
1 Virtual Memory

• Virtual memory is a technique that allows the execution of processes
that are not completely in memory.

– One major advantage of this scheme is that programs can be larger
than physical memory.

– Further, virtual memory abstracts main memory into an extremely
large, uniform array of storage, separating logical memory as viewed

by the user from physical memory.

• Virtual memory also allows processes to share files easily and to imple-
ment shared memory.

• Virtual memory is not easy to implement, however, and may substan-
tially decrease performance if it is used carelessly.

1.1 Background

• The instructions being executed must be in physical memory.

• An examination of real programs shows us that, in many cases, the
entire program (in memory) is not needed.

– Programs often have code to handle unusual error conditions (sel-
dom used).

– Arrays, lists, and tables are often allocated more memory than
they actually need.

– Certain options and features of a program may be used rarely.

• The ability to execute a program that is only partially in memory would
offer many benefits:

– A program would no longer be constrained by the amount of phys-
ical memory that is available (simplifying the programming task).

– Because each user program could take less physical memory, more
programs could be run at the same time, with a corresponding
increase in CPU utilization and throughput but with no increase
in response time or turnaround time.

– Less I/O would be needed to load or swap each user program into
memory, so each user program would run faster.

1



• Virtual memory involves the separation of logical memory as per-
ceived by users from physical memory. This separation allows an ex-
tremely large virtual memory to be provided for programmers when
only a smaller physical memory is available (see Fig. 1).

Figure 1: Diagram showing virtual memory that is larger than physical mem-
ory.

• The virtual address space of a process refers to the logical (or vir-
tual) view of how a process is stored in memory. Typically, this view is
that a process begins at a certain logical address-say, address O -and
exists in contiguous memory, as shown in Fig. 2.

Figure 2: Virtual address space.

2



• The large blank space (or hole) between the heap and the stack is part
of the virtual address space but will require actual physical pages only
if the heap or stack grows.

– heap to grow upward in memory as it is used for dynamic memory
allocation

– stack to grow downward in memory through successive function
calls

• Virtual address spaces that include holes are known as sparse address
spaces. Using a sparse address space is beneficial because the holes can
be filled as the stack or heap segments grow or if we wish to dynam-
ically link libraries (or possibly other shared objects) during program
execution.

• In addition to separating logical memory from physical memory, virtual
memory also allows files and memory to be shared by two or more
processes through page sharing. This leads to the following benefits:

Figure 3: Shared library using virtual memory.

– System libraries can be shared by several processes through map-
ping of the shared object into a virtual address space. Actual
pages where the libraries reside in physical memory are shared by
all the processes (see Fig. 3).

– Similarly, virtual memory enables processes to share memory. Two
or more processes can communicate through the use of shared
memory (see Fig. 3).

– Virtual memory can allow pages to be shared during process cre-
ation with the fork() system call, thus speeding up process cre-
ation.

3



1.2 Demand Paging

• Consider how an executable program might be loaded from disk into
memory.

– One option is to load the entire program in physical memory at
program execution time. However, a problem with this approach
is that we may not initially need the entire program in memory.

– An alternative strategy is to initially load pages only as they are
needed. This technique is known as demand paging and is com-
monly used in virtual memory systems.

• A demand-paging system is similar to a paging system with swapping
(see Fig. 4) where processes reside in secondary memory (usually a
disk).

Figure 4: Transfer of a paged memory to contiguous disk space.

• When we want to execute a process, we swap it into memory. Rather
than swapping the entire process into memory, however, we use a lazy
swapper. A lazy swapper never swaps a page into memory unless that
page will be needed.

• A swapper manipulates entire processes, whereas a pager is concerned
with the individual pages of a process. We thus use pager, rather than
swapper, in connection with demand paging.

4



1.2.1 Basic Concepts

• When a process is to be swapped in, the pager guesses which pages will
be used before the process is swapped out again.

• It avoids reading into memory pages that will not be used anyway,
decreasing the swap time and the amount of physical memory needed.

• Some form of hardware support is needed to distinguish between the
pages that are in memory and the pages that are on the disk.

• The valid -invalid bit scheme can be used for this purpose.

– This time however, when this bit is set to “valid”, the associated
page is both legal and in memory.

– If the bit is set to “invalid”, the page either is not valid (that is, not
in the logical address space of the process) or is valid but is currently
on the disk.

– The page-table entry for a page that is brought into memory is
set as usual,

– but the page-table entry for a page that is not currently in memory
is either simply marked invalid or contains the address of the page
on disk (see Fig. 5).

Figure 5: Page table when some pages are not in main memory.

5



• While the process executes and accesses pages that are memory resi-
dent, execution proceeds normally.

• But what happens if the process tries to access a page that was not
brought into memory? Access to a page marked invalid causes a page-
fault trap.

• The paging hardware, in translating the address through the page table,
will notice that the invalid bit is set, causing a trap to the OS. The
procedure for handling this page fault is straightforward (see Fig. 6).

Figure 6: Steps in handling a page fault.

1. We check an internal table (in PCB) for this process to determine
whether the reference was a valid or an invalid memory access.

2. If the reference was invalid, we terminate the process. If it was
valid, but we have not yet brought in that page, we now page it
in.

3. We find a free frame.

4. We schedule a disk operation to read the desired page into the
newly allocated frame.

5. When the disk read is complete, we modify the internal table kept
with the process and the page table.

6. We restart the instruction that was interrupted by the trap.

6



• In the extreme case, we can start executing a process with no pages in
memory.

– When the OS sets the instruction pointer to the first instruction of
the process, which is on a non-memory-resident page, the process
immediately faults for the page.

– After this page is brought into memory, the process continues to
execute, faulting as necessary until every page that it needs is in
memory.

• At that point, it can execute with no more faults. This scheme is pure
demand paging: Never bring a page into memory until it is required.

• Theoretically, some programs could access several new pages of memory
with each instruction execution (one page for the instruction and many
for data), possibly causing multiple page faults per instruction.

• This situation would result in unacceptable system performance (but
fortunately this behavior is exceedingly unlikely).

• Programs tend to have locality of reference which results in reason-
able performance from demand paging.

• Because we save the state (registers, condition code, instruction counter)
of the interrupted process when the page fault occurs, we must be able
to restart the process in exactly the same place and state.

– If the page fault occurs on the instruction fetch, we can restart by
fetching the instruction again.

– If a page fault occurs while we are fetching an operand, we must
fetch and decode the instruction again and then fetch the operand.

1.2.2 Performance of Demand Paging

• Demand paging can significantly affect the performance of a computer
system. Let’s compute the effective access time for a demand-paged
memory.

– For most computer systems, the memory-access time, denoted ma,
ranges from 10 to 200 nanoseconds.

– As long as we have no page faults, the effective access time is equal
to the memory access time.

7



– If, however a page fault occurs, we must first read the relevant page
from disk and then access the desired word.

– Let p be the probability of a page fault (0 ≤ p ≤ 1). We would
expect p to be close to zero -that is, we would expect to have only
a few page faults.

– The effective access time is then

effective access time = (1 - p)*ma + p*page fault time

• We are faced with three major components of the page-fault service
time:

1. Service the page-fault interrupt.

2. Read in the page.

3. Restart the process.

• The first and third tasks can be reduced, with careful coding, to several
hundred instructions. These tasks may take from 1 to 100 microseconds
each.

• The page-switch time, however, will probably be close to 8 milliseconds.

–

– A typical hard disk has an average latency of 3 milliseconds, a
seek of 5 milliseconds, and a transfer time of 0.05 milliseconds.

• Thus, the total paging time is about 8 milliseconds, including hardware
and software time.

• If we take an average page-fault service time of 8 milliseconds and a
memory-access time of 200 nanoseconds, then the effective access time
in nanoseconds is

effective access time = (1 - p)*(200) + p*(8 milliseconds)

= (1 - p)*200 + p*8,000,000

= 200 + 7,999,800 x p.

• We see, then, that the effective access time is directly proportional to
the page-fault rate.

• If one access out of 1,000 causes a page fault, the effective access time
is 8.2 microseconds. The computer will be slowed down by a factor of
40 because of demand paging!

8



• It is important to keep the page-fault rate low in a demand-paging
system. Otherwise, the effective access time increases, slowing process
execution dramatically.

• An additional aspect of demand paging is the handling and overall use
of swap space.

– Disk I/O to swap space is generally faster than that to the file
system. It is faster because swap space is allocated in much larger
blocks, and file lookups and indirect allocation methods are not
used.

– The system can therefore gain better paging throughput by copy-
ing an entire file image into the swap space at process startup and
then performing demand paging from the swap space.

– Another option is to demand pages from the file system initially
but to write the pages to swap space as they are replaced.

1.3 Copy-on-Write

• Process creation using the fork() system call may initially bypass the
need for demand paging by using a technique similar to page sharing.

• This technique provides for rapid process creation and minimizes the
number of new pages that must be allocated to the newly created pro-
cess.

• Recall that the fork() system call creates a child process as a duplicate
of its parent.

– Traditionally, fork() worked by creating a copy of the parent’s
address space for the child, duplicating the pages belonging to the
parent.

– However, considering that many child processes invoke the exec()
system call immediately after creation, the copying of the parent’s
address space may be unnecessary.

• Alternatively, we can use a technique known as copy-an-write, which
works by allowing the parent and child processes initially to share the
same pages.

• These shared pages are marked as copy-an-write pages, meaning that
if either process writes to a shared page, a copy of the shared page is
created (see Figs. 7 and 8).

9



Figure 7: Before process 1 modifies page C.

Figure 8: After process 1 modifies page C.

• Only pages that can be modified need be marked as copy-on-write.
Pages that cannot be modified (pages containing executable code) can
be shared by the parent and child.

• Copy-on-write is a common technique used by several OSs, including
Windows XP, Linux, and Solaris.

1.4 Page Replacement

• If we increase our degree of multiprogramming, we are over-allocating
memory.

– If we run six processes, each of which is ten pages in size but
actually uses only five pages, we have higher CPU utilization and
throughput, with ten frames to spare.

– It is possible that each of these processes may suddenly try to use
all ten of its pages resulting in a need for sixty frames.

• Further, consider that system memory is not used only for holding
program pages. Buffers for I/O also consume a significant amount

10



of memory. This use can increase the strain on memory-placement
algorithms.

• Over-allocation of memory manifests itself as follows (see Fig. 9).

– While a user process is executing, a page fault occurs.

– The OS determines where the desired page is residing on the disk
but then finds that there are no free frames on the free-frame list;
all memory is in use.

Figure 9: Need for page replacement.

• The OS could swap out a process, freeing all its frames and reducing
the level of multiprogramming.

1.4.1 Basic Page Replacement

• Page replacement takes the following approach (see Fig. 10).

– If no frame is free, we find one that is not currently being used
and free it.

– We can free a frame by writing its contents to swap space and
changing the page table (and al other tables) to indicate that the
page is no longer in memory.

– We can now use the freed frame to hold the page for which the
process faulted.

• We modify the page-fault service routine to include page replacement:

11



Figure 10: Page replacement.

1. Find the location of the desired page on the disk.

2. Find a free frame:

a If there is a free frame, use it.

b If there is no free frame, use a page-replacement algorithm to
select a victim frame.

c Write the victim frame to the disk; change the page and frame
tables accordingly.

3. Read the desired page into the newly freed frame; change the page
and frame tables.

4. Restart the user process.

• Notice that, if no frames are free, two page transfers (one out and one
in) are required.

• We can reduce this overhead by using a modify bit (or dirty bit).

• The modify bit for a page is set by the hardware whenever any word or
byte in the page is written into, indicating that the page has been modified.

• When we select a page for replacement, we examine its modify bit.

– If the bit is set, we know that the page has been modified since it
was read in from the disk (write that page to the disk).

– If the modify bit is not set, the page has not been modified since
it was read into memory (not write the memory page to the disk:
It is already there).

12



• This technique also applies to read-only pages (for example, pages of
binary code).

• This scheme can significantly reduce the time required to service a page
fault, since it reduces I/O time by one-half if the page has not been
modified.

• Page replacement is basic to demand paging. It completes the separa-
tion between logical memory and physical memory.

• We must solve two major problems to implement demand paging:

1. develop a frame-allocation algorithm. If we have multiple pro-
cesses in memory, we must decide how many frames to allocate to
each process.

2. develop a page-replacement algorithm. When page replace-
ment is required, we must select the frames that are to be re-
placed.

• Designing appropriate algorithms to solve these problems is an impor-
tant task, because disk I/O is so expensive. Even slight improvements
in demand-paging methods yield large gains in system performance.

• Second major problem will be discussed firstly.

• For a given page size (and the page size is generally fixed by the hard-
ware or system), we need to consider only the page number, rather than

the entire address.

• If we have a reference to a page p, then any immediately following
references to page p will never cause a page fault (page p will be in
memory after the first reference).

• For example, if we trace a particular process, we might record the
following address sequence:

0100,0432,0101,0612,0102,0103,0104,0101,0611,0102,0103,

0104,0101,0610,0102,0103,0104,0101,0609,O102,0105

• At 100 bytes per page, this sequence is reduced to the following refer-
ence string:

1,4,1,6,1,6,1,6,1,6,1

13



Figure 11: Graph of page faults versus number of frames.

• As the number of frames increases, the number of page faults drops to
some minimal level (see Fig. 11).

• Next several page-replacement algorithms are illustrated. The following
reference string will be used to exemplify for a memory with three
frames.

7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

1.4.2 FIFO Page Replacement

• The simplest page-replacement algorithm is a first-in, first-out (FIFO)
algorithm.

• A FIFO replacement algorithm associates with each page the time when

that page was brought into memory.

• When a page must be replaced, the oldest page is chosen.

• For our example reference string, our three frames are initially empty.

Figure 12: FIFO page-replacement algorithm.

14



– The first three references (7, 0, 1) cause page faults and are
brought into these empty frames.

– The next reference (2) replaces page 7, because page 7 was brought
in first.

– Since 0 is the next reference and 0 is already in memory, we have
no fault for this reference.

– The first reference to 3 results in replacement of page 0, since it
is now first in line.

– Because of this replacement, the next reference, to 0, will fault.

– Page 1 is then replaced by page O. This process continues and
there are 15 faults altogether.

• The FIFO page-replacement algorithm is easy to understand and pro-
gram. However, its performance is not always good.

• On the one hand, the page replaced may be an initialization module
that was used a long time ago and is no longer needed.

• On the other hand, it could contain a heavily used variable that was
initialized early and is in constant use.

• Notice that, even if we select for replacement a page that is in active use,
everything still works correctly.

– After we replace an active page with a new one, a fault occurs
almost immediately to retrieve the active page.

– Some other page will need to be replaced to bring the active page
back into memory.

– Thus, a bad replacement choice increases the page-fault rate and
slows process execution.

– It does not cause incorrect execution.

1.4.3 Optimal Page Replacement

• An optimal page-replacement algorithm has the lowest page-fault rate of
all algorithms (called OPT or MIN). It is simply this:

Replace the page that will not be used

for the longest period of time.

15



• Use of this page-replacement algorithm guarantees the lowest possible
page-fault rate for a fixed number of frames.

• For example, on our sample reference string, the optimal page-replacement
algorithm would yield nine page faults (see Fig. 13).

Figure 13: Optimal page-replacement algorithm.

– The first three references cause faults that fill the three empty
frames.

– The reference to page 2 replaces page 7, because 7 will not be used
until reference 18,

– whereas page 0 will be used at 5, and page 1 at 14.

– The reference to page 3 replaces page 1, as page 1 will be the last
of the three pages in memory to be referenced again.

• With only nine page faults, optimal replacement is much better than a
FIFO algorithm, which resulted in fifteen faults.

• If we ignore the first three, which all algorithms must suffer, then op-
timal replacement is twice as good as FIFO replacement.

• Unfortunately, the optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference string
(similar situation with the SJF CPU-scheduling algorithm).

• As a result, the optimal algorithm is used mainly for comparison studies.

1.4.4 LRU Page Replacement

• The key distinction between the FIFO and OPT algorithms (other than
looking backward versus forward in time) is that

– the FIFO algorithm uses the time when a page was brought into
memory,

16



– whereas the OPT algorithm uses the time when a page is to be
used.

• If we use the recent past as an approximation of the near future, then
we can replace the page that has not been used for the longest period
of time (see Fig. 14).

Figure 14: LRU page-replacement algorithm.

• This approach is the least-recently-used (LRU) algorithm. The
result of applying LRU replacement to our example reference string is
shown in Fig. 14. The LRU algorithm produces 12 faults.

– Notice that the first 5 faults are the same as those for optimal
replacement.

– When the reference to page 4 occurs, however, LRU replacement
sees that, of the three frames in memory, page 2 was used least
recently.

– Thus, the LRU algorithm replaces page 2, not knowing that page
2 is about to be used.

– When it then faults for page 2, the LRU algorithm replaces page
3, since it is now the least recently used of the three pages in
memory.

• Despite these problems, LRU replacement with 12 faults is much better
than FIFO replacement with 15.

1.5 Allocation of Frames

• Now, first major problem mentioned in Section 1.4.1 will be discussed.
How do we allocate the fixed amount of free memory among the various
processes?

• If we have 93 free frames and two processes, how many frames does
each process get?

17



• The simplest case is the single-user system.

– Consider a single-user system with 128 KB of memory composed
of pages 1 KB in size. This system has 128 frames.

– The OS may take 35 K8, leaving 93 frames for the user process.

• Under pure demand paging, all 93 frames would initially be put on the
free-frame list.

– When a user process started execution, it would generate a se-
quence of page faults.

– The first 93 page faults would all get free frames from the free-
frame list.

– When the free-frame list was exhausted, a page-replacement algo-
rithm would be used to select one of the 93 in-memory pages to
be replaced with the 94th, and so on.

– When the process terminated, the 93 frames would once again be
placed on the free-frame list.

• There are many variations on this simple strategy. We can require that
the OS allocate all its buffer and table space from the free-frame list.

• When this space is not in use by the OS, it can be used to support user
paging. The user process is allocated any free frame.

1.5.1 Allocation Algorithms

• The easiest way to split m frames among n processes is to give everyone
an equal share, m/n frames. This scheme is called equal allocation.

– For instance, if there are 93 frames and five processes, each process
will get 18 frames.

– The leftover three frames can be used as a free-frame buffer pool.

• An alternative is to recognize that various processes will need differing
amounts of memory.

– Consider a system with a 1-KB frame size.

– If a small student process of 10 KB and an interactive database
of 127 KB are the only two processes running in a system with 62
free frames, it does not make much sense to give each process 31
frames.

18



– The student process does not need more than 10 frames, so the
other 21 are, strictly speaking, wasted.

• To solve this problem, we allocate available memory to each process
according to its size (proportional allocation).

• Let the size of the virtual memory for process pi be si, and define

S =
∑

si

• Then, if the total number of available frames is m, we allocate ai frames
to process pi, where ai is approximately

ai =
si

S ∗ m

• For proportional allocation, we would split 62 frames between two pro-
cesses, one of 10 pages and one of 127 pages, by allocating 4 frames
and 57 frames, respectively, since

10/137 x 62 ~ 4,

127/137 x 62 ~ 57.

• In this way, both processes share the available frames according to their
“needs”, rather than equally.

• In both equal and proportional allocation, of course, the allocation may
vary according to the multiprogramming level.

– If the multiprogramming level is increased, each process will lose
some frames to provide the memory needed for the new process.

– If the multiprogramming level decreases, the frames that were
allocated to the departed process can be spread over the remaining
processes.

1.5.2 Global versus Local Allocation

• Another important factor in the way frames are allocated to the various
processes is page replacement.

• With multiple processes competing for frames, we can classify page-
replacement algorithms into two broad categories:

19



1. Global replacement. Global replacement allows a process to
select a replacement frame from the set of all frames, even if that
frame is currently allocated to some other process; that is, one
process can take a frame from another.

2. Local replacement. Local replacement requires that each pro-
cess select from only its own set of allocated frames.

• With a local replacement strategy, the number of frames allocated to
a process does not change.

• With global replacement, a process may happen to select only frames
allocated to other processes, thus increasing the number of frames al-
located to it (assuming that other processes do not choose its frames
for replacement).

• Global replacement generally results in greater system throughput and
is therefore the more common method.

1.6 Thrashing

• If the number of frames allocated to a low-priority process falls below the
minimum number required, we must suspend that process’s execution.
We should then page out its remaining pages, freeing all its allocated
frames.

• In fact, look at any process that does not have “enough” frames.

– If the process does not have the number of frames it needs to
support pages in active use, it will quickly page-fault.

– At this point, it must replace some page.

– However, since all its pages are in active use, it must replace a
page that will be needed again right away.

– Consequently, it quickly faults again, and again, and again, re-
placing pages that it must bring back in immediately.

• This high paging activity is called thrashing. A process is thrashing
if it is spending more time paging than executing.

1.6.1 Cause of Thrashing

• Thrashing results in severe performance problems. Consider the fol-
lowing scenario (see Fig. 15);

20



• The OS monitors CPU utilization. If CPU utilization is too low, we
increase the degree of multiprogramming by introducing a new process
to the system.

Figure 15: Thrashing.

– Now suppose that a process enters a new phase in its execution
and needs more frames.

– It starts faulting and taking frames away from other processes
(global page-replacement algorithm).

– These processes need those pages, however, and so they also fault,
taking frames from other processes.

– These faulting processes must use the paging device to swap pages
in and out.

– As processes wait for the paging device, CPU utilization decreases.

• The CPU scheduler sees the decreasing CPU utilization and increases
the degree of multiprogramming as a result.

– The new process tries to get started by taking frames from running
processes, causing more page faults and a longer queue for the
paging device.

– As a result, CPU utilization drops even further, and the CPU
scheduler tries to increase the degree of multiprogramming even
more.

• Thrashing has occurred. The page-fault rate increases tremendously.
As a result, the effective memory-access time increases.

21



• No work is getting done, because the processes are spending all their
time paging.

• As the degree of multiprogramming increases, CPU utilization also
increases, although more slowly, until a maximum is reached.

• If the degree of multiprogramming is increased even further, thrashing
sets in, and CPU utilization drops sharply.

• At this point, to increase CPU utilization and stop thrashing, we must
decrease the degree of multiprogramming.

22


	Virtual Memory
	Background
	Demand Paging
	Basic Concepts
	Performance of Demand Paging

	Copy-on-Write
	Page Replacement
	Basic Page Replacement
	FIFO Page Replacement
	Optimal Page Replacement
	LRU Page Replacement

	Allocation of Frames
	Allocation Algorithms
	Global versus Local Allocation

	Thrashing
	Cause of Thrashing



