
0.0.1 Semaphores

• Dijkstra (1965) introduced the concept of a semaphore

• A semaphore is an integer variable that is accessed through two stan-
dard atomic operations: wait (a spinlock, i.e. stops blocking and
decrements thesemaphore) and signal (i.e. the semaphore counts the
signals it receives)

• Semaphores are variables that are used to signal the status of shared
resources to processes (a semaphore could have the value of 0, indicat-
ing that no wakeups are saved, or some positive value if one or more
wakeups are pending)

• How does that work?

– If a resource is not available, the corresponding semaphore blocks
any process waiting for the resource

– Blocked processes are put into a process queue maintained by the
semaphore (avoids busy waiting!)

– When a process releases a resource, it signals this by means of the
semaphore

– Signalling resumes a blocked process if there is any

– Wait and signal operations cannot be interrupted

– Complex coordination can be specified by multiple semaphores

• the down operation on a semaphore

– checks to see if the value is greater than 0

– if so, it decrements the value and continues

– if the value is 0, the process is put to sleep without the completing
the down for the moment

– all is done as a single, indivisible atomic action

∗ checking the value

∗ changing it

∗ possibly going to sleep

– it is guaranteed that once a semaphore operation has started, no
other process can access the semaphore until the operation has
completed

1

– synchronization and no race condition

• the up operation on a semaphore

– increments the value of the semaphore

– if one or more processes were sleeping on that semaphore, unable
to complete an earlier down operation, one of them is chosen by
the system and allowed to complete its down

– the semaphore will be 0. but there will be one fewer process
sleeping on it

– indivisible process; incrementing the semaphore and waking up
one process

• Solving the producer-consumer problem using semaphores (see Fig. 1)

– the solution uses three semaphores;

∗ one called full for counting the number of slots that are full

∗ one called empty for counting the number of slots that are
empty

∗ one called mutex to make sure the producer and the con-
sumer do not access the buffer at the same time. mutex is
initially 1 (binary semaphore)

∗ if each process does a down just before entering its CR and an
up just after leaving it, the mutual exclusion is guaranteed.

• Possible uses of semaphores;

– Mutual exclusion, initialize the semaphore to one

– Synchronization of cooperating processes (signaling), initialize the
semaphore to zero

– Managing multiple instances of a resource, initialize the semaphore
to the number of instances

• Type of semaphores;

– binary is a semaphore with an integer value of 0 and 1.

– counting is a semaphore with an integer value ranging between 0
and an arbitrarily large number. Its initial value might represent
the number of units of the critical resources that are available.
This form is also known as a general semaphore.

2

Figure 1: The producer-consumer problem using semaphore

3

0.0.2 Monitors

• Semaphores are useful and powerful

• But, they require programmer to think of every timing issue; easy to
miss something, difficult to debug

• Let the compiler handle the details

• Monitors are a high level language construct for dealing with synchro-
nization

– similar to classes in Java

– a monitor has fields and methods

• A monitor is a software module implementing mutual exclusion

• Monitors are easier to program than semaphores

– programmer only has to say what to protect

– compiler actually does the protection (compiler will use semaphores
to do protection)

• Natively supported by a number of programming languages: Java

– Resources or critical sections can be protected using the keyword:
synchronized keyword

– synchronized can be applied to a method: entire method is a
critical section

• Chief characteristics (see Fig. 2):

– Local data variables are accessible only by the monitor (not ex-
ternally)

– Process enters monitor by invoking one of its procedures, but can-
not directly access the monitor’s internal datastructures

– Only one process may be executing in the monitor at a time (mu-
tual exclusion)

– Only methods inside monitor can access fields

– At most one thread can be active inside monitor at any one time

• Main problem: provides less control

4

• Allow process to wait within the monitor with condition variable,
condition x,y;

• can only be used with operations wait and signal (notify() in Java);

– operation wait(x); means that the process invoking this operation
is suspended until another process invokes signal(x);

– operation signal(x); resumes exactly one process suspended

• condition variables are not counters, they do not accumulate signals
for later use the way the semaphores do. Thus if a condition variable
is signaled with no waiting on it, the signal is lost

• This solution is deadlock free

• In Fig. 3, the solution for the producer-consumer problem with a mon-
itor is given

• The class our monitor contains the buffer, the administration vari-
ables and two synchronized methods

• when the producer is active in insert, it knows for sure that the con-
sumer can not be active inside remove

• making it safe to update the variables and buffer without fear of race
conditions

Figure 2: A monitor

5

Figure 3: The producer-consumer problem with a monitor.

6

0.1 Classical IPC Problems

0.1.1 The Dining Philosophers Problem (see Fig. 4)

Figure 4: Lunch time in the Philosophy Department.

• Five philosophers are seated around a circular table

• A philosopher needs two forks to eat

• The life of a philosopher consists of alternate periods of eating and
thinking

• Write a program for each philosopher that does what it is supposed to
do and never gets stuck

• one attempt is to use a binary semaphore (think)

– before starting to acquire forks, a philosopher would do a down
on mutex

– after replacing the forks, he would up on mutex

– bug: only one philosopher can be eating at any instant

• the solution presented in Fig. 5 uses an array, state, to keep track of
whether a philosopher is eating, thinking, or hungry (trying to acquire
forks)

• A philosopher may move only into eating state if neither neighbor is
eating

7

Figure 5: A solution to the dining philosophers problem.

8

• The solution is deadlock–free and allows the maximum parallelism for
any number of philosophers

0.1.2 The Readers and Writers Problem (see Fig. 6)

Figure 6: A solution to the readers and writers problem.

• Models access to a database; many competing processes wishing to read
and write

• It is acceptable to have multiple processes reading the database at the
same time, but if one process is updating (writing) the database, no
other process may have access to the database, not even readers

• Write a program for the readres and writers

9

• the solution presented in Fig. 6, the first reader to get access to the
database does a down on the semaphore db

• Subsequent readers increment a counter, rc

• As readers leave, they decrement the counter and the last one does an
up on the semaphore, allowing a blocked writer

• bug:

– As long as at least one reader is still active, subsequent readers is
admitted

– As a consequence of this strategy, as long as there is a steady
supply of readers. they will all get in as soon as they arrive

– The writer will be kept suspended until no reader is present

• The solution is that when a reader arrives and a write is waiting, the
reader is suspended behind the writer instead of being admitted imme-
diately (less concurrency, lower performance)

0.1.3 The Sleeping Barber Problem (see Fig. 7)

• This problem is similar to various queueing situations

• The problem is to program the barber and the customers without get-
ting into race conditions

– Solution uses three semaphores:

∗ customers; counts the waiting customers

∗ barbers; the number of barbers (0 or 1)

∗ mutex ; used for mutual exclusion

∗ also need a variable waiting ; also counts the waiting customers
(reason; no way to read the current value of semaphore)

– The barber executes the procedure barber, causing him to block
on the semaphore customers (initially 0)

– The barber then goes to sleep

– When a customer arrives, he executes customer, starting by ac-
quiring mutex to enter a critical region

– if another customer enters, shortly thereafter, the second one will
not be able to do anything until the first one has released mutex

10

Figure 7: A solution to the sleeping barber problem.

– The customer then checks to see if the number of waiting cus-
tomers is less than the number of chairs

– if not, he releases mutex and leaves without a haircut

– if there is an available chair, the customer increments the integer
variable, waiting

– Then he does an up on the semaphore customers

– When the customer releases mutex, the barber begins the haircut

11

0.2 Scheduling

• In multiprogramming systems, where there is more than one process
runnable (i.e., ready), the operating system must decide which one to
run next

• The decision is made by the part of the operating system called the
scheduler, using a scheduling algorithm or scheduling discipline.

0.3 Introduction to Scheduling

• In the beginning–there was no need for scheduling, since the users
of computers lined up in front of the computer room or gave their job
to an operator

• Batch processing–the jobs were executed in first come first served
manner

• Multiprogramming–life became complicated!

• The scheduler is concerned with deciding policy, not providing a mech-
anism

• The dispatcher is the mechanism

• Dispatcher

– Low-level mechanism

– Responsibility: Context-switch

∗ Save execution state of old process in PCB

∗ Load execution state of new process from PCB to registers

∗ Change scheduling state of process (running, ready, or blocked)

∗ Switch from kernel to user mode

∗ Jump to instruction in user process

• Scheduler

– Higher-level policy

– Responsibility: Deciding which process to run

• Scheduling refers to a set of policies and mechanisms to control the
order of work to be performed by a computer system.

12

• Of all the resources of a computer system that are scheduled before
use, the CPU is the far most important.

• But, other criteria may be important too (e.g.,memory)

• Multiprogramming is the (efficient) scheduling of the CPU

• Metrics

– Execution time: Ts

– Waiting time: time a thread waits for execution: Tw

– Turnaround time: time a thread spends in the system (waiting
plus execution time): Ts + Tw = Tr

– Normalized turnaround time: Tr/Ts

• Process Behavior

– The basic idea is to keep the CPU busy as much as possible by
executing a (user) process until it must wait for an event and then
switch to another process

– Processes alternate between consuming CPU cycles (CPU-burst)
and performing I/O (I/O-burst)

• Categories of Scheduling Algorithms (See Fig. 8)

– In general, scheduling policies may be preemptive or non- preemp-
tive

– In a non-preemptive pure multiprogramming system, the short-
term scheduler lets the current process run until it blocks, waiting
for an event or a resource, or it terminates. First-Come-First-
Served (FCFS), Shortest Job first (SJF). Good for “background”
batch jobs.

– Preemptive policies, on the other hand, force the currently active
process to release the CPU on certain events, such as a clock
interrupt, some I/O interrupts, or a system call. Round-Robin
(RR), Priority Scheduling. Good for “foreground” interactive jobs

• Scheduling Algorithm Goals

– A typical scheduler is designed to select one or more primary per-
formance criteria and rank them in order of importance

13

Figure 8: Some goals of the scheduling algorithm under different circum-
stances.

– One problem in selecting a set of performance criteria is that they
often conflict with each other

– For example, increased processor utilization is usually achieved by
increasing the number of active processes, but then response time
decreases

– So, the design of a scheduler usually involves a careful balance of
all requirements and constraints

– The following is only a small subset of possible characteristics:I/O
throughput, CPU utilization, response time (batch or interactive),
urgency of fast response, priority, maximum time allowed, total
time required.

– Maximize:

∗ CPU utilization

∗ throughput (number of tasks completed per time unit, also
called bandwidth)

– Minimize:

∗ Turnaround time (submission to completion, also called la-
tency)

∗ Waiting time (sum of time spent in Ready-queue)

14

∗ Response time (time from start of request to production of
first response, not full time for output)

– Fairness:

∗ every task should be handled eventually (no starvation)

∗ tasks with similar characteristics should be treated equally

– different type of systems have different priorities!

0.4 Scheduling in Batch Systems

• First-Come First Served (FCFS) (See Fig. 9)

– FCFS, also known as First-In-First-Out (FIFO), is the simplest
scheduling policy

– Arriving jobs are inserted into the tail of the ready queue and the
process to be executed next is removed from the head (front) of
the queue

– FCFS performs better for long jobs

– Relative importance of jobs measured only by arrival time (poor
choice)

– A long CPU-bound job may take the CPU and may force shorter
(or I/O-bound) jobs to wait prolonged periods

– This in turn may lead to a lengthy queue of ready jobs, and thence
to the “convoy effect

• Shortest Job First (SJF)(See Fig. 10)

– SJF policy selects the job with the shortest (expected) processing
time first

– Shorter jobs are always executed before long jobs

– One major difficulty with SJF is the need to know or estimate the
processing time of each job (can only predict the future!)

– Also, long running jobs may starve for the CPU when there is a
steady supply of short jobs

– SJF is optimal Â minimum average waiting time for given set of
processes

– nonpreemptive Â once CPU given to process, can’t be preempted
until completes CPU burst

15

Figure 9: An example to First-Come First Served.

Figure 10: An example to Shortest Job First.

16

	Semaphores
	Monitors
	Classical IPC Problems
	The Dining Philosophers Problem (see Fig. 4)
	The Readers and Writers Problem (see Fig. 6)
	The Sleeping Barber Problem (see Fig. 7)

	Scheduling
	Introduction to Scheduling
	Scheduling in Batch Systems

