
1 Controlling Thread Attributes and Synchro-

nization

• Threads and synchronization variables can have several attributes as-
sociated with them.

– Different threads may be scheduled differently (round-robin, pri-
oritized, etc.),

– They may have different stack sizes, and so on.

– A synchronization variable such as a mutex-lock may be of differ-
ent types.

• An attributes object is a data-structure that describes entity (thread,
mutex, condition variable) properties.

• When creating a thread or a synchronization variable, we can specify
the attributes object that determines the properties of the entity.

• Pthreads allows the user to change the priority of the thread.

• Subsequent changes to attributes objects do not change the properties
of entities created using the attributes object prior to the change.

• There are several advantages of using attributes objects.

1 It separates the issues of program semantics and implementation.

– Thread properties are specified by the user.

– How these are implemented at the system level is transparent to
the user.

– This allows for greater portability across operating systems.

2 Using attributes objects improves modularity and readability of the
programs.

3 It allows the user to modify the program easily.

– For instance, if the user wanted to change the scheduling from
round robin to time-sliced for all threads,

– they would only need to change the specific attribute in the at-
tributes object.

• To create an attributes object with the desired properties,

1

• we must first create an object with default properties and then modify
the object as required.

1.1 Attributes Objects for Threads

• pthread attr init;

• This function initializes the attributes object attr to the default values.

• Upon successful completion, the function returns a 0, otherwise it re-
turns an error code.

• The attributes object may be destroyed.

• pthread attr destroy;

• The call returns a 0 on successful removal of the attributes object attr.

• Individual properties associated with the attributes object can be changed
using the following functions:

• pthread attr setdetachstate =⇒ to set the detach state

• pthread attr setguardsize np =⇒ to set the stack guard size

• pthread attr setstacksize =⇒ to set the stack size

• pthread attr setstackaddr =⇒ to set the stack address

• pthread attr setinheritsched =⇒ to set whether scheduling policy
is inherited from the creating thread

• pthread attr setschedpolicy =⇒ to set the scheduling policy (in
case it is not inherited)

2

• pthread attr setschedparam =⇒ to set the scheduling parameters

• pthread attr setprio =⇒ to set the priority

• pthread attr default, pthread attr init

• For most parallel programs, default thread properties are generally ad-
equate.

2 Composite Synchronization Constructs

• While the Pthreads API provides a basic set of synchronization

constructs, often, there is a need for higher level constructs.

• These higher level constructs can be built using basic synchronization
constructs.

• An important and often used construct in threaded (as well as other
parallel) programs is a barrier.

• A barrier call is used to hold a thread until all other threads partici-
pating in the barrier have reached the barrier.

• Barriers can be implemented using a counter, a mutex and a condition
variable.

• A single integer is used to keep track of the number of threads that
have reached the barrier.

– If the count is less than the total number of threads, the threads
execute a condition wait.

– The last thread entering (and setting the count to the number of
threads) wakes up all the threads using a condition broadcast.

The code for accomplishing this is as follows:

• In the above implementation of a barrier, threads enter the barrier and
stay until the broadcast signal releases them.

• The threads are released one by one since the mutex count lock is passed
among them one after the other.

• The trivial lower bound on execution time of this function is therefore
O(n) for n threads.

3

• This implementation of a barrier can be speeded up using multiple
barrier variables.

3 Tips for Designing Asynchronous Programs

• When designing multithreaded applications, it is important to remem-
ber that one cannot assume any order of execution with respect to
other threads.

• Any such order must be explicitly established using the synchronization
mechanisms discussed above: mutexes, condition variables, and joins.

• In many thread libraries, threads are switched at semi-deterministic
intervals.

• Such libraries (slightly asynchronous libraries) are more forgiving of
synchronization errors in programs.

• On the other hand, kernel threads (threads supported by the kernel)
and threads scheduled on multiple processors are less forgiving.

4

• The programmer must therefore not make any assumptions regard-
ing the level of asynchrony in the threads library.

• The following rules of thumb which help minimize the errors in threaded
programs are recommended.

• Set up all the requirements for a thread before actually creating the
thread. This includes

– initializing the data,

– setting thread attributes,

– thread priorities,

– mutex-attributes, etc.

• Once you create a thread, it is possible that the newly created thread
actually runs to completion before the creating thread gets scheduled
again.

• When there is a producer-consumer relation between two threads for
certain data items,

• At the producer end, make sure the data is placed before it is consumed
and that intermediate buffers are guaranteed to not overflow.

• At the consumer end, make sure that the data lasts at least until all
potential consumers have consumed the data.

• This is particularly relevant for stack variables.

• Where possible, define and use group synchronizations and data repli-
cation.

• This can improve program performance significantly.

• While these simple tips provide guidelines for writing error-

free threaded programs, extreme caution must be taken to

avoid race conditions and parallel overheads associated with

synchronization.

5

4 OpenMP: a Standard for Directive Based

Parallel Programming

• While standardization and support for these threaded APIs has come
a long way,

• their use is still predominantly restricted to system programmers as
opposed to application programmers.

• One of the reasons for this is that APIs such as Pthreads are considered
to be low-level primitives.

• Conventional wisdom indicates that a large class of applications can be
efficiently supported by higher level constructs (or directives)

• which rid the programmer of the mechanics of manipulating threads.

• Such directive-based languages have existed for a long time,

• but only recently have standardization efforts succeeded in the form of
OpenMP.

4.1 The OpenMP Programming Model

• OpenMP is an API that can be used with FORTRAN, C, and C++
for programming shared address space machines.

• OpenMP directives provide support for concurrency, synchroniza-
tion, and data handling while avoiding the need for explicitly setting
up mutexes, condition variables, data scope, and initialization.

• OpenMP directives in C and C++ are based on the #pragma compiler
directives.

• The directive itself consists of a directive name followed by clauses.

• OpenMP programs execute serially until they encounter the parallel
directive.

• This directive is responsible for creating a group of threads.

6

• The exact number of threads can be specified in the directive, set using
an environment variable, or at runtime using OpenMP functions.

• The main thread that encounters the parallel directive becomes the
master of this group of threads with id 0.

• The parallel directive has the following prototype:

• Each thread created by this directive executes the structured block spec-
ified by the parallel directive.

• It is easy to understand the concurrency model of OpenMP when
viewed in the context of the corresponding Pthreads translation.

• In Figure 1, one possible translation of an OpenMP program to a
Pthreads program is shown.

• The clause list is used to specify conditional parallelization, num-

ber of threads, and data handling.

• Conditional Parallelization: The clause if (scalar expression) de-
termines whether the parallel construct results in creation of threads.

– Only one if clause can be used with a parallel directive.

• Degree of Concurrency: The clause num threads (integer expres-
sion) specifies the number of threads that are created by the parallel
directive.

• Data Handling: The clause private (variable list) indicates that the
set of variables specified is local to each thread.

– i.e., each thread has its own copy of each variable in the list.

– The clause firstprivate (variable list) is similar to the private clause,
except the values of variables on entering the threads are initialized
to corresponding values before the parallel directive.

7

Figure 1: A sample OpenMP program along with its Pthreads translation
that might be performed by an OpenMP compiler.

– The clause shared (variable list) indicates that all variables in the
list are shared across all the threads,

– i.e., there is only one copy. Special care must be taken while
handling these variables by threads to ensure serializability.

Using the parallel directive;

• Here, if the value of the variable is parallel equals one, eight threads
are created.

• Each of these threads gets private copies of variables a and c, and shares
a single value of variable b.

• Furthermore, the value of each copy of c is initialized to the value of c
before the parallel directive.

• The clause default (shared) implies that, by default, a variable is shared
by all the threads.

• The clause default (none) implies that the state of each variable used
in a thread must be explicitly specified.

8

• This is generally recommended, to guard against errors arising from
unintentional concurrent access to shared data.

• Just as firstprivate specifies how multiple local copies of a variable are
initialized inside a thread,

• the reduction clause specifies how multiple local copies of a variable at
different threads are combined into a single copy at the master when
threads exit.

• The usage of the reduction clause is reduction (operator: variable list).

• This clause performs a reduction on the scalar variables specified in the
list using the operator.

• The variables in the list are implicitly specified as being private to
threads.

9

• The operator can be one of

Using the reduction clause;

• In this example, each of the eight threads gets a copy of the variable
sum.

• When the threads exit, the sum of all of these local copies is stored in
the single copy of the variable (at the master thread).

• Computing PI using OpenMP directives (presented a Pthreads pro-
gram for the same problem).

• The omp get num threads() function returns the number of threads in
the parallel region

• The omp get thread num() function returns the integer id of each thread
(recall that the master thread has an id 0).

• The parallel directive specifies that all variables except npoints, the
total number of random points in two dimensions across all threads,
are local.

• Furthermore, the directive specifies that there are eight threads, and
the value of sum after all threads complete execution is the sum of local
values at each thread.

• A for loop generates the required number of random points (in two di-
mensions) and determines how many of them are within the prescribed
circle of unit diameter.

Note that this program is much easier to write in terms of specifying
creation and termination of threads compared to the corresponding POSIX
threaded program.

10

11

	Controlling Thread Attributes and Synchronization
	Attributes Objects for Threads

	Composite Synchronization Constructs
	Tips for Designing Asynchronous Programs
	OpenMP: a Standard for Directive Based Parallel Programming
	The OpenMP Programming Model

