
0.0.1 Address Binding

• The process of associating program instructions and data to physical
memory addresses is called address binding, or relocation.

• A user program will go through several steps -some of which may be
optional-before being executed (see Fig. 1).

Figure 1: Multistep processing of a user program.

• Addresses may be represented in different ways during these steps.

– Addresses in the source program are generally symbolic (such as
count).

– A compiler will typically bind these symbolic addresses to relo-

catable addresses (such as ”14 bytes from the beginning of this
module”).

– The linkage editor or loader will in turn bind the relocatable

addresses to absolute addresses (such as 74014).

– Each binding is a mapping from one address space to another.

– Classically, the binding of instructions and data to memory ad-
dresses can be done at any step along the way:

1



∗ Compile time. The compiler translates symbolic addresses
to absolute addresses. If you know at compile time where
the process will reside in memory, then absolute code can be
generated (Static).

∗ Load time. The compiler translates symbolic addresses to
relative (relocatable) addresses. The loader translates these to
absolute addresses. If it is not known at compile time where
the process will reside in memory, then the compiler must
generate relocatable code (Static).

∗ Execution time. If the process can be moved during its
execution from one memory segment to another, then binding
must be delayed until run time. The absolute addresses are
generated by hardware. Most general-purpose OSs use this
method (Dynamic).

– Static–new locations are determined before execution. Dynamic–
new locations are determined during execution.

0.0.2 Logical Versus Physical Address Space

• An address generated by the CPU is commonly referred to as a logical

address, whereas an address seen by the memory unit -that is, the one
loaded into the memory-address register of the memory- is commonly
referred to as a physical address.

• The compile-time and load-time address-binding methods generate iden-
tical logical and physical addresses.

• However the execution-time address-binding scheme results in differing
logical and physical addresses. In this case, we usually refer to the
logical address as a virtual address.

• The run-time mapping from virtual to physical addresses is done by a
hardware device called the memory-management unit (MMU).

• For the time being, we illustrate this mapping with a simple MMU
scheme, which is a generalization of the base-register scheme (see Fig.
2)).

– The base register is now called a relocation register.

– The value in the relocation register is added to every address gen-
erated by a user process at the time it is sent to memory

2



Figure 2: Dynamic relocation using a relocation register.

– For example, if the base is at 14000, then an attempt by the user
to address location 0 is dynamically relocated to location 14000;
an access to location 346 is mapped to location 14346.

• The user program never sees the real physical addresses. The program
can create a pointer to location 346, store it in memory, manipulate it,
and compare it with other addresses -all as the number 346.

• The user program deals with logical addresses. The memory-mapping
hardware converts logical addresses into physical addresses.

• The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management.

0.0.3 Dynamic Loading

• In our discussion so far, the entire program and all data of a process
must be in physical memory for the process to execute.

• To obtain better memory-space utilization, we can use dynamic loading.

– With dynamic loading, a routine is not loaded until it is called.

– All routines are kept on disk in a relocatable load format.

– The main program is loaded into memory and is executed. When
a routine needs to call another routine, the calling routine first
checks to see whether the other routine has been loaded.

– If not, the relocatable linking loader is called to load the desired
routine into memory and to update the program’s address tables
to reflect this change.

3



– Then control is passed to the newly loaded routine.

• The advantage of dynamic loading is that an unused routine is never
loaded.

• Dynamic loading does not require special support from the OS. Oper-
ating systems may help the programmer, however, by providing library
routines to implement dynamic loading.

0.0.4 Dynamic Linking and Shared Libraries

• Figure 1 also shows dynamically linked libraries. The concept of dy-
namic linking is similar to that of dynamic loading.

• Here, though, linking, rather than loading, is postponed until execution
time. With dynamic linking, a stub is included in the image for each
library-routine reference.

• The stub is a small piece of code that indicates how to locate the
appropriate memory-resident library routine or how to load the library
if the routine is not already present.

– When the stub is executed, it checks to see whether the needed
routine is already in memory.

– If not, the program loads the routine into memory.

• This feature can be extended to library updates (such as bug fixes).
A library may be replaced by a new version, and all programs that
reference the library will automatically use the new version.

0.1 Swapping

• A process must be in memory to be executed. A process, however, can
be swapped temporarily out of memory to a backing store (disk) and
then brought back into memory for continued execution.

• A round-robin CPU-scheduling algorithm; when a quantum expires (see
Fig. 3),

– The memory manager will start to swap out the process that just
finished

– and to swap another process into the memory space that has been
freed.

4



– In the meantime, the CPU scheduler will allocate a time slice to
some other process in memory.

– When each process finishes its quantum, it will be swapped with
another process.

Figure 3: Swapping of two processes using a disk as a backing store.

• The quantum must be large enough to allow reasonable amounts of
computing to be done between swaps.

• A variant of this swapping policy is used for priority-based scheduling
algorithms. This variant of swapping is sometimes called roll out, roll

in.

• Normally, a process that is swapped out will be swapped back into the
same memory space it occupied previously.

• This restriction is dictated by the method of address binding.

– If binding is done at assembly or load time, then the process can-
not be easily moved to a different location.

– If execution-time binding is being used, however, then a process
can be swapped into a different memory space, because the phys-
ical addresses are computed during execution time.

• Context-switch time; to get an idea of the context-switch time,

– Let us assume that the user process is 10 MB in size and the back-
ing store is a standard hard disk with a transfer rate of 40 MB per
second.

5



– The actual transfer of the 10-MB process to or from main memory
takes

10000 KB/40000 KB per second = 1/4 second

= 250 milliseconds.

• Assuming that no head seeks are necessary, and assuming an average
latency of 8 milliseconds, the swap time is 258 milliseconds.

• Since we must both swap out and swap in, the total swap time is about
516 milliseconds.

• For efficient CPU utilization, we want the execution time for each pro-
cess to be long relative to the swap time. Thus, the time quantum
should be substantially larger than 0.516 seconds.

• Notice that the major part of the swap time is transfer time. Generally,
swap space is allocated as a chunk of disk, separate from the file system,
so that its use is as fast as possible.

• Swapping is constrained by other factors as well. If we want to swap a
process, we must be sure that it is completely idle.

• Currently, standard swapping is used in few systems. A modification
of swapping is used in many versions of UNIX.

– Swapping is normally disabled but will start if many processes are
running and are using a threshold amount of memory.

– Swapping is again halted when the load on the system is reduced.

0.2 Contiguous Memory Allocation

• The memory is usually divided into two partitions:

– one for the resident OS

– one for the user processes.

• We can place the OS in either low memory or high memory (depends
on the location of the interrupt vector).

• We usually want several user processes to reside in memory at the same
time. We therefore need to consider how to allocate available memory
to the processes that are in the input queue waiting to be brought into
memory.

6



• In this contiguous memory allocation, each process is contained in a
single contiguous section of memory.

0.2.1 Memory Mapping and Protection

• With relocation and limit registers, each logical address must be less
than the limit register;

• The MMU maps the logical address dynamically by adding the value
in the relocation register. This mapped address is sent to memory (see
Fig. 4).

Figure 4: Hardware support for relocation and limit registers.

• When the CPU scheduler selects a process for execution, the dispatcher
loads the relocation and limit registers with the correct values as part
of the context switch.

• The relocation-register scheme provides an effective way to allow the
OS size to change dynamically.

• For example, the OS contains code and buffer space for device drivers.

– If a device driver (or other OS service) is not commonly used, we
do not want to keep the code and data in memory.

– Such code is sometimes called transient OS code; it comes and
goes as needed.

– Thus, using this code changes the size of the OS during program
execution.

7



0.2.2 Memory Allocation

• One of the simplest methods for allocating memory is to divide memory
into several fixed-sized partitions. Each partition may contain exactly
one process.

• Thus, the degree of multiprogramming is bound by the number of par-
titions. In this multiple-partition method,

– When a partition is free, a process is selected from the input queue
and is loaded into the free partition.

– When the process terminates, the partition becomes available for
another process.

• This method is no longer in use.

• The method described next is a generalization of the fixed-partition
scheme (called MVT); it is used primarily in batch environments. In
the fixed-partition scheme,

– The OS keeps a table indicating which parts of memory are avail-
able and which are occupied.

– Initially, all memory is available for user processes and is consid-
ered one large block of available memory, a hole.

– When a process arrives and needs memory, we search for a hole
large enough for this process.

– If we find one, we allocate only as much memory as is needed,
keeping the rest available to satisfy future requests.

• At any given time, we have a list of available block sizes and the input
queue. The OS can order the input queue according to a scheduling
algorithm.

• When a process terminates, it releases its block of memory, which is
then placed back in the set of holes. If the new hole is adjacent to other
holes, these adjacent holes are merged to form one larger hole.

• This procedure is a particular instance of the general dynamic storage-

allocation problem, which concerns how to satisfy a request of size n

from a list of free holes. There are many solutions to this problem.

8



– First fit. Allocate the first hole that is big enough. Searching
can start either at the beginning of the set of holes or where the
previous first-fit search ended. We can stop searching as soon as
we find a free hole that is large enough.

– Best fit. Allocate the smallest hole that is big enough. We must
search the entire list, unless the list is ordered by size. This strat-
egy produces the smallest leftover hole.

– Worst fit. Allocate the largest hole. Again, we must search the
entire list, unless it is sorted by size. This strategy produces the
largest leftover hole, which may be more useful than the smaller
leftover hole from a best-fit approach.

• Simulations have shown that both first fit and best fit are better than
worst fit in terms of decreasing time and storage utilization.

• Neither first fit nor best fit is clearly better than the other in terms of
storage utilization, but first fit is generally faster.

0.2.3 Fragmentation

• Both the first-fit and best-fit strategies for memory allocation suffer
from external fragmentation.

• External fragmentation exists when there is enough total memory space
to satisfy a request, but the available spaces are not contiguous; storage
is fragmented into a large number of small holes.

• Depending on the total amount of memory storage and the average
process size, external fragmentation may be a minor or a major prob-
lem.

• Statistical analysis of first fit, for instance, reveals that, even with some
optimization, given N allocated blocks, another 0.5N blocks will be lost
to fragmentation.

• That is, one-third of memory may be unusable! This property is known
as the 50-percent rule.

• Memory fragmentation can be internal as well as external.

– Consider a multiple-partition allocation scheme with a hole of
18,464 bytes.

– Suppose that the next process requests 18,462 bytes.

9



– If we allocate exactly the requested block, we are left with a hole
of 2 bytes.

– The difference between these two numbers is internal fragmenta-
tion; memory that is internal to a partition but is not being used.

• The general approach to avoiding this problem is to break the physical
memory into fixed-sized blocks and allocate memory in units based on
block size.

• One solution to the problem of external fragmentation is compaction.
The goal is to shuffle the memory contents so as to place all free memory
together in one large block.

• The simplest compaction algorithm is to move all processes toward one
end of memory; all holes move in the other direction, producing one
large hole of available memory. This scheme can be expensive.

• Another possible solution to the external-fragmentation problem is to
permit the logical address space of the processes to be non-contiguous,
thus allowing a process to be allocated physical memory wherever the
latter is available.

• Two complementary techniques achieve this solution:

– paging

– segmentation

• These techniques can also be combined.

0.3 Paging

• Paging is a memory-management scheme that permits the physical ad-
dress space of a process to be non-contiguous.

• Paging avoids the considerable problem of fitting memory chunks of
varying sizes onto the backing store.

• The backing store also has the fragmentation problems discussed in
connection with main memory, except that access is much slower, so
compaction is impossible.

• Because of its advantages over earlier methods, paging in its various
forms is commonly used in most OSs.

10



• Traditionally, support for paging has been handled by hardware. How-
ever, recent designs have implemented paging by closely integrating the
hardware and OS, especially on 64-bit microprocessors.

0.3.1 Basic Method

• The basic method for implementing paging involves

– breaking physical memory into fixed-sized blocks called frames

– breaking logical memory into blocks of the same size called pages.

• When a process is to be executed, its pages are loaded into any available
memory frames from the backing store.

• The backing store is divided into fixed-sized blocks that are of the same
size as the memory frames.

Figure 5: Paging hardware.

• The hardware support for paging is illustrated in Fig. 5.

– Every address generated by the CPU is divided into two parts: a
page number (p) and a page offset (d).

– The page number is used as an index into a page table.

– The page table contains the base address of each page in physical
memory.

– This base address is combined with the page offset to define the
physical memory address that is sent to the memory unit.

• The paging model of memory is shown in Fig. 6.

11



Figure 6: Paging model of logical and physical memory.

• The page size (like the frame size) is defined by the hardware. The size
of a page is typically a power of 2, varying between 512 bytes and 16
MB per page, depending on the computer architecture.

• Consider the memory in Fig. 7. Using a page size of 4 bytes and a
physical memory of 32 bytes (8 pages). It is shown that how the user’s
view of memory can be mapped into physical memory.

– Logical address 0 is page O, offset O. Indexing into the page table,
we find that page 0 is in frame 5. Thus, logical address 0 maps to
physical address 20 (= (5 x 4) + 0).

– Logical address 3 (page 0, offset 3) maps to physical address 23
(= (5 x 4) + 3).

– Logical address 4 is page 1, offset 0; according to the page table,
page 1 is mapped to frame 6. Thus, logical address 4 maps to
physical address 24 (= (6 x 4) + 0).

– Logical address 13 maps to physical address 9.

• Every logical address is bound by the paging hardware to some physical
address. Using paging is similar to using a table of base (or relocation)
registers, one for each frame of memory.

• When we use a paging scheme, we have no external fragmentation:

12



Figure 7: Paging example for a 32-byte memory with 4-byte pages.

– Any free frame can be allocated to a process that needs it. How-
ever, we may have some internal fragmentation.

– Notice that frames are allocated as units. If the memory require-
ments of a process do not happen to coincide with page bound-
aries, the last frame allocated may not be completely full. For
example,

∗ if page size is 2,048 bytes, a process of 72,766 bytes would
need 35 pages plus 1,086 bytes.

∗ It would be allocated 36 frames, resulting in an internal frag-
mentation of 2,048 - 1,086 = 962 bytes.

∗ In the worst case, a process would need n pages plus 1 byte.
It would be allocated n + 1 frames, resulting in an internal
fragmentation of almost an entire frame.

• If process size is independent of page size, we expect internal fragmen-
tation to average one-half page per process.

• This consideration suggests that small page sizes are desirable.

• However, overhead is involved in each page-table entry, and this over-
head is reduced as the size of the pages increases. Also, disk I/O is
more efficient when the number of data being transferred is larger.

13



• Generally, page sizes have grown over time as processes, data sets, and
main memory have become larger.

• Today, pages typically are between 4 KB and 8 KB in size, and some
systems support even larger page sizes.

• Usually, each page-table entry is 4 bytes long, but that size can vary
as well. A 32-bit entry can point to one of 232 physical page frames.

• If frame size is 4 KB, then a system with 4-byte entries can address
244(4KB ∗ 232) bytes (or 16 TB) of physical memory.

• When a process arrives in the system to be executed,

– Its size, expressed in pages, is examined. Each page of the process
needs one frame.

– Thus, if the process requires n pages, at least n frames must be
available in memory. If n frames are available, they are allocated
to this arriving process.

– The first page of the process is loaded into one of the allocated
frames, and the frame number is put in the page table for this
process.

– The next page is loaded into another frame, and its frame number
is put into the page table, and so on (see Fig. 8).

Figure 8: Free frames (a) before allocation and (b) after allocation.

• An important aspect of paging is the clear separation between the user’s
view of memory and the actual physical memory.

14



• The user program views memory as one single space, containing only
this one program. In fact, the user program is scattered throughout
physical memory, which also holds other programs.

• The logical addresses are translated into physical addresses by the
address-translation hardware. This mapping is hidden from the user
and is controlled by the OS.

• The user process has no way of addressing memory outside of its page
table, and the table includes only those pages that the process owns.

• Since the OS is managing physical memory, it must be aware of the
allocation details of physical memory-which frames are allocated, which
frames are available, how many total frames there are, and so on.

• This information is generally kept in a data structure called a frame

table. The frame table has one entry for each physical page frame,
indicating whether the latter is free or allocated and, if it is allocated,
to which page of which process or processes.

0.3.2 Protection

• Memory protection in a paged environment is accomplished by protec-

tion bits associated with each frame. Normay, these bits are kept in
the page table. One bit can define a page to be read-write or read-only.

• Every reference to memory goes through the page table to find the
correct frame number. At the same time that the physical address is
being computed, the protection bits can be checked to verify that no
writes are being made to a read-only page.

• An attempt to write to a read-only page causes a hardware trap to the
operating system (or memory-protection violation).

• One additional bit is generally attached to each entry in the page table:
a valid-invalid bit.

– When this bit is set to “valid”, the associated page is in the pro-
cess’s logical address space and is thus a legal (or valid) page.

– When the bit is set to “invalid”, the page is not in the process’s
logical address space.

• Illegal addresses are trapped by use of the valid-invalid bit. The OS
sets this bit for each page to allow or disallow access to the page.

15



• Suppose, for example, that in a system with a 14-bit address space
(0 to 16383), we have a program that should use only addresses 0 to
10468.

– Given a page size of 2 KB (with 6 pages 2048 ∗ 6 = 12288).

– item Addresses in pages 0, 1, 2, 3, 4, and 5 are mapped normally
through the page table.

– Any attempt to generate an address in pages 6 or 7, however, will
find that the valid-invalid bit is set to invalid, and the computer
will trap to the OS (invalid page reference).

Figure 9: Valid (v) or invalid (i) bit in a page table.

• Notice that this scheme has created a problem. Because the program
extends to only address 10468, any reference beyond that address is
illegal.

• However, references to page 5 are classified as valid, so accesses to
addresses up to 12287 are valid. Only the addresses from 12288 to
16383 are invalid.

• This problem is a result of the 2-KB page size and reflects the internal
fragmentation of paging.

0.3.3 Shared Pages

• An advantage of paging is the possibility of sharing common code. This
consideration is particularly important in a time-sharing environment.

16



Figure 10: Sharing of code in a paging environment.

• Consider a system that supports 40 users, each of whom executes a
text editor (see Fig. 10).

– If the text editor consists of 150 KB of code and 50 KB of data
space, we need 8,000 KB to support the 40 users (40 ∗ (150KB +
50KB)).

– If the code is reentrant code (or pure code), it can be shared (to
be shareable, the code must be reentrant). Here we see a three-
page editor -each page 50 KB in size- being shared among three
processes. Each process has its own data page.

– Reentrant code is non-self-modifying code; it never changes during
execution. Thus, two or more processes can execute the same code
at the same time.

– Each process has its own copy of registers and data storage to hold
the data for the process’s execution. The data for two different
processes will, of course, be different.

– Only one copy of the editor need be kept in physical memory.
Each user’s page table maps onto the same physical copy of the
editor, but data pages are mapped onto different frames.

– Thus, to support 40 users, we need only one copy of the editor
(150 KB), plus 40 copies of the 50 KB of data space per user.
The total space required is now 2,150 KB instead of 8,000 KB-a
significant savings.

17



• Organizing memory according to pages provides numerous benefits in
addition to allowing several processes to share the same physical pages.

0.4 Segmentation

• An important aspect of memory management that became unavoidable
with paging is the separation of the user’s view of memory and the
actual physical memory.

• The user’s view of memory is not the same as the actual physical mem-
ory. The user’s view is mapped onto physical memory.

• This mapping allows differentiation between logical memory and phys-
ical memory.

0.4.1 Basic Method

• Users prefer to view memory as a collection of variable-sized segments,
with no necessary ordering among segments (Figure 8.18).

Figure 11: User’s view of a program.

• Consider how you think of a program when you are writing it. You
think of it as a main program with a set of methods, procedures, or
functions.

• Segmentation is a memory-management scheme that supports this user
view of memory. A logical address space is a collection of segments.

18



• Each segment has a name and a length. The addresses specify both
the segment name and the offset within the segment.

• The user therefore specifies each address by two quantities:

– a segment name

– an offset

• For simplicity of implementation, segments are numbered and are re-
ferred to by a segment number, rather than by a segment name.

• Thus, a logical address consists of a two tuple:

<segment-number, offset>

0.4.2 Hardware

• Although the user can now refer to objects in the program by a two-
dimensional address, the actual physical memory is still, of course, a
one-dimensional sequence of bytes.

• Thus, we must define an implementation to map two-dimensional user-
defined addresses into one-dimensional physical addresses.

• This mapping is effected by a segment table. Each entry in the
segment table has a segment base and a segment limit.

• The segment base contains the starting physical address where the
segment resides in memory, whereas the segment limit specifies the
length of the segment (see Fig. 12).

– A logical address consists of two parts: a segment number, s, and
an offset into that segment, d.

– The segment number is used as an index to the segment table.
The offset d of the logical address must be between 0 and the
segment limit. If it is not, we trap to the OS (logical addressing
attempt beyond end of segment).

– When an offset is legal, it is added to the segment base to produce
the address in physical memory of the desired byte. The segment
table is thus essentially an array of base-limit register pairs.

19



Figure 12: Segmentation hardware.

• As an example, consider the situation shown in Fig. 13.

Figure 13: Example of segmentation.

– We have five segments numbered from 0 through 4. The segments
are stored in physical memory as shown.

– The segment table has a separate entry for each segment, giving
the beginning address of the segment in physical memory (or base)
and the length of that segment (or limit).

– For example, segment 2 is 400 bytes long and begins at location
4300.

– Thus, a reference to byte 53 of segment 2 is mapped onto location
4300 + 53 = 4353.

– A reference to segment 3, byte 852, is mapped to 3200 (the base
of segment 3) + 852 = 4052.

20



– A reference to byte 1222 of segment would result in a trap to the
OS, as this segment is only 1,000 bytes long.

21


	Address Binding
	Logical Versus Physical Address Space
	Dynamic Loading
	Dynamic Linking and Shared Libraries
	Swapping
	Contiguous Memory Allocation
	Memory Mapping and Protection
	Memory Allocation
	Fragmentation

	Paging
	Basic Method
	Protection
	Shared Pages

	Segmentation
	Basic Method
	Hardware


