
1 Thread Basics: Passing Arguments, Can-

cellation and Joining

1.1 Passing Arguments to Threads

• Passing Arguments to Threads

• The pthread create() function allows the programmer to pass one argument
to the thread function.

• For cases where multiple arguments must be passed, this limitation is
easily overcome by creating a structure.

• This structure contains all of the arguments, and then a pointer is
passed to that structure in the pthread create() routine.

• All arguments must be passed by reference and cast to (void *).

• Threads have non-deterministic start-up and scheduling.

• How can you safely pass data to newly created threads?

• Example: Demonstrates how to pass a simple integer to each thread.

Figure 1: Passing single argument to thread function.

• Example: Demonstrates how to pass/setup multiple arguments to
thread function via a structure.

Each thread receives a unique instance of the structure.

1



Figure 2: Passing multiple arguments to thread function via a structure.

1.2 Thread Cancellation

• Cancellation.

• Consider a simple program to evaluate a set of positions in a chess
game.

• Assume that there are k moves, each being evaluated by an independent
thread.

• If at any point of time, a position is established to be of a certain
quality, the other positions that are known to be of worse quality must
stop being evaluated.

• In other words, the threads evaluating the corresponding board posi-
tions must be canceled.

• Posix threads provide this cancellation feature.

• A thread may cancel itself or cancel other threads.

• pthread cancel.

2



1 int

2 pthread_cancel (

3 pthread_t thread);

• Here, thread is the handle to the thread to be canceled. When a call
to this function is made, a cancellation is sent to the specified thread.

• It is not guaranteed that the specified thread will receive or act on the
cancellation. Threads can protect themselves against cancellation.

• When a cancellation is actually performed, cleanup functions are in-
voked for reclaiming the thread data structures.

• The pthread cancel function returns after a cancellation has been
sent. The cancellation may itself be performed later.

1.3 Joining and Detaching Threads

• Joining and Detaching Threads.

• The main program must wait for the threads to run to completion.

• “Joining“ is one way to accomplish synchronization between threads.

• Function pthread join which suspends execution of the calling thread
until the specified thread terminates.

• A call to this function waits for the termination of the thread whose id
is given by thread.

• A call to this function waits for the termination of the thread whose id
is given by thread.

• On a successful call to pthread join, the value passed to pthread exit
is returned in the location pointed to by ptr.

3



Figure 3: Threads joining.

• On successful completion, pthread join returns 0, else it returns an
error-code.

• When a thread is created, one of its attributes defines whether it is
joinable or detached.

• Only threads that are created as joinable can be joined. If a thread is
created as detached, it can never be joined.

• The final draft of the POSIX standard specifies that threads should be
created as joinable.

• To explicitly create a thread as joinable or detached, the attr argument
in the pthread create() routine is used.

• Detaching:

• The pthread detach() routine can be used to explicitly detach a
thread even though it was created as joinable.

• If a thread requires joining, consider explicitly creating it as joinable
(portability).

• If you know in advance that a thread will never need to join with
another thread, consider creating it in a detached state (resources).

• Reentrant functions are those that can be safely called when another
instance has been suspended in the middle of its invocation.

• All thread functions must be reentrant because a thread can be pre-
empted in the middle of its execution.

4



• If another thread starts executing the same function at this point, a
non-reentrant function might not work as desired.

2 Synchronization Primitives in Pthreads

2.1 Mutual Exclusion for Shared Variables

• While communication is implicit in shared-address-space programming,

• much of the effort associated with writing correct threaded programs
is spent on synchronizing concurrent threads with respect to their
data accesses or scheduling.

• Using pthread create and pthread join calls, we can create concur-
rent tasks.

• These tasks work together to manipulate data and accomplish a given
task.

• When multiple threads attempt to manipulate the same data item,

• the results can often be incoherent if proper care is not taken to
synchronize them.

• Consider the following code fragment being executed by multiple threads.

• The variable my cost is thread-local and best cost is a global variable
shared by all threads.

• This is an undesirable situation, sometimes also referred to as a race
condition.

• So called because the result of the computation depends on the race
between competing threads.

5



• To understand the problem with shared data access, let us examine
one execution instance of the above code fragment.

• Assume that there are two threads,

• The initial value of best cost is 100,

• The values of my cost are 50 and 75 at threads t1 and t2, respectively.

• If both threads execute the condition inside the if statement concur-
rently, then both threads enter the then part of the statement.

• Depending on which thread executes first, the value of best cost at the
end could be either 50 or 75.

• There are two problems here:

1. non-deterministic nature of the result;

2. more importantly, the value 75 of best cost is inconsistent in the
sense that no serialization of the two threads can possibly yield
this result.

• Race condition occurred because the test-and-update operation is an
atomic operation;

– i.e., the operation should not be broken into sub-operations.

• Furthermore, the code corresponds to a critical segment;

– i.e., a segment that must be executed by only one thread at any
time.

• Many statements that seem atomic in higher level languages such as C
may in fact be non-atomic.

– i.e., a statement of the form global count+ = 5 may comprise sev-
eral assembler instructions and therefore must be handled care-
fully.

• Threaded APIs provide support for implementing critical sections and
atomic operations using mutex-locks (mutual exclusion locks).

• Mutex-locks have two states: locked and unlocked.

• At any point of time, only one thread can lock a mutex lock.

6



• A lock is an atomic operation.

– To access the shared data, a thread must first try to acquire a
mutex-lock.

– If the mutex-lock is already locked, the process trying to acquire
the lock is blocked.

– This is because a locked mutex-lock implies that there is another
thread currently in the critical section and that no other thread
must be allowed in.

– When a thread leaves a critical section, it must unlock the mutex-

lock so that other threads can enter the critical section.

• All mutex-locks must be initialized to the unlocked state at the begin-
ning of the program.

• The function pthread mutex lock;

• A call to this function attempts a lock on the mutex-lock mutex lock.

• The data type of a mutex lock is predefined to be pthread mutex t.

• If the mutex-lock is already locked, the calling thread blocks; otherwise
the mutex-lock is locked and the calling thread returns.

• A successful return from the function returns a value 0. Other values
indicate error conditions such as deadlocks.

• The function pthread mutex unlock;

7



• On leaving a critical section, a thread must unlock the mutex-lock
associated with the section.

• If it does not do so, no other thread will be able to enter this section,
typically resulting in a deadlock.

• On calling pthread mutex unlock function, the lock is relinquished
and one of the blocked threads is scheduled to enter the critical sec-
tion.

• The specific thread is determined by the scheduling policy.

• if the thread priority scheduling is not implied, the assignment will be
left to the native system scheduler and may appear to be more or less
random.

• Mutex variables must be declared with type pthread mutex t, and
must be initialized before they can be used.

• There are two ways to initialize a mutex variable:

1. Statically, when it is declared. For example: pthread mutex t my-

mutex = PTHREAD MUTEX INITIALIZER;

2. Dynamically, with the pthread mutex init() routine. This method
permits setting mutex object attributes, attr.

• If a programmer attempts a pthread mutex unlock on a previously
unlocked mutex or one that is locked by another thread, the effect is
undefined.

• The function pthread mutex init;

• We need one more function before we can start using mutex-locks,
namely, a function to initialize a mutex-lock to its unlocked state.

• The mutex is initially unlocked.

8



• The attributes of the mutex-lock are specified by lock attr.

• If this argument is set to NULL, the default mutex-lock attributes are
used (normal mutex-lock).

• Locks represent serialization points since critical sections must be exe-
cuted by threads one after the other.

• Encapsulating large segments of the program within locks can, there-
fore, lead to significant performance degradation.

• It is therefore important to minimize the size of critical sections and
to handle critical sections and shared data structures with extreme care.

• It is often possible to reduce the idling overhead associated with locks
using an alternate function, pthread mutex trylock.

• It does not have to deal with queues associated with locks for multiple
threads waiting on the lock.

• The function pthread mutex trylock;

• This function attempts a lock on mutex lock.

– If the lock is successful, the function returns a zero.

– If it is already locked by another thread, instead of blocking
the thread execution, it returns a value EBUSY.

– This allows the thread to do other work and to poll the mutex

for a lock.

• Furthermore, pthread mutex trylock is typically much faster than
pthread mutex lock on typical systems.

9


	Thread Basics: Passing Arguments, Cancellation and Joining
	Passing Arguments to Threads
	Thread Cancellation
	Joining and Detaching Threads

	Synchronization Primitives in Pthreads
	Mutual Exclusion for Shared Variables


