that do not support kernel threads.

• One-to-One

– Each user-level thread maps to kernel thread.

– As thread management is done in kernel space, a blocked thread
does not prevent other threads from running and multiprocessor
utilization is efficient.

– Examples, Windows 95/98/NT/2000, OS/2

• Many-to-Many

– Allows many user level threads to be mapped to many kernel
threads.

– The number of kernel threads provided might be specified accord-
ing to the application and also the number of processors on a
particular host.

– Allows the operating system to create a sufficient number of kernel
threads.

– Solaris 2, DEC/compaq (Thu64), HP (HP-UX), and Silicon Graph-
ics (IRIX), Windows NT/2000 with the ThreadFiber package

0.1.2 Implementing Threads in User Space

• Thread management done by user-level threads library

• a thread library is used for management with no support from (or
knowledge by) the kernel. If the kernel is single threaded, and one of
the user threads blocks, then the user’s process is also blocked which
means that the remaining user threads are also blocked. Available for
many OSes

• While user threads usually emphasize their lower management load
compared to kernel threads, one must consider this in relation to their
lower functionality

5

Figure 5: Thread Models; Many-to-One, One-to-One, Many-to-Many

• Examples;

– One quite common library is pthread – the POSIX (POSIX is an
IEEE standard for a portable operating system interface based on
UNIX) thread functions.

– Mach C-threads.

– The Sun Microsystems Solaris 2 OS provides UI-threads (a stan-
dard originating from the Unix International Organization, RIP).

0.1.3 Implementing Threads in the Kernel

• Supported by the kernel, the kernel performs all management (creation,
scheduling, deletion, etc.)

• if one thread blocks, another may be run

• If the kernel is managing multiple processors, an efficient mapping of
threads to processors is possible

• Examples; Windows 95/98/NT/2000, Solaris, Tru64 UNIX, BeOS, Linux

0.2 Interprocess Communication

• Multi-threading: concurrent threads share an address space

• Multi-programming: concurrent processes execute on a uniprocessor

• Multi-processing: concurrent processes on a multiprocessor

• Distributed processing: concurrent processes executing on multiple
nodes connected by a network

6

• Concurrent processes (threads) need special support:

– Communication among processes

– Allocation of processor time

– Sharing of resources

– Synchronization of multiple processes

• In a multiprogramming environment, processes executing concurrently
are either competing for the CPU and other global resources, or coop-

erating with each other for sharing some resources

• An OS deals with competing processes by carefully allocating resources
and properly isolating processes from each other. For cooperating pro-
cesses, on the other hand, the OS provides mechanisms to share some
resources in certain ways as well as allowing processes to properly in-
teract with each other

• Cooperation is either by implicit sharing or by explicit communication

• Processes: competing Processes that do not exchange information can-
not affect the execution of each other, but they can compete for devices
and other resources. Such processes do not intend to work together,
and so are unaware of one another

• Properties: Deterministic, Reproducible,Can stop and restart without
“side” effects, Can proceed at arbitrary rate

• Processes: cooperating Processes that are aware of each other, and
directly (by exchanging messages) or indirectly (by sharing a common
object) work together, may affect the execution of each other

• Properties: Share (or exchange) something: a common object (or a
message), Non-deterministic (a problem!), May be irreproducible (a
problem!), Subject to race conditions (a problem!)

• Threads of a process usually do not compete, but cooperate

• Why cooperation? We allow processes to cooperate with each other,
because we want to:

– share some resources.

– do things faster

∗ Read next block while processing current one.

7

Table 1: Race Condition

Process A Process B concurrent access
A = 1; B = 2; does not matter

A = B + 1; B = B * 2; important!

∗ Divide jobs into smaller pieces and execute them concurrently.

– construct systems in modular fashion.

– UNIX example:

cat infile | tr ’ ’ ’\012’ |tr ’[A-Z]’ ’[a-z]’ | sort | uniq -c

0.2.1 Race Conditions

• A potential problem; Instructions of cooperating processes can be in-
terleaved arbitrarily. Hence, the order of (some) instructions are irrel-
evant. However, certain instruction combinations must be eliminated.
For example: see Table 1

• A race condition is a situation where two or more processes access
shared data concurrently and correctness depends on specific interleav-
ings of operations; final value of shared data depends on timing (i.e.,
race to access and modify data)

• To prevent race conditions, concurrent processes must be synchro-
nized

0.2.2 Critical Regions

• A section of code, or a collection of operations, in which only one pro-
cess may be executing at a given time and which we want to make
“sort of” atomic. Atomic means either an operation happens in its
entirely (everything happens at once) or NOT at all; i.e., it cannot be
interrupted in the middle. Atomic operations are used to ensure that
cooperating processes execute correctly. Mutual exclusion mechanisms
are used to solve the critical region problem

• machine instructions are atomic, high level instructions are not (count++;
this is actually 3 machine level instructions, an interrupt can occur in
the middle of instructions)

8

• Fundamental requirements; Concurrent processes should meet the fol-
lowing requirements in order to cooperate correctly and efficiently using
shared data:

– Mutual exclusion–no two processes will simultaneously be inside
the same critical region (CR).

– No assumptions–may be made about speeds or the number of
CPUs. Must handle all possible interleavings.

– Fault tolerance–processes running outside their CR should not
block with others accessing the CR.

– Progress–no process should have to wait forever to enter its CR.
A process wishing to enter its CR will eventually do so in finite
time.

Also, a process in one CR should not block others entering a different
CR. Efficiency–a process will remain inside its CR for a short time
only, without blocking.

• Conceptually, there are three ways to satisfy the implementation re-
quirements:

– Software approach: put responsibility on the processes themselves

– Systems approach: provide support within operation system or
programming language

– Hardware approach: special-purpose machine instructions

0.2.3 Mutual Exclusion with Busy Waiting (Software approach)

• Mutual exclusion is a mechanism to ensure that only one process (or
person) is doing certain things at one time, thus avoid data inconsis-
tency. All others should be prevented from modifying shared data until
the current process finishes

• Strict Alternation (see Fig. 7)

– the two processes strictly alternate in entering their CR

– the integer variable turn, initially 0, keeps track of whose turn is
to enter the critical region

– busy waiting, continuously testing a variable until some value
appears, a lock that uses busy waiting is called a spin lock

9

Figure 6: Mutual exclusion using critical regions

Figure 7: A proposed solution to the CR problem. (a) Process 0, (b) Process
1

– both processes are executing in their noncritical regions

– process 0 finishes its noncritical region and goes back to the top
of its loop

– unfortunately, it is not permitted to enter its CR, turn is 1 and
process 1 is busy with its nonCR

– this algorithm does avoid all races

– but violates condition 3

• Petersons’s solution (see Fig. 8)

– does not require strict alternation

10

– this algorithm consists of two procedures

– before entering its CR, each process calls enter region with its
own process number, 0 or 1

– after it has finished with the shared variables, the process calls
leave region to allow the other process to enter

– consider the case that both processes call enter region almost
simultaneously

– both will store their process number in turn . Whichever store
is done last is the one that counts; the first one is overwritten and
lost

– suppose that process 1 stores last , so turn is 1.

– when both processes come to the while statement, process 0 en-
ters its critical region

– process 1 loops until process 0 exists its CR

– no violation, implements mutual exclusion

– burns CPU cycles (requires busy waiting), can be extended to
work for n processes, but overhead, cannot be extended to work for
an unknown number of processes, unexpected effects (i.e.,priority
inversion problem)

0.2.4 Sleep and wakeup

• blocks instead of wasting CPU time (while loop) when they are not
allowed to enter their CRs

• sleep and wakeup pair

• sleep is a system call that causes the caller to block (be suspended until
another process wakes is up)

• The Producer-Consumer Problem

– Suppose one process is creating information that is going to be
used by another process, e.g., suppose one process reads informa-
tion from the disk, and another compiles that information from
source to machine code.

– Producer: creates copies of a resource

– Consumer: uses up copies of a resource

11

Figure 8: Peterson’ solution for achieving mutual exclusion

– Buffers: used to hold information after producer has created it
but before consumer has used it

– Signaling: keeping control of producer and consumer (e.g., pre-
venting overrun of the producer)

– Constraints:

∗ Consumer must wait for a producer to fill buffers. (signaling)

∗ Producer must wait for consumer to empty buffers, when all
buffer space is in use. (signaling)

∗ Only one process must manipulate buffer pool at once. (
mutual exclusion)

– Trouble arises when the producer wants to put a new item in the
buffer, but it is already full

– The solution is for the producer to go to sleep, to be awakened
when the consumer has removed one or more items

– RACE CONDITION can occur because access to count (see Fig.
9) is unconstrained.

∗ the buffer is empty

∗ the consumer has read count to see if it is 0, sleeping

12

∗ at that instant, the scheduler started running the producer

∗ the producer inserts an item in the buffer, count is 1

∗ the consumer should be awaken up, the producer calls wakeup

∗ the consumer is not logically asleep, so the wakeup signal is
lost

∗ the producer will fill up the buffer and also go to sleep

∗ BOTH WILL SLEEP FOREVER.

Figure 9: The producer-consumer problem with a fatal race problem

13

	Process States
	Threads
	The Thread Model
	Implementing Threads in User Space
	Implementing Threads in the Kernel

	Interprocess Communication
	Race Conditions
	Critical Regions
	Mutual Exclusion with Busy Waiting (Software approach)
	Sleep and wakeup

