
1 First Meeting

• CENG 328 Operating Systems Spring 2011

• THURSDAY 10:40-12:30 (T1) B301/302

• FRIDAY 08:40-10:30 (T2) B308/309

• TUESDAY 12:40-14:30 (L1) MPLab

• FRIDAY 12:40-14:30 (L2) MPLab

• FRIDAY 14:40-16:30 (L3) MPLab

• Instructor: Cem Özdoğan, Department of Materials Science and Engi-
neering, A318

• TA: Efe Çiftçi

• WEB page:
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/spring2011/index.html

• Announcements: Watch this space for the latest updates.

Pazar 13.Subat.2011 23:42 In the first lecture,

there will be first metting and Introduction/

Overview. The laboratory notes for the first

week is published, see Course Schedule section.

• Important announcements will be posted to theAnnouncements sec-
tion of the web page, so please check this page frequently.

• You are responsible for all such announcements, as well as announce-
ments made in lecture.

• All/Some the example c-files (for lecturing and lab. sessions) will/may
be accessible via the link.

• The tutorial link is active.

• Anyone wants to get a live CD without installing linux, download from
local server.

– Ubuntu live CD

– Pardus live CD

1

http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/spring2011/index.html
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/cfiles/
http://siber.cankaya.edu.tr/ozdogan/OperatingSystems/tutorial/
http://www.frozentech.com/content/livecd.php
http://wee.cankaya.edu.tr/
http://wee.cankaya.edu.tr/Ubuntu/ubuntu-10.10-desktop-i386.iso
http://wee.cankaya.edu.tr/Pardus/Pardus-Calisan-2009.2-Geronticus-eremita.iso

1.1 Lecture Information

• There are two groups for lecturing, you may attend any one of the
lecture hours.

• But, “Please” attend your predefined sessions regularly.

• You will be expected to do significant programming assignments, as
well as run programs we supply and analyse the output.

• These programs will be written in C programming language. For pro-
gramming assignments, other languages will be accepted (such as Java,
C++, but no programming assistance will be given).

• The UNIX operating system will be introduced to you first in the lab
sessions.

• You MAY have quizzes (10-15 minutes, may be less; but not scheduled
as before) for the previous lecture/chapter’s subjects.

• There won’t be any make-up for these quizzes.

1.2 Overview

• Ceng 328 is intended as a general introduction to the techniques used
to implement operating systems and related kinds of systems software.

• Among the topics covered will be;

– basic operating system structure,

– process and thread synchronization,

– process scheduling and resource management,

– process management (creation, synchronization, and communica-
tion),

– memory management techniques, main-memory management, vir-
tual memory management,

– file-system structure,

– control of disks and other input/output devices,

– deadlock prevention, avoidance, and recovery.

• This course assumes familiarity with basic computer organization (e.g.,
processors, memory, and I/O devices).

2

Figure 1: Required and Recommended

1.3 Text Book

• Required: Readings will be assigned in Operating System Concepts,
8th Edition by Abraham Silberschatz, Peter Baer Galvin, Greg Gagne,
John Wiley and Sons, January 2008.

• Recommended: Modern Operating Systems, 3rd Edition by An-
drew S. Tanenbaum, Prentice Hall, 2008. Another frequently used
text book that covers the same material with a different approach

1.4 Grading Criteria & Policies

• There will be a midterm and a final exam, will count 20% and 40% of
your grade, respectively.

• Quiz: 15% (worst of the quizzes will be discarded).

• Assignments (or Term Project): 15%.

• Attendance is required and constitutes part of your course grade; 10%.
Attendance is not compulsory, but you are responsible for everything
said in class.

• I encourage you to ask questions in class. You are supposed to ask
questions. Don’t guess, ask a question!

• The code/homework you submit must be written completely by you.
You can use anything from the textbook/notes with a clear understand-
ing.

3

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470128720.html
http://vig.prenhall.com/catalog/academic/product/1,4096,0130313580,00.html

2 Introduction/Overview

An operating system (OS) acts as an intermediary between the user of a
computer and the computer hardware. The purpose of an OS is to provide
an environment in which a user can execute programs in a convenient and
efficient manner.

2.1 What Is An Operating System?

• An OS is software that manages the computer hardware.

– Mainframe OSs are designed primarily to optimize utilization of
hardware.

– Personal computer (PC) OSs support complex games, business
applications, and everything in between.

– OSs for handheld computers are designed to provide an environ-
ment in which a user can easily interface with the computer to
execute programs.

• Thus, some OSs are designed to be convenient, others to be efficient,
and others some combination of the two.

Hardware

Software
User mode

Kernel mode Operating system

Web
browser

E-mail
reader

Music
player

User interface program

Figure 2: Abstract view. Where the OS fits in.

• A computer system can be divided roughly into four components: the
hardware, the OS, the application programs, and the users (see Fig. 2).

1. Hardware

– Electronic, mechanical, optical devices.

4

– The central processing unit (CPU), the memory, and the in-
put/output (I/O) devices-provides the basic computing re-
sources for the system.

– The hardware must provide appropriate mechanisms to ensure
the correct operation of the computer system and to prevent
user programs from interfering with the proper operation of
the system.

2. Software

– Programs. Without support software, a computer is of lit-
tle use. With its software, however, a computer can store,
manipulate, and retrieve information.

– Software can be grouped into the following categories:

∗ systems software (OS & utilities)

∗ applications software (user programs; word processors,
spreadsheets, compilers, database systems, games, web
browsers etc.)

• As a summary;

– Hardware provides basic computing resources (CPU, memory, I/O
devices).

– OS controls and coordinates the use of the hardware among the
various application programs for the various users.

– Provides orderly and controlled allocation (i.e., sharing, optimiza-
tion of resource utilization) and use of the resources by the users
(jobs) that compete for them.

• An OS is similar to a government. Like a government, it performs
no useful function by itself. It simply provides an environment within
which other programs can do useful work.

2.1.1 User View - The OS as an Extended Machine

• An OS

– provides an abstraction layer over the concrete hardware,

– use the computer hardware in an efficient manner (converting
hardware into useful form),

– “hide” the complexity of the underlying hardware. See Fig. 3

5

Operating system

Hardware

Ugly interface

Beautiful interface

Application programs

Figure 3: Operating systems turn ugly hardware into beautiful abstractions.

• Most computer users sit in front of a PC, consisting of a monitor,
keyboard, mouse, and system unit. Such a system is designed for one
user to monopolize its resources.

• The goal is to maximize the work (or play) that the user is performing.
In this case, the OS is designed mostly for ease of use.

• Performance is, of course, important to the user; but rather than re-
source utilization, such systems are optimized for the single-user expe-
rience.

• In other cases, a user sits at a terminal connected to a mainframe or
minicomputer. Other users are accessing the same computer through
other terminals. These users share resources and may exchange infor-
mation.

• The OS in such cases is designed to maximize resource utilization to
assure that all available CPU time, memory, and I/O are used efficiently
and that no individual user takes more than her fair share.

• In still other cases, users sit at workstations connected to networks of
other workstations and servers. These users have dedicated resources
at their disposal, but they also share resources such as networking and
servers-file, compute, and print servers.

• Therefore, their OS is designed to compromise between individual us-
ability and resource utilization.

• Recently, many varieties of handheld computers have come into fashion.
Most of these devices are standalone units for individual users.

6

• Their OSs are designed mostly for individual usability, but performance
per amount of battery life is important as well.

• Some computers have little or no user view. For example, embedded
computers in home devices and automobiles may have numeric keypads
and may turn indicator lights on or off to show status, but they and
their OSs are designed primarily to run without user intervention.

2.1.2 System View - The OS as a Resource Manager

• From the computer’s point of view, the OS is the program most inti-
mately involved with the hardware. In this context, we can view an
OS as a resource allocator.

• Resource - “Something valuable” e.g. CPU time, memory space (RAM),
file-storage space, I/O devices (disk), and so on.

• The OS acts as the manager of these resources. Includes multiplexing
(sharing) resources in two different ways. Each program gets

– time with the resource

– space on the resource

• Multiple users/applications can share, why share:

– devices are expensive,

– there is need to share data as well as communicate

• Facing numerous and possibly conflicting requests for resources, the OS
must decide

– how to allocate them to specific programs (processes, jobs)

– how to protect applications from one another,

– how to provide fair and efficient access to resources,

– how to operate and control the various I/O devices.

2.1.3 Defining OS and Functionalities

• In general, we have no completely adequate definition of an OS.

• The fundamental goal of computer systems is to execute user programs
and to make solving user problems easier.

7

• Since bare hardware alone is not particularly easy to use, application
programs are developed. These programs require certain common op-
erations, such as those controlling the I/O devices.

• The common functions of controlling and allocating resources are then
brought together into one piece of software: the OS.

• In addition, we have no universally accepted definition of what is part
of the OS. A more common definition is that the OS is the one program
running at all times on the computer (usually called the kernel), with
all else being systems programs and application programs.

• OS cannot help all the people all the time, but it should help most of
the people most of the time.

– What mechanisms?

– What policies?

• Challenges: Desired functionalities of OS depend on outside factors
like users’ & application’s “Expectations” and “Technology changes”
in Computer Architecture (hardware). OS must adapt:

– change abstractions provided to users,

– change algorithms to change these abstractions,

– change low-level implementation to deal with hardware.

• The current OSs are driven by such evolutions.

2.2 Computer-System Organization

Before we can explore the details of how computer systems operate, we need
a general knowledge of the structure of a computer system.

2.2.1 Computer-System Operation

• A modern general-purpose computer system consists of one or more
CPUs and a number of device controllers connected through a common bus
that provides access to shared memory (see Fig. 4).

• Each device controller is in charge of a specific type of device (for
example, disk drives, audio devices, and video displays).

8

• The CPU and the device controllers can execute concurrently, compet-
ing for memory cycles.

• To ensure orderly access to the shared memory, a memory controller is
provided whose function is to synchronize access to the memory.

Figure 4: A modern computer system.

• For a computer to start running, when it is powered up or rebooted-it
needs to have an initial program (bootstrap program) to run.

• Typically, it is stored in read-only memory (ROM) or electrically erasable
programmable read-only memory (EEPROM), known by the general
term firmware, within the computer hardware.

• It initializes all aspects of the system, from CPU registers to device
controllers to memory contents.

• The bootstrap program must know how to load the OS and to start
executing that system. To accomplish this goal, the bootstrap program
must locate and load into memory the OS kernel.

• The process of initializing the computer and loading the OS is known
as bootstrapping (see Fig. 5).

9

Figure 5: Booting the computer.

10

Figure 6: UNIX System initialization

• UNIX System initialization and Bootstrapping;

– Once the kernel boots, we have a running Linux system. It isn’t
very usable, since the kernel doesn’t allow direct interactions with
“user space”.

– So, the system runs one program: init and waits for some event
to occur. This program is responsible for everything else and is
regarded as the father of all processes.

– The kernel then retires to its rightful position as system manager
handling “kernel space” (see Fig. 6).

– Some portions of the OS remain in main memory to provide ser-
vices for critical operations, such as dispatching, interrupt handling,
or managing (critical) resources.

– These portions of the OS are collectively called the kernel.

Kernel = OS - transient components
remains comes and goes

• The occurrence of an event is usually signaled by an interrupt from

either the hardware or the software.

11

– Hardware may trigger an interrupt at any time by sending a signal
to the CPU, usually by way of the system bus. Software may trig-
ger an interrupt by executing a special operation called a system
call (also called a monitor call).

• When the CPU is interrupted, it stops what it is doing and immediately transfers
execution to a fixed location.

• The fixed location usually contains the starting address where the ser-
vice routine for the interrupt is located.

• The interrupt service routine executes; on completion, the CPU resumes
the interrupted computation. A time line of this operation is shown in
Fig. 7.

Figure 7: Interrupt time line for a single process doing output.

• Interrupts are an important part of a computer architecture. The inter-
rupt must transfer control to the appropriate interrupt service routine
(ISR) (see Fig. 8).

• The straightforward method for handling this transfer would be to in-
voke a generic routine to examine the interrupt information; the rou-
tine, in turn, ’would call the interrupt-specific handler.

• Since only a predefined number of interrupts is possible, a table of
pointers to interrupt routines can be used. Generally, the table of
pointers is stored in low memory (the first 100 or so locations). These

12

Figure 8: Interrupt

locations hold the addresses of the interrupt service routines for the
various devices.

• This array, or interrupt vector, of addresses is then indexed by a unique
device number, given with the interrupt request, to provide the address
of the interrupt service routine for the interrupting device.

• Operating systems as different as Windows and UNIX dispatch inter-
rupts in this manner.

2.2.2 Storage Structure

• Computer programs must be in main memory (high speed semiconduc-
tor, also called random-access memory or RAM) to be executed. We
say random access because the CPU can access any byte of storage in
any order.

• Referred to as real memory or primary memory. Volatile, because its
contents are lost when the power is removed.

– Interaction is achieved through a sequence of load or store instruc-
tions to specific memory addresses.

– The load instruction moves a word (collection of bytes, each word
has its own address) from main memory to an internal register
within the CPU, whereas the store instruction moves the content
of a register to main memory.

– Aside from explicit loads and stores, the CPU automatically loads
instructions from main memory for execution.

13

• A typical instruction-execution cycle, as executed on a system with a
von Neumann architecture,

– First fetches an instruction from memory and stores that instruc-
tion in the instruction register.

– The instruction is then decoded and may cause operands to be
fetched from memory and stored in some internal register.

– After the instruction on the operands has been executed, the result
may be stored back in memory.

• Fetch-execute cycle (see Fig. 9)

Figure 9: Fetch and Execute Cycle

– Program counter (PC) holds address of the instruction to be fetched
next,

– The processor fetches the instruction from memory,

– Program counter is incremented after each fetch,

– Overlapped on modern architectures (pipelining).

• Notice that the memory unit sees only a stream of memory addresses;
it does not know how they are generated (by the instruction counter,
indexing, indirection, literal addresses, or some other.

• Ideally, we want the programs and data to reside in main memory
permanently. This arrangement usually is not possible for the following
two reasons:

1. Main memory is usually too small to store all needed programs
and. data permanently.

2. Main memory is a volatile storage device that loses its contents
when power is turned off or otherwise lost.

14

• Thus, most computer systems provide secondary storage as an exten-
sion of main memory. The most common secondary-storage device is
a magnetic disk.

• Many programs then use the disk as both a source and a destination
of the information for their processing. Hence, the proper management
of disk storage is of central importance to a computer system.

• The main differences among the various storage systems lie in speed,
cost, size, and volatility. The wide variety of storage systems in a com-
puter system can be organized in a hierarchy (See Fig. 10) according
to speed and cost. The higher levels are expensive, but they are fast.
As we move down the hierarchy, the cost per bit generally decreases,
whereas the access time generally increases.

• Stages such as the CPU registers and cache are typically located within
the CPU chip so distances are very short and buses can be made very
very wide (e.g. 128-bits), yielding very fast speeds.

Registers

Cache

Main memory

Magnetic tape

Magnetic disk

 1 nsec

 2 nsec

 10 nsec

 10 msec

100 sec

<1 KB

 4 MB

 512-2048 MB

 200-1000 GB

 400-800 GB

Typical capacityTypical access time

Figure 10: A typical memory hierarchy. The numbers are very rough ap-
proximations.

• The design of a complete memory system must balance all the factors.
It must use only as much expensive memory as necessary while pro-
viding as much inexpensive, nonvolatile memory as possible. Caches
can be installed to improve performance where a large access-time or
transfer-rate disparity exists between two components.

• Cache memory;

15

Figure 11: Cache and Main Memory

– Main memory should be, fast, abundant, cheap, Unfortunately,
that’s not the reality. Solution: combination of fast & expensive
and slow & cheap memory (see Fig. 12left)

– Contain a small amount of very fast storage which holds a subset
of the data held in the main memory.

– Processor first checks cache. If not found in cache, the block of
memory containing the needed information is moved to the cache
replacing some other data. ������ �������� ����L2��� QQQ ¢¢¢ ���� ������L2����L2 ��L2

L2 cache

L1
cache

(a) (b)

Core 1 Core 2

Core 3 Core 4

Core 1 Core 2

Core 3 Core 4

Figure 12: Left: Cache Memory. Right: (a) A quad-core chip with a shared
L2 cache. (b) A quad-core chip with separate L2 caches.

• Cache design;

– Cache size, small caches have a significant impact on performance.

– Line size (block size), the unit of data exchanged between cache
and main memory (see Fig. 12left).

16

– Cache Hit means the information was found in the cache. Larger
line size ⇒ higher hit rate.

– Cache Miss ??

– Questions when dealing with cache:

∗ When to put a new item into the cache.

∗ Which cache line to put the new item in.

∗ Which item to remove from the cache when a slot is needed.

∗ Where to put a newly evicted item in the larger memory.

• Disk Cache

– A portion of main memory used as a buffer to temporarily to hold
data for the disk.

– Some data written out may be referenced again. The data are
retrieved rapidly from the software cache instead of slowly from
disk.

• Future storage technology includes 3-dimensional crystal structures
which allow optical access to a dense 3-dimensional storage facility (see
Fig. 13).
http://www.voyle.net/Guest Writers/Michael E. Thomas/Atomic press.htm

Figure 13: IBM Advanced Storage Roadmap.

17

http://www.voyle.net/Guest Writers/Michael E. Thomas/Atomic_press.htm

2.2.3 I/O Structure

• Storage is only one of many types of I/O devices within a computer. A
large portion of OS code is dedicated to managing I/O, both because
of its importance to the reliability and performance of a system and
because of the varying nature of the devices.

• A source of cheaper-per-byte and non-volatile storage is provided by
magnetic disk. However, the computer does not have direct random
access to any byte at any time on the disk – the magnetic discs in
the drive are rotating and magnetic heads move in and out in order to
access any part of the surface area on the disc that holds data. This
means access usually involves a disc rotation delay and also a head
positioning delay (see Fig. 14left).

Surface 2
Surface 1

Surface 0

Read/write head (1 per surface)

Direction of arm motion
Surface 3

Surface 5

Surface 4

Surface 7

Surface 6

Figure 14: Left: Structure of a disk drive. Right: The steps in starting an
I/O device.

• A general-purpose computer system consists of CPUs and multiple
device controllers that are connected through a common bus (see Fig.
15).

– Each device controller is in charge of a specific type of device.
Depending on the controller, there may be more than one attached
device.

– The device controller is responsible for moving the data between
the peripheral devices that it controls and its local buffer storage
(see Fig. 14right).

– Typically, OSs have a device driver for each device controller.
Software that communicates with controller is called device driver.
This device driver understands the device controller and presents

18

Figure 15: Upper: Top-level Components. Lower: The structure of a large
Pentium system.

19

a uniform interface to the device to the rest of the OS. Most
drivers run in kernel mode. To put new driver into kernel, system
may have to be relinked, or be rebooted, or dynamically load new
driver.

– A system bus would link the CPU and memory. This structure
would involve a pathway along which data could travel (usually
32-bits side-by-side i.e. in bit-wise parallel).

• To start an I/O operation;

– The device driver loads the appropriate registers within the device
controller.

– The device controller, in turn, examines the contents of these reg-
isters to determine what action to take (such as ”read a character
from the keyboard”).

– The controller starts the transfer of data from the device to its
local buffer. Once the transfer of data is complete, the device
controller informs the device driver via an interrupt that it has
finished its operation.

– The device driver then returns control to the OS, possibly return-
ing the data or a pointer to the data if the operation was a read.

• Interrupts normal sequence of execution. I/O requests can be handled
synchronously or asynchronously.

– In a synchronous system, a program makes the appropriate OS
call, as the CPU is now executing OS code, the original program’s
execution is halted i.e. it waits.

– In an asynchronous system, a program makes its request via the
OS call, then its execution resumes, it will most likely not have had
its request serviced yet! The advantage of having an asynchronous
mechanism available is that the programmer is free to organize
other CPU activity while the I/O request is handled.

• This form of interrupt-driven I/O is fine for moving small amounts of
data but can produce high overhead when used for bulk data movement
such as disk I/O. CPU much faster than I/O devices, hence waiting for
I/O operation to finish is inefficient.

• To solve this problem, direct memory access (DMA) is used. After
setting up buffers, pointers, and counters for the I/O device, the device

20

controller transfers an entire block of data directly to or from its own
buffer storage to memory, with no intervention by the CPU.

• Only one interrupt is generated per block, to tell the device driver that
the operation has completed, rather than the one interrupt per byte
generated for low-speed devices.

• While the device controller is performing these operations, the CPU is
available to accomplish other work.

21

	First Meeting
	Lecture Information
	Overview
	Text Book
	Grading Criteria & Policies

	Introduction/Overview
	What Is An Operating System?
	User View - The OS as an Extended Machine
	System View - The OS as a Resource Manager
	Defining OS and Functionalities

	Computer-System Organization
	Computer-System Operation
	Storage Structure
	I/O Structure

