Probability I

Dr. Cem Özdoğan

Probability

Sample Space Events Counting Sample Points Probability of Event

Dr. Cem Özdoğan Computer Engineering Department Çankaya University

Lecture 3 Probability I Lecture Information

Ceng272 Statistical Computations at March 1, 2010

Contents

Probability I

Dr. Cem Özdoğan

Probability

Sample Space Events Counting Sample Points Probability of Event

1 Probability

• **Definition**: (Probability theory) The mathematical study of <u>randomness</u> or mechanism of <u>chance</u>.

Dr. Cem Özdoğan

- Definition: (Probability theory) The mathematical study of randomness or mechanism of chance.
- In the study of statistics, we are concerned with the presentation and interpretation of chance outcomes.

Probability I

Dr. Cem Özdoğan

- Definition: (Probability theory) The mathematical study of randomness or mechanism of chance.
- In the study of statistics, we are concerned with the presentation and interpretation of chance outcomes.
- The outcome will depend on chance and, thus, cannot be predicted with certainty.

Probability I

Dr. Cem Özdoğan

- Definition: (Probability theory) The mathematical study of randomness or mechanism of chance.
- In the study of statistics, we are concerned with the presentation and interpretation of chance outcomes.
- The outcome will depend on chance and, thus, cannot be predicted with certainty.
- Any recording of information, whether it be <u>numerical</u> or categorical, is *referred to* **observation**.

Probability I

Dr. Cem Özdoğan

- Definition: (Probability theory) The mathematical study of randomness or mechanism of chance.
- In the study of statistics, we are concerned with the presentation and interpretation of chance outcomes.
- The outcome will depend on chance and, thus, cannot be predicted with certainty.
- Any recording of information, whether it be <u>numerical</u> or categorical, is *referred to* **observation**.
 - the number of accidents in one month: 2, 0, 1, 2.

Probability I

Dr. Cem Özdoğan

- Definition: (Probability theory) The mathematical study of randomness or mechanism of chance.
- In the study of statistics, we are concerned with the presentation and interpretation of chance outcomes.
- The outcome will depend on chance and, thus, cannot be predicted with certainty.
- Any recording of information, whether it be <u>numerical</u> or categorical, is *referred to* **observation**.
 - the number of accidents in one month: 2, 0, 1, 2.
 - the category that an inspected item belongs to: D, N, D, N, N.

Probability I

Dr. Cem Özdoğan

- Definition: (Probability theory) The mathematical study of randomness or mechanism of chance.
- In the study of statistics, we are concerned with the presentation and interpretation of chance outcomes.
- The outcome will depend on chance and, thus, cannot be predicted with certainty.
- Any recording of information, whether it be <u>numerical</u> or categorical, is *referred to* **observation**.
 - the number of accidents in one month: 2, 0, 1, 2.
 - the category that an inspected item belongs to: D, N, D, N, N.
- Experiment: any process that generates (or observe) a set of data.

Probability I

Dr. Cem Özdoğan

- Definition: (Probability theory) The mathematical study of randomness or mechanism of chance.
- In the study of statistics, we are concerned with the presentation and interpretation of chance outcomes.
- The outcome will depend on chance and, thus, cannot be predicted with certainty.
- Any recording of information, whether it be <u>numerical</u> or categorical, is *referred to* **observation**.
 - the number of accidents in one month: 2, 0, 1, 2.
 - the category that an inspected item belongs to: D, N, D, N, N.
- Experiment: any process that generates (or observe) a set of data.
 - E.g., tossing of a coin, two possible outcomes, <u>head</u>s and <u>tails</u>

Probability I

Dr. Cem Özdoğan

- Definition: (Probability theory) The mathematical study of randomness or mechanism of chance.
- In the study of statistics, we are concerned with the presentation and interpretation of chance outcomes.
- The outcome will depend on chance and, thus, cannot be predicted with certainty.
- Any recording of information, whether it be <u>numerical</u> or categorical, is *referred to* **observation**.
 - the number of accidents in one month: 2, 0, 1, 2.
 - the category that an inspected item belongs to: D, N, D, N, N.
- Experiment: any process that generates (or observe) a set of data.
 - E.g., tossing of a coin, two possible outcomes, <u>head</u>s and <u>tails</u>
 - In a statistical experiment, the data are subject to uncertainty.

Probability I

Dr. Cem Özdoğan

 Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- Each outcome in a sample space is called

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- · Each outcome in a sample space is called
 - an element,

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- · Each outcome in a sample space is called
 - an element,
 - a member of the sample space, or

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- · Each outcome in a sample space is called
 - an element,
 - a member of the sample space, or
 - a sample point.

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- · Each outcome in a sample space is called
 - an element,
 - a member of the sample space, or
 - a sample point.
- If the sample space has a <u>finite</u> number of elements, we may list the members.

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- · Each outcome in a sample space is called
 - an element,
 - a member of the sample space, or
 - a sample point.
- If the sample space has a <u>finite</u> number of elements, we may list the members.
- If the sample space has a large or <u>infinite</u> number of elements, we describe it by a **statement** or **rule**.

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- · Each outcome in a sample space is called
 - an element,
 - a member of the sample space, or
 - a sample point.
- If the sample space has a <u>finite</u> number of elements, we may list the members.
- If the sample space has a large or <u>infinite</u> number of elements, we describe it by a **statement** or **rule**.
- Example 2.1.

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- · Each outcome in a sample space is called
 - an element,
 - a member of the sample space, or
 - a sample point.
- If the sample space has a <u>finite</u> number of elements, we may list the members.
- If the sample space has a large or <u>infinite</u> number of elements, we describe it by a **statement** or **rule**.
- Example 2.1.
 - Tossing a coin: S = H, T

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- · Each outcome in a sample space is called
 - an element,
 - a member of the sample space, or
 - a sample point.
- If the sample space has a <u>finite</u> number of elements, we may list the members.
- If the sample space has a large or <u>infinite</u> number of elements, we describe it by a **statement** or **rule**.
- Example 2.1.
 - Tossing a coin: S = H, T
 - Tossing a die:

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- · Each outcome in a sample space is called
 - an element,
 - a member of the sample space, or
 - a sample point.
- If the sample space has a <u>finite</u> number of elements, we may list the members.
- If the sample space has a large or <u>infinite</u> number of elements, we describe it by a **statement** or **rule**.
- Example 2.1.
 - Tossing a coin: S = H, T
 - Tossing a die:
 - $S_1 = \{1, 2, 3, 4, 5, 6\}$

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- · Each outcome in a sample space is called
 - an element,
 - a member of the sample space, or
 - a sample point.
- If the sample space has a <u>finite</u> number of elements, we may list the members.
- If the sample space has a large or <u>infinite</u> number of elements, we describe it by a **statement** or **rule**.
- Example 2.1.
 - Tossing a coin: S = H, T
 - Tossing a die:

•
$$S_1 = \{1, 2, 3, 4, 5, 6\}$$

• $S_2 = \{even, odd\}$

Dr. Cem Özdoğan

- Definition 2.1: The set of possible outcomes of a statistical experiment is called the sample space, represented by S.
- · Each outcome in a sample space is called
 - an element,
 - a member of the sample space, or
 - a sample point.
- If the sample space has a <u>finite</u> number of elements, we may list the members.
- If the sample space has a large or <u>infinite</u> number of elements, we describe it by a **statement** or **rule**.
- Example 2.1.
 - Tossing a coin: S = H, T
 - Tossing a die:
 - $S_1 = \{1, 2, 3, 4, 5, 6\}$
 - $S_2 = \{even, odd\}$
- A tree diagram can be used to list the elements of the sample space systematically.

Dr. Cem Özdoğan

• Example 2.2. Flip a coin first. If a head occurs, flip it again; otherwise, toss a die.

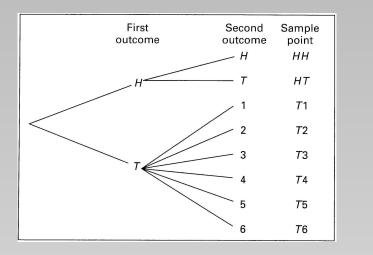


Figure: Tree diagram for Example 2.2.

Probability I

Dr. Cem Özdoğan

- Example 2.2. Flip a coin first. If a head occurs, flip it again; otherwise, toss a die.
 - $S = \{HH, HT, T1, T2, T3, T4, T5, T6\}$

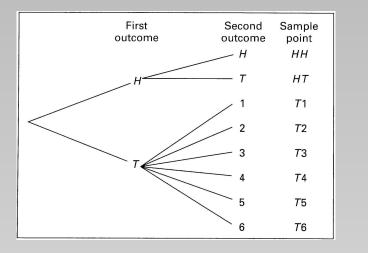
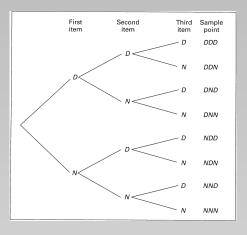


Figure: Tree diagram for Example 2.2.

Dr. Cem Özdoğan

• Example 2.3. Three items are selected at random from a process.



Dr. Cem Özdoğan

Probability I

Probability Sample Space Events Counting Sample Points Probability of Event

Figure: Tree diagram for Example 2.3.

- Example 2.3. Three items are selected at random from a process.
 - $S = \{DDD, DDN, DND, DNN, NDD, NDN, NND, NNN\}$

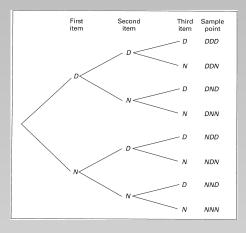


Figure: Tree diagram for Example 2.3.

Probability I

Dr. Cem Özdoğan

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points Probability of Event

• **The rule method**. The rule method has practical advantages, particularly for the many experiments where a listing becomes a tedious chore.

Probability I

Dr. Cem Özdoğan

- Probability
 Sample Space
 Events
 Counting Sample Points
 Probability of Event
- **The rule method**. The rule method has practical advantages, particularly for the many experiments where a listing becomes a tedious chore.
 - $S = \{x | x \text{ is a city with population over 1 million}\}.$

Probability I

Dr. Cem Özdoğan

- Probability Sample Space Events Counting Sample Points Probability of Event
- **The rule method**. The rule method has practical advantages, particularly for the many experiments where a listing becomes a tedious chore.
 - $S = \{x | x \text{ is a city with population over 1 million}\}.$
 - S = {(x, y) | x² + y² ≤ 4}, the set of all points (x, y) on the boundary or the interior of a circle of radius 2 with center at the origin.

• Definition 2.2: An event is a subset of a sample space..

Probability I

Dr. Cem Özdoğan

Probability

Sample Space

Events

Counting Sample Points Probability of Event

Definition 2.2: An event is a subset of a sample space..
Null set, denoted Ø, contains no elements at all.

Probability I

Dr. Cem Özdoğan

Probability Sample Space

Events

Counting Sample Points Probability of Event

Probability I

Dr. Cem Özdoğan

Probability Sample Space

Events

Counting Sample Points Probability of Event

• Definition 2.2: An event is a subset of a sample space..

- Null set, denoted Ø, contains no elements at all.
- Example 2.4: Given the sample space S = {t|t ≥ 0}, where t is the life in years of a certain electronic component.

Probability I

Dr. Cem Özdoğan

Probability

Sample Space

Events

Counting Sample Points Probability of Event

• Definition 2.2: An event is a subset of a sample space..

- Null set, denoted Ø, contains no elements at all.
- Example 2.4: Given the sample space S = {t|t ≥ 0}, where t is the life in years of a certain electronic component.
- The event A that the component fails before the end of the fifth year is the subset $A = \{t|0 \le t < 5\}$.

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events

Counting Sample Points Probability of Event

- Definition 2.2: An event is a subset of a sample space..
 - Null set, denoted Ø, contains no elements at all.
 - Example 2.4: Given the sample space S = {t|t ≥ 0}, where t is the life in years of a certain electronic component.
 - The event *A* that the component fails before the end of the fifth year is the subset $A = \{t | 0 \le t < 5\}$.
- **Definition 2.3**: The **complement** of an event *A* with respect to *S* is the subset of all elements of *S* that are not in *A*. We denote the complement of *A* by the symbol*A*'.

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events

- Definition 2.2: An event is a subset of a sample space..
 - Null set, denoted Ø, contains no elements at all.
 - Example 2.4: Given the sample space S = {t|t ≥ 0}, where t is the life in years of a certain electronic component.
 - The event A that the component fails before the end of the fifth year is the subset $A = \{t | 0 \le t < 5\}$.
- Definition 2.3: The complement of an event A with respect to S is the subset of all elements of S that are not in A. We denote the complement of A by the symbolA'.
 - **Example 2.5**: Let *R* be the event that a red card is selected from an ordinary deck of 52 playing cards.

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events

- Definition 2.2: An event is a subset of a sample space..
 - Null set, denoted Ø, contains no elements at all.
 - Example 2.4: Given the sample space S = {t|t ≥ 0}, where t is the life in years of a certain electronic component.
 - The event A that the component fails before the end of the fifth year is the subset $A = \{t | 0 \le t < 5\}$.
- **Definition 2.3**: The **complement** of an event *A* with respect to *S* is the subset of all elements of *S* that are not in *A*. We denote the complement of *A* by the symbol*A*'.
 - **Example 2.5**: Let *R* be the event that a red card is selected from an ordinary deck of 52 playing cards.
 - S be the entire deck.

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events

- Definition 2.2: An event is a subset of a sample space..
 - Null set, denoted Ø, contains no elements at all.
 - Example 2.4: Given the sample space S = {t|t ≥ 0}, where t is the life in years of a certain electronic component.
 - The event A that the component fails before the end of the fifth year is the subset $A = \{t | 0 \le t < 5\}$.
- **Definition 2.3**: The **complement** of an event *A* with respect to *S* is the subset of all elements of *S* that are not in *A*. We denote the complement of *A* by the symbol*A*'.
 - **Example 2.5**: Let *R* be the event that a red card is selected from an ordinary deck of 52 playing cards.
 - S be the entire deck.
 - *R'* is the event that the card selected from the deck is <u>not a red but a black card</u>.

• **Definition 2.4**: The **intersection** of two events *A* and *B*, denoted by the symbol *A* ∩ *B*, is the event containing all elements that are common to *A* and *B*.

Dr. Cem Özdoğan

Probability

Sample Space

Events

- Definition 2.4: The intersection of two events A and B, denoted by the symbol A ∩ B, is the event containing all elements that are <u>common</u> to A and B.
- **Example 2.7**: Let *P* be the event that a person selected at random while dining at a popular cafeteria is a taxpayer.

Probability I

Dr. Cem Özdoğan

- Definition 2.4: The intersection of two events A and B, denoted by the symbol A ∩ B, is the event containing all elements that are <u>common</u> to A and B.
- **Example 2.7**: Let *P* be the event that a person selected at random while dining at a popular cafeteria is a taxpayer.
 - Q is the event that the person is over 65 years of age.

Probability I

Dr. Cem Özdoğan

- Definition 2.4: The intersection of two events A and B, denoted by the symbol A ∩ B, is the event containing all elements that are <u>common</u> to A and B.
- **Example 2.7**: Let *P* be the event that a person selected at random while dining at a popular cafeteria is a taxpayer.
 - Q is the event that the person is over 65 years of age.
 - The event P ∩ Q is the set of all taxpayers in the cafeteria who are over 65 years of age.

Probability I

Dr. Cem Özdoğan

- Definition 2.4: The intersection of two events A and B, denoted by the symbol A ∩ B, is the event containing all elements that are <u>common</u> to A and B.
- **Example 2.7**: Let *P* be the event that a person selected at random while dining at a popular cafeteria is a taxpayer.
 - Q is the event that the person is over 65 years of age.
 - The event *P* ∩ *Q* is the set of all taxpayers in the cafeteria who are over 65 years of age.
- **Definition 2.5**: Two events *A* and *B* are **mutually exclusive**, or **disjoint** if $A \cap B = \emptyset$, i.e., if *A* and *B* have no elements in common. Two events can not occur simultaneously.

Probability I

Dr. Cem Özdoğan

- Definition 2.4: The intersection of two events A and B, denoted by the symbol A ∩ B, is the event containing all elements that are <u>common</u> to A and B.
- **Example 2.7**: Let *P* be the event that a person selected at random while dining at a popular cafeteria is a taxpayer.
 - Q is the event that the person is over 65 years of age.
 - The event *P* ∩ *Q* is the set of all taxpayers in the cafeteria who are over 65 years of age.
- **Definition 2.5**: Two events *A* and *B* are **mutually exclusive**, or **disjoint** if $A \cap B = \emptyset$, i.e., if *A* and *B* have no elements in common. Two events can not occur simultaneously.
- Example 2.9:

Probability I

Dr. Cem Özdoğan

- Definition 2.4: The intersection of two events A and B, denoted by the symbol A ∩ B, is the event containing all elements that are <u>common</u> to A and B.
- **Example 2.7**: Let *P* be the event that a person selected at random while dining at a popular cafeteria is a taxpayer.
 - Q is the event that the person is over 65 years of age.
 - The event *P* ∩ Q is the set of all taxpayers in the cafeteria who are over 65 years of age.
- **Definition 2.5**: Two events *A* and *B* are **mutually exclusive**, or **disjoint** if $A \cap B = \emptyset$, i.e., if *A* and *B* have no elements in common. Two events can not occur simultaneously.
- Example 2.9:
 - Let A be the event that the program belongs to the NBC network.

Probability I

Dr. Cem Özdoğan

- Definition 2.4: The intersection of two events A and B, denoted by the symbol A ∩ B, is the event containing all elements that are <u>common</u> to A and B.
- **Example 2.7**: Let *P* be the event that a person selected at random while dining at a popular cafeteria is a taxpayer.
 - Q is the event that the person is over 65 years of age.
 - The event *P* ∩ Q is the set of all taxpayers in the cafeteria who are over 65 years of age.
- **Definition 2.5**: Two events *A* and *B* are **mutually exclusive**, or **disjoint** if $A \cap B = \emptyset$, i.e., if *A* and *B* have no elements in common. Two events can not occur simultaneously.
- Example 2.9:
 - Let A be the event that the program belongs to the NBC network.
 - Let *B* be the event that the program belongs to the CBS network.

Probability I

Dr. Cem Özdoğan

Probability
Sample Space
Events
Counting Sample Point
Probability of Event

- Definition 2.4: The intersection of two events A and B, denoted by the symbol A ∩ B, is the event containing all elements that are <u>common</u> to A and B.
- **Example 2.7**: Let *P* be the event that a person selected at random while dining at a popular cafeteria is a taxpayer.
 - Q is the event that the person is over 65 years of age.
 - The event *P* ∩ Q is the set of all taxpayers in the cafeteria who are over 65 years of age.
- **Definition 2.5**: Two events *A* and *B* are **mutually** exclusive, or disjoint if $A \cap B = \emptyset$, i.e., if *A* and *B* have no elements in common. Two events can not occur simultaneously.
- Example 2.9:
 - Let A be the event that the program belongs to the NBC network.
 - Let *B* be the event that the program belongs to the CBS network.
 - A and B are mutually exclusive.

Probability I

Dr. Cem Özdoğan

• **Definition 2.6**: The **union** of the two events *A* and *B*, denoted by the symbol *A* ∪ *B*, is the event containing all the elements that belong to *A* or *B* or both.

Dr. Cem Özdoğan

Probability

Sample Space

Events

- **Definition 2.6**: The **union** of the two events *A* and *B*, denoted by the symbol *A* ∪ *B*, is the event containing all the elements that belong to *A* or *B* or both.
- Example 2.12:

Probability I

Dr. Cem Özdoğan

Probability

Sample Space

Events

- Definition 2.6: The union of the two events A and B, denoted by the symbol A ∪ B, is the event containing all the elements that belong to A or B or both.
- Example 2.12:
 - If $M = \{x | 3 < x < 9\}$ and $N = \{y | 5 < y < 12\}$, then

Probability I

Dr. Cem Özdoğan

Probability

Sample Space

Events

- Definition 2.6: The union of the two events A and B, denoted by the symbol A ∪ B, is the event containing all the elements that belong to A or B or both.
- Example 2.12:
 - If $M = \{x | 3 < x < 9\}$ and $N = \{y | 5 < y < 12\}$, then
 - $M \cup N = \{x | 3 < x < 12\}$

Probability I

Dr. Cem Özdoğan

Probability

Sample Space

Events

- Definition 2.6: The union of the two events A and B, denoted by the symbol A ∪ B, is the event containing all the elements that belong to A or B or both.
- Example 2.12:
 - If $M = \{x | 3 < x < 9\}$ and $N = \{y | 5 < y < 12\}$, then

•
$$M \cup N = \{x | 3 < x < 12\}$$

• The relationship between <u>events</u> and the corresponding <u>sample space</u> can be illustrated graphically by **Venn** <u>diagram</u>.

Probability I

Dr. Cem Özdoğan

Probability

Sample Space

Events

- **Definition 2.6**: The **union** of the two events *A* and *B*, denoted by the symbol *A* ∪ *B*, is the event containing all the elements that belong to *A* or *B* or both.
- Example 2.12:
 - If $M = \{x | 3 < x < 9\}$ and $N = \{y | 5 < y < 12\}$, then

•
$$M \cup N = \{x | 3 < x < 12\}$$

- The relationship between <u>events</u> and the corresponding <u>sample space</u> can be illustrated graphically by **Venn** <u>diagram</u>.
- In a Venn diagram, let the sample space be a rectangle and represent events by circles. In Fig. 3

Probability I

Dr. Cem Özdoğan

- **Definition 2.6**: The **union** of the two events *A* and *B*, denoted by the symbol *A* ∪ *B*, is the event containing all the elements that belong to *A* or *B* or both.
- Example 2.12:
 - If $M = \{x | 3 < x < 9\}$ and $N = \{y | 5 < y < 12\}$, then

•
$$M \cup N = \{x | 3 < x < 12\}$$

- The relationship between <u>events</u> and the corresponding <u>sample space</u> can be illustrated graphically by **Venn** <u>diagram</u>.
- In a Venn diagram, let the sample space be a rectangle and represent events by circles. In Fig. 3

Probability I

Dr. Cem Özdoğan

- **Definition 2.6**: The **union** of the two events *A* and *B*, denoted by the symbol *A* ∪ *B*, is the event containing all the elements that belong to *A* or *B* or both.
- Example 2.12:
 - If $M = \{x | 3 < x < 9\}$ and $N = \{y | 5 < y < 12\}$, then

•
$$M \cup N = \{x | 3 < x < 12\}$$

- The relationship between <u>events</u> and the corresponding <u>sample space</u> can be illustrated graphically by **Venn** <u>diagram</u>.
- In a Venn diagram, let the sample space be a rectangle and represent events by circles. In Fig. 3

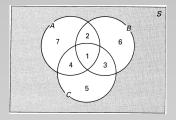


Figure: Events represented by various regions.

Probability I

Dr. Cem Özdoğan

Probability Sample Space

Events

- **Definition 2.6**: The **union** of the two events *A* and *B*, denoted by the symbol *A* ∪ *B*, is the event containing all the elements that belong to *A* or *B* or both.
- Example 2.12:
 - If $M = \{x | 3 < x < 9\}$ and $N = \{y | 5 < y < 12\}$, then

•
$$M \cup N = \{x | 3 < x < 12\}$$

- The relationship between <u>events</u> and the corresponding <u>sample space</u> can be illustrated graphically by **Venn** <u>diagram</u>.
- In a Venn diagram, let the sample space be a rectangle and represent events by circles. In Fig. 3

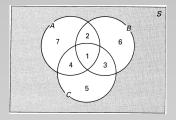


Figure: Events represented by various regions.

Probability I

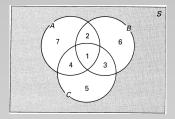
Dr. Cem Özdoğan

Probability Sample Space

- **Definition 2.6**: The **union** of the two events *A* and *B*, denoted by the symbol *A* ∪ *B*, is the event containing all the elements that belong to *A* or *B* or both.
- Example 2.12:
 - If $M = \{x | 3 < x < 9\}$ and $N = \{y | 5 < y < 12\}$, then

•
$$M \cup N = \{x | 3 < x < 12\}$$

- The relationship between <u>events</u> and the corresponding <u>sample space</u> can be illustrated graphically by **Venn** <u>diagram</u>.
- In a Venn diagram, let the sample space be a rectangle and represent events by circles. In Fig. 3



• $A \cap B$: regions 1 and 2

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events

- **Definition 2.6**: The **union** of the two events *A* and *B*, denoted by the symbol *A* ∪ *B*, is the event containing all the elements that belong to *A* or *B* or both.
- Example 2.12:
 - If $M = \{x | 3 < x < 9\}$ and $N = \{y | 5 < y < 12\}$, then

•
$$M \cup N = \{x | 3 < x < 12\}$$

- The relationship between <u>events</u> and the corresponding <u>sample space</u> can be illustrated graphically by **Venn** <u>diagram</u>.
- In a Venn diagram, let the sample space be a rectangle and represent events by circles. In Fig. 3

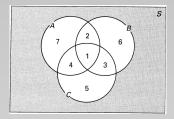


Figure: Events represented by various regions.

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events

- *A* ∩ *B* : regions 1 and 2
- *A* ∪ *C* : regions 1, 2, 3, 4, 5, and 7

- **Definition 2.6**: The **union** of the two events *A* and *B*, denoted by the symbol *A* ∪ *B*, is the event containing all the elements that belong to *A* or *B* or both.
- Example 2.12:
 - If $M = \{x | 3 < x < 9\}$ and $N = \{y | 5 < y < 12\}$, then

•
$$M \cup N = \{x | 3 < x < 12\}$$

- The relationship between <u>events</u> and the corresponding <u>sample space</u> can be illustrated graphically by **Venn** <u>diagram</u>.
- In a Venn diagram, let the sample space be a rectangle and represent events by circles. In Fig. 3

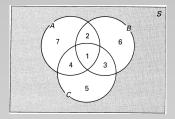


Figure: Events represented by various regions.

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events

- $A \cap B$: regions 1 and 2
- *A* ∪ *C* : regions 1, 2, 3, 4, 5, and 7
- $B' \cap A$: regions 4 and 7

• Combinatorics - counting rules in set theory. This provides the idea of the principles of enumeration, counting sample points in the sample space.

Dr. Cem Özdoğan

- Combinatorics counting rules in set theory. This provides the idea of the principles of enumeration, counting sample points in the sample space.
- When an experiment is performed, the statistician want to evaluate the <u>chance associated with</u> the occurrence of certain events.

Probability Sample Space Events Counting Sample Points Probability of Event

.

Probability I

- Combinatorics counting rules in set theory. This provides the idea of the principles of enumeration, counting sample points in the sample space.
- When an experiment is performed, the statistician want to evaluate the <u>chance associated with</u> the occurrence of certain events.
- In many cases we can evaluate the probability by counting the number of points in the sample space.

Probability I

Dr. Cem Özdoğan

- Combinatorics counting rules in set theory. This provides the idea of the principles of enumeration, counting sample points in the sample space.
- When an experiment is performed, the statistician want to evaluate the <u>chance associated with</u> the occurrence of certain events.
- In many cases we can evaluate the probability by counting the number of points in the sample space.
- Theorem 2.1 (multiplication rule):

If an operation can be performed in n_1 ways, and if for each of these a second operation can be performed in n_2 ways, then the two operations can be performed together in $n_1 n_2$ ways.

Probability I

Dr. Cem Özdoğan

- Combinatorics counting rules in set theory. This provides the idea of the principles of enumeration, counting sample points in the sample space.
- When an experiment is performed, the statistician want to evaluate the <u>chance associated with</u> the occurrence of certain events.
- In many cases we can evaluate the probability by counting the number of points in the sample space.
- Theorem 2.1 (multiplication rule):

If an operation can be performed in n_1 ways, and if for each of these a second operation can be performed in n_2 ways, then the two operations can be performed together in n_1n_2 ways.

• The multiplication rule is the fundamental principle of counting sample points.

Dr. Cem Özdoğan

Probability I

Dr. Cem Özdoğan

Probability

Sample Space

Events

Counting Sample Points

Probability I

Dr. Cem Özdoğan

Probability

Sample Space

Events

Counting Sample Points

• Example 2.14: Home buyers are offered

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events

Counting Sample Points

- Example 2.14: Home buyers are offered
 - four exterior styling

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points

- Example 2.14: Home buyers are offered
 - four exterior styling
 - three floor plans

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points

- Example 2.14: Home buyers are offered
 - four exterior styling
 - three floor plans

Since

 $n_1 = 4, n_2 = 3$ and , a buyer must choose from

 $n_1 n_2 = 12$

possible homes

Probability I

Dr. Cem Özdoğan

Probability

Sample Space

Events

Counting Sample Points

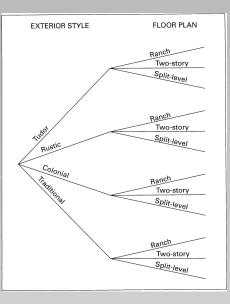
- Example 2.14: Home buyers are offered
 - four exterior styling
 - three floor plans

Since

 $n_1 = 4, n_2 = 3 \text{ and },$ a buyer must choose from

 $n_1 n_2 = 12$

possible homes



Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points Probability of Event

Figure: Tree diagram for Example 2.14.

Probability I

Dr. Cem Özdoğan

Theorem 2.2 (generalized multiplication rule):

If an operation can be performed in n_1 ways, and if for each of these a second operation can be performed in n_2 ways, and for each of the first two a third operation can be performed in n_3 ways, and so forth, then the sequence of k operations can be performed in $n_1n_2...n_k$ ways.

Probability I

Dr. Cem Özdoğan

Theorem 2.2 (generalized multiplication rule):

If an operation can be performed in n_1 ways, and if for each of these a second operation can be performed in n_2 ways, and for each of the first two a third operation can be performed in n_3 ways, and so forth, then the sequence of k operations can be performed in $n_1n_2...n_k$ ways.

• The multiplication rule can be extended to cover any number of operations.

• Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?

Probability I

Dr. Cem Özdoğan

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.

Probability Sample Space Events Counting Sample Points Probability of Event

Probability I

Dr. Cem Özdoğan

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.
 - If the units position is $0 (n_1 = 1)$:

Probability I

Dr. Cem Özdoğan

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.
 - If the units position is 0 $(n_1 = 1)$:
 - $n_2 = 5$ choices for the thousands positions,

Probability I

Dr. Cem Özdoğan

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.
 - If the units position is 0 $(n_1 = 1)$:
 - $n_2 = 5$ choices for the thousands positions,
 - $n_3 = 4$ choices for the hundreds positions,

Probability I

Dr. Cem Özdoğan

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.
 - If the units position is 0 $(n_1 = 1)$:
 - $n_2 = 5$ choices for the thousands positions,
 - $n_3 = 4$ choices for the hundreds positions,
 - $n_4 = 3$ choices for the tens positions.

Probability I

Dr. Cem Özdoğan

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.
 - If the units position is 0 $(n_1 = 1)$:
 - $n_2 = 5$ choices for the thousands positions,
 - *n*₃ = 4 choices for the hundreds positions,
 - $n_4 = 3$ choices for the tens positions.
 - a total of $n_1 n_2 n_3 n_4 = 60$ choices.

Probability I

Dr. Cem Özdoğan

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.
 - If the units position is 0 $(n_1 = 1)$:
 - $n_2 = 5$ choices for the thousands positions,
 - $n_3 = 4$ choices for the hundreds positions,
 - $n_4 = 3$ choices for the tens positions.
 - a total of $n_1 n_2 n_3 n_4 = 60$ choices.
 - If the units position is not 0 $(n_1 = 2)$:

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.
 - If the units position is 0 $(n_1 = 1)$:
 - $n_2 = 5$ choices for the thousands positions,
 - $n_3 = 4$ choices for the hundreds positions,
 - $n_4 = 3$ choices for the tens positions.
 - a total of $n_1 n_2 n_3 n_4 = 60$ choices.
 - If the units position is not 0 $(n_1 = 2)$:
 - $n_2 = 4$ choices for the thousands positions,

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.
 - If the units position is 0 $(n_1 = 1)$:
 - $n_2 = 5$ choices for the thousands positions,
 - $n_3 = 4$ choices for the hundreds positions,
 - $n_4 = 3$ choices for the tens positions.
 - a total of $n_1 n_2 n_3 n_4 = 60$ choices.
 - If the units position is not 0 $(n_1 = 2)$:
 - $n_2 = 4$ choices for the thousands positions,
 - $n_3 = 4$ choices for the hundreds positions,

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.
 - If the units position is 0 $(n_1 = 1)$:
 - $n_2 = 5$ choices for the thousands positions,
 - *n*₃ = 4 choices for the hundreds positions,
 - $n_4 = 3$ choices for the tens positions.
 - a total of $n_1 n_2 n_3 n_4 = 60$ choices.
 - If the units position is not 0 $(n_1 = 2)$:
 - $n_2 = 4$ choices for the thousands positions,
 - $n_3 = 4$ choices for the hundreds positions,
 - $n_4 = 3$ choices for the tens positions.

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.
 - If the units position is 0 $(n_1 = 1)$:
 - $n_2 = 5$ choices for the thousands positions,
 - *n*₃ = 4 choices for the hundreds positions,
 - $n_4 = 3$ choices for the tens positions.
 - a total of $n_1 n_2 n_3 n_4 = 60$ choices.
 - If the units position is not 0 $(n_1 = 2)$:
 - $n_2 = 4$ choices for the thousands positions,
 - $n_3 = 4$ choices for the hundreds positions,
 - $n_4 = 3$ choices for the tens positions.
 - a total of $n_1 n_2 n_3 n_4 = 96$ choices.

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points

- Example 2.16: How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- We consider the unit position by two parts, 0 or not 0.
 - If the units position is 0 $(n_1 = 1)$:
 - $n_2 = 5$ choices for the thousands positions,
 - *n*₃ = 4 choices for the hundreds positions,
 - $n_4 = 3$ choices for the tens positions.
 - a total of $n_1 n_2 n_3 n_4 = 60$ choices.
 - If the units position is not 0 $(n_1 = 2)$:
 - n₂ = 4 choices for the thousands positions,
 - $n_3 = 4$ choices for the hundreds positions,
 - $n_4 = 3$ choices for the tens positions.
 - a total of $n_1 n_2 n_3 n_4 = 96$ choices.
 - The total number of even four-digit numbers is 60 + 96 = 156

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points

Permutation: Definition 2.7

A permutation is an arrangement of all or part of a set of objects.

Probability I

Dr. Cem Özdoğan

Probability Sample Space

Sample Space

Events

Counting Sample Points

Permutation: Definition 2.7

A permutation is an arrangement of all or part of a set of objects.

• An **ordered** arrangement of distinct objects. Consider the number of ways of filling *r* boxes with *n* objects.

Probability I

Dr. Cem Özdoğan

Permutation: Definition 2.7

A permutation is an arrangement of all or part of a set of objects.

- An **ordered** arrangement of distinct objects. Consider the number of ways of filling *r* boxes with *n* objects.
- Theorem 2.3:

The number of permutation of *n* objects is *n*!.

Probability I

Dr. Cem Özdoğan

Probability

Sample Space

Events

Counting Sample Points

• Permutation: Definition 2.7

A permutation is an arrangement of all or part of a set of objects.

- An **ordered** arrangement of distinct objects. Consider the number of ways of filling *r* boxes with *n* objects.
- Theorem 2.3:

The number of permutation of *n* objects is *n*!.

Theorem 2.4:

The number of permutation (ways to arrange) of n distinct objects taken r at a time is

$$_{n}P_{r} = n(n-1)\dots(n-r+1) = \frac{n!}{(n-r)!}$$

Probability I

Dr. Cem Özdoğan

Probability Sample Space

Events

Counting Sample Points

• Permutation: Definition 2.7

A permutation is an arrangement of all or part of a set of objects.

- An **ordered** arrangement of distinct objects. Consider the number of ways of filling *r* boxes with *n* objects.
- Theorem 2.3:

The number of permutation of *n* objects is *n*!.

Theorem 2.4:

The number of permutation (ways to arrange) of n distinct objects taken r at a time is

$${}_{n}P_{r} = n(n-1)\dots(n-r+1) = \frac{n!}{(n-r)!}$$

• Example 2.17: In one year, three awards (research, teaching, and service) will be given for a class of 25 graduate students in a statistics department.

Probability I

Dr. Cem Özdoğan

Probability	
Sample Space	
Events	

Counting Sample Points

• Permutation: Definition 2.7

A permutation is an arrangement of all or part of a set of objects.

- An **ordered** arrangement of distinct objects. Consider the number of ways of filling *r* boxes with *n* objects.
- Theorem 2.3:

The number of permutation of *n* objects is *n*!.

Theorem 2.4:

The number of permutation (ways to arrange) of n distinct objects taken r at a time is

$$_{n}P_{r} = n(n-1)\dots(n-r+1) = \frac{n!}{(n-r)!}$$

- **Example 2.17**: In one year, three awards (research, teaching, and service) will be given for a class of 25 graduate students in a statistics department.
 - If each student can receive at most one award, how many possible selections are there?

Probability I

Dr. Cem Özdoğan

Probability	
Sample Space	
Events	

Counting Sample Points

Permutation: Definition 2.7

A permutation is an arrangement of all or part of a set of objects.

- An **ordered** arrangement of distinct objects. Consider the number of ways of filling *r* boxes with *n* objects.
- Theorem 2.3:

The number of permutation of *n* objects is *n*!.

Theorem 2.4:

The number of permutation (ways to arrange) of n distinct objects taken r at a time is

$$_{n}P_{r} = n(n-1)\dots(n-r+1) = \frac{n!}{(n-r)!}$$

- Example 2.17: In one year, three awards (research, teaching, and service) will be given for a class of 25 graduate students in a statistics department.
 - If each student can receive at most one award, how many possible selections are there?
 - Since the awards are **distinguishable**, it is a permutation problem.

Probability I

Dr. Cem Özdoğan

Probability	
Sample Space	
Events	

Counting Sample Points

Permutation: Definition 2.7

A permutation is an arrangement of all or part of a set of objects.

- An **ordered** arrangement of distinct objects. Consider the number of ways of filling *r* boxes with *n* objects.
- Theorem 2.3:

The number of permutation of *n* objects is *n*!.

Theorem 2.4:

The number of permutation (ways to arrange) of n distinct objects taken r at a time is

$$_{n}P_{r} = n(n-1)\dots(n-r+1) = \frac{n!}{(n-r)!}$$

- Example 2.17: In one year, three awards (research, teaching, and service) will be given for a class of 25 graduate students in a statistics department.
 - If each student can receive at most one award, how many possible selections are there?
 - Since the awards are **distinguishable**, it is a permutation problem.
 - The number of sample points is ${}_{25}P_3 = \frac{25!}{22!}$

Probability I

Dr. Cem Özdoğan

Probability	
Sample Space	
Events	

Counting Sample Points

• Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if

Dr. Cem Özdoğan

- Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
 - there are no restrictions; ${}_{50}P_2 = \frac{50!}{48!} = 2450$

Probability I

Dr. Cem Özdoğan

- Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
 - there are no restrictions; ${}_{50}P_2 = \frac{50!}{48!} = 2450$
 - A will serve only if he is president;

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points Probability of Event

Therefore, the total number of choices is $49 +_{49} P_2 = 2401$.

- Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
 - there are no restrictions; ${}_{50}P_2 = \frac{50!}{48!} = 2450$
 - A will serve only if he is president;
 - A is selected as the president, which yields 49 possible outcomes; or

Therefore, the total number of choices is $49 +_{49} P_2 = 2401$.

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points

- Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
 - there are no restrictions; ${}_{50}P_2 = \frac{50!}{48!} = 2450$
 - A will serve only if he is president;
 - 1 A is selected as the president, which yields 49 possible outcomes; or
 - **2** Officers are selected from the remaining 49 people which has the number of choices ${}_{49}P_2$

Therefore, the total number of choices is $49 +_{49} P_2 = 2401$.

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points

- Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
 - there are no restrictions; ${}_{50}P_2 = \frac{50!}{48!} = 2450$
 - A will serve only if he is president;
 - 1 A is selected as the president, which yields 49 possible outcomes; or
 - 2 Officers are selected from the remaining 49 people which has the number of choices ${}_{49}P_2$

Therefore, the total number of choices is $49 +_{49} P_2 = 2401$.

• B and C will serve together or not at all;

Therefore, the total number of choices in this situation is 2 + 2256 = 2258.

Probability I

Dr. Cem Özdoğan

- Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
 - there are no restrictions; ${}_{50}P_2 = \frac{50!}{48!} = 2450$
 - A will serve only if he is president;
 - 1 A is selected as the president, which yields 49 possible outcomes; or
 - 2 Officers are selected from the remaining 49 people which has the number of choices ${}_{49}P_2$

Therefore, the total number of choices is $49 +_{49} P_2 = 2401$.

• B and C will serve together or not at all;

1 The number of selections when *B* and *C* serve together is 2.

Therefore, the total number of choices in this situation is 2 + 2256 = 2258.

Probability I

Dr. Cem Özdoğan

- Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
 - there are no restrictions; ${}_{50}P_2 = \frac{50!}{48!} = 2450$
 - A will serve only if he is president;
 - 1 A is selected as the president, which yields 49 possible outcomes; or
 - 2 Officers are selected from the remaining 49 people which has the number of choices ${}_{49}P_2$

Therefore, the total number of choices is $49 +_{49} P_2 = 2401$.

- B and C will serve together or not at all;
 - 1 The number of selections when *B* and *C* serve together is 2.
 - 2 The number of selections when both *B* and *C* are not chosen is ${}_{48}P_2$

Therefore, the total number of choices in this situation is 2 + 2256 = 2258.

Probability I

Dr. Cem Özdoğan

- Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
 - there are no restrictions; ${}_{50}P_2 = \frac{50!}{48!} = 2450$
 - A will serve only if he is president;
 - 1 A is selected as the president, which yields 49 possible outcomes; or
 - 2 Officers are selected from the remaining 49 people which has the number of choices ${}_{49}P_2$

Therefore, the total number of choices is $49 +_{49} P_2 = 2401$.

- *B* and *C* will serve together or not at all;
 - **1** The number of selections when *B* and *C* serve together is 2.
 - 2 The number of selections when both B and C are not chosen is ₄₈P₂

Therefore, the total number of choices in this situation is 2 + 2256 = 2258.

• D and E will not serve together; 2 * 48 + 2 * 48 +₄₈ P₂

Therefore, the total number of choices is 2448. This problem also has another short solution: ${}_{50}P_2 - 2$ (since *D* and *E* can only serve together in 2 ways).

Probability I

Dr. Cem Özdoğan

- Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
 - there are no restrictions; ${}_{50}P_2 = \frac{50!}{48!} = 2450$
 - A will serve only if he is president;
 - 1 A is selected as the president, which yields 49 possible outcomes; or
 - 2 Officers are selected from the remaining 49 people which has the number of choices ${}_{49}P_2$

Therefore, the total number of choices is $49 +_{49} P_2 = 2401$.

- *B* and *C* will serve together or not at all;
 - **1** The number of selections when *B* and *C* serve together is 2.
 - 2 The number of selections when both B and C are not chosen is ₄₈P₂

Therefore, the total number of choices in this situation is 2 + 2256 = 2258.

- D and E will not serve together; 2 * 48 + 2 * 48 +₄₈ P₂
 - 1 The number of selections when D serves as officer but not E,

Therefore, the total number of choices is 2448. This problem also has another short solution: $_{50}P_2 - 2$ (since *D* and *E* can only serve together in 2 ways).

Probability I

Dr. Cem Özdoğan

- Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
 - there are no restrictions; ${}_{50}P_2 = \frac{50!}{48!} = 2450$
 - A will serve only if he is president;
 - 1 A is selected as the president, which yields 49 possible outcomes; or
 - 2 Officers are selected from the remaining 49 people which has the number of choices ${}_{49}P_2$

Therefore, the total number of choices is $49 +_{49} P_2 = 2401$.

• *B* and *C* will serve together or not at all;

1 The number of selections when *B* and *C* serve together is 2.

2 The number of selections when both B and C are not chosen is ₄₈P₂

Therefore, the total number of choices in this situation is 2 + 2256 = 2258.

- D and E will not serve together; 2 * 48 + 2 * 48 +₄₈ P₂
 - The number of selections when D serves as officer but not E,
 - 2 The number of selections when *E* serves as officer but not *D*

Therefore, the total number of choices is 2448. This problem also has another short solution: ${}_{50}P_2 - 2$ (since *D* and *E* can only serve together in 2 ways).

Probability I

Dr. Cem Özdoğan

- Example 2.18: A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
 - there are no restrictions; ${}_{50}P_2 = \frac{50!}{48!} = 2450$
 - A will serve only if he is president;
 - 1 A is selected as the president, which yields 49 possible outcomes; or
 - 2 Officers are selected from the remaining 49 people which has the number of choices ${}_{49}P_2$

Therefore, the total number of choices is $49 +_{49} P_2 = 2401$.

• *B* and *C* will serve together or not at all;

1 The number of selections when *B* and *C* serve together is 2.

2 The number of selections when both B and C are not chosen is ₄₈P₂

Therefore, the total number of choices in this situation is 2 + 2256 = 2258.

- D and E will not serve together; 2 * 48 + 2 * 48 +₄₈ P₂
 - The number of selections when D serves as officer but not E,
 - 2 The number of selections when E serves as officer but not D
 - 3 The number of selections when both *D* and *E* are not chosen

Therefore, the total number of choices is 2448. This problem also has another short solution: ${}_{50}P_2 - 2$ (since *D* and *E* can only serve together in 2 ways).

Probability I

Dr. Cem Özdoğan

• Permutations are used when we are sampling without replacement and order matters.

Probability I

Dr. Cem Özdoğan

- Permutations are used when we are sampling without replacement and order matters.
- Theorem 2.5: The number of permutation of *n* objects arranged in a circle is (n - 1)!

Dr. Cem Özdoğan

- Permutations are used when we are sampling without replacement and order matters.
- Theorem 2.5:

The number of permutation of *n* objects arranged in a circle is (n-1)!

 Permutations that occur by arranging objects in a circular are called circular permutations.

Probability I

Dr. Cem Özdoğan

- Permutations are used when we are sampling without replacement and order matters.
- Theorem 2.5:

The number of permutation of *n* objects arranged in a circle is (n-1)!

- Permutations that occur by arranging objects in a circular are called circular permutations.
- Two circular permutations are not considered different unless corresponding objects in the two arrangements are preceded or followed by a different objects as we proceed in a clockwise direction.

Probability I

Dr. Cem Özdoğan

• Theorem 2.6:

The number of distinct permutations of *n* things of which n_1 are of one kind, n_2 of a second kind, ..., n_k of a k^{th} kind is

 $\frac{n!}{n_1!n_2!\dots n_k!}$

Probability I

Dr. Cem Özdoğan

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events Counting Sample Points Probability of Event

• Theorem 2.6:

The number of distinct permutations of *n* things of which n_1 are of one kind, n_2 of a second kind, ..., n_k of a k^{th} kind is

$$\frac{n_1!n_2!\dots n_k!}{n_1!n_2!\dots n_k!}$$

• Example 2.19: In a college football training session, the defensive coordinator needs to have 10 players standing in a row.

• Theorem 2.6:

The number of distinct permutations of *n* things of which n_1 are of one kind, n_2 of a second kind, ..., n_k of a k^{th} kind is n!

 $\frac{n_1}{n_1!n_2!\dots n_k!}$

- Example 2.19: In a college football training session, the defensive coordinator needs to have 10 players standing in a row.
 - Among these 10 players, there are 1 freshman, 2 sophomores, 4 juniors, and 3 seniors, respectively.

Dr. Cem Özdoğan

Theorem 2.6:

The number of distinct permutations of *n* things of which n_1 are of one kind, n_2 of a second kind, ..., n_k of a k^{th} kind is n!

$$\overline{n_1!n_2!\ldots n_k!}$$

- Example 2.19: In a college football training session, the defensive coordinator needs to have 10 players standing in a row.
 - Among these 10 players, there are 1 freshman, 2 sophomores, 4 juniors, and 3 seniors, respectively.
 - How many different ways can they be arranged in a row if only their class level will be distinguished?

 $\frac{10!}{1!2!3!4!} = 12600$

Probability I

Dr. Cem Özdoğan

• Theorem 2.7:

The number of ways of partitioning a set of *n* objects into *r* cells with n_1 elements in the first cell, n_2 elements in the second, and so forth, is

$$\left(\begin{array}{c}n\\n_1,n_2,\ldots,n_r\end{array}\right)=\frac{n!}{n_1!n_2!\ldots n_r!}$$

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events

Counting Sample Points

Probability of Event

Probability I

Dr. Cem Özdoğan

• Theorem 2.7:

The number of ways of partitioning a set of *n* objects into *r* cells with n_1 elements in the first cell, n_2 elements in the second, and so forth, is

$$\left(\begin{array}{c}n\\n_1,n_2,\ldots,n_r\end{array}\right)=\frac{n!}{n_1!n_2!\ldots n_r!}$$

• The order of the elements within each cell is of no importance.

• Theorem 2.7:

The number of ways of partitioning a set of *n* objects into *r* cells with n_1 elements in the first cell, n_2 elements in the second, and so forth, is

$$\begin{pmatrix} n\\ n_1, n_2, \ldots, n_r \end{pmatrix} = \frac{n!}{n_1! n_2! \ldots n_r!}$$

- The order of the elements within each cell is of no importance.
- The intersection of any two cells is the empty set and the union of all cells gives the original set.

Probability I

Dr. Cem Özdoğan

Theorem 2.7:

The number of ways of partitioning a set of *n* objects into r cells with n_1 elements in the first cell, n_2 elements in the second, and so forth, is

$$\left(\begin{array}{c}n\\n_1,n_2,\ldots,n_r\end{array}\right)=\frac{n!}{n_1!n_2!\ldots n_r!}$$

$$\binom{n}{n_1, n_2, \ldots, n_r} = \frac{n!}{n_1! n_2! \ldots n_r!}$$

- The order of the elements within each cell is of no importance.
- The intersection of any two cells is the empty set and the union of all cells gives the original set.
- Example 2.22: How many different letter arrangements can be made from the letters in the word of STATISTICS?

Probability I

Dr. Cem Özdoğan

Theorem 2.7:

The number of ways of partitioning a set of *n* objects into r cells with n_1 elements in the first cell, n_2 elements in the second, and so forth, is

$$\left(\begin{array}{c}n\\n_1,n_2,\ldots,n_r\end{array}\right)=\frac{n!}{n_1!n_2!\ldots n_r!}$$

$$\binom{n}{n_1, n_2, \ldots, n_r} = \frac{n!}{n_1! n_2! \ldots n_r!}$$

- The order of the elements within each cell is of no. importance.
- The intersection of any two cells is the empty set and the union of all cells gives the original set.
- Example 2.22: How many different letter arrangements can be made from the letters in the word of STATISTICS?
- We have total 10 letters, while letters S and T appear 3 times each, letter I appears twice, and letters A and C appear once each.

$$\left(\begin{array}{c}10\\3,3,2,1,1\end{array}\right) = \frac{10!}{3!3!2!1!1!} = 50400$$

Probability I

Dr. Cem Özdoğan

• Theorem 2.8:

The number of combinations (ways of choosing, **regardless of order**) of *n* distinct objects taken *r* at a time is

$$\left(\begin{array}{c}n\\r\end{array}\right)=\frac{n!}{r!(n-r)}$$

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events

Counting Sample Points

Probability of Event

• Theorem 2.8:

The number of combinations (ways of choosing, **regardless of order**) of *n* distinct objects taken *r* at a time is

$$\binom{n}{r} = \frac{n!}{r!(n-r)}$$

• We might want to select *r* objects from *n* without regard to order.

Probability I

Dr. Cem Özdoğan

Probability Sample Space Events

Counting Sample Points

Probability of Event

• Theorem 2.8:

The number of combinations (ways of choosing, **regardless of order**) of *n* distinct objects taken *r* at a time is

$$\binom{n}{r} = \frac{n!}{r!(n-r)}$$

- We might want to select *r* objects from *n* without regard to order.
- These selections are called **combinations**. Combinations are used when we are sampling **without replacement** and **order does NOT matter**.

Probability I

Dr. Cem Özdoğan

• Theorem 2.8:

The number of combinations (ways of choosing, **regard**less of order) of *n* distinct objects taken *r* at a time is

$$\binom{n}{r} = \frac{n!}{r!(n-r)}$$

- We might want to select *r* objects from *n* without regard to order.
- These selections are called combinations. Combinations are used when we are sampling without replacement and order does NOT matter.
- A combination is a partition with two cells,

Probability I

Dr. Cem Özdoğan

• Theorem 2.8:

The number of combinations (ways of choosing, **regard**less of order) of *n* distinct objects taken *r* at a time is

$$\left(\begin{array}{c}n\\r\end{array}\right)=\frac{n!}{r!(n-r)}$$

- We might want to select *r* objects from *n* without regard to order.
- These selections are called combinations. Combinations are used when we are sampling without replacement and order does NOT matter.
- A combination is a partition with two cells,
 - the one containing r objects selected

Probability I

Dr. Cem Özdoğan

• Theorem 2.8:

The number of combinations (ways of choosing, **regard**less of order) of *n* distinct objects taken *r* at a time is

$$\left(\begin{array}{c}n\\r\end{array}\right)=\frac{n!}{r!(n-r)}$$

- We might want to select *r* objects from *n* without regard to order.
- These selections are called combinations. Combinations are used when we are sampling without replacement and order does NOT matter.
- A combination is a partition with two cells,
 - the one containing r objects selected
 - the one containing the (n r) objects that are left

Probability I

Dr. Cem Özdoğan

Theorem 2.8:

The number of combinations (ways of choosing, regard**less of order**) of *n* distinct objects taken *r* at a time is

$$\left(\begin{array}{c}n\\r\end{array}\right)=\frac{n!}{r!(n-r)}$$

- We might want to select r objects from n without regard to order
- These selections are called combinations. Combinations. are used when we are sampling without replacement and order does NOT matter.
- A combination is a partition with two cells,
 - the one containing r objects selected
 - the one containing the (n r) objects that are left
- The number of such combinations,

$$\left(\begin{array}{c}n\\r,n-r\end{array}\right)\Longrightarrow\left(\begin{array}{c}n\\r\end{array}\right)$$

Probability

Dr. Cem Özdoğan

Events Counting Sample Points Probability of Event

• The number of permutations of *n* distinct objects is *n*!.

Probability I

Dr. Cem Özdoğan

- The number of permutations of *n* distinct objects is *n*!.
- The number of permutations of *n* distinct objects taken *r* at a time is

$$\mathsf{P}(n,r) = \frac{n!}{(n-r)!}$$

Probability I

Dr. Cem Özdoğan

- The number of permutations of *n* distinct objects is *n*!.
- The number of permutations of *n* distinct objects taken *r* at a time is

$$P(n,r)=\frac{n!}{(n-r)!}$$

• The number of permutations of *n* distinct objects arranged in a circle is

$$\frac{n!}{n} = (n-1)!$$

Probability I

Dr. Cem Özdoğan

- The number of permutations of *n* distinct objects is *n*!.
- The number of permutations of *n* distinct objects taken *r* at a time is

$$P(n,r)=\frac{n!}{(n-r)!}$$

• The number of permutations of *n* distinct objects arranged in a circle is

$$\frac{n!}{n} = (n-1)!$$

• The number of permutations of *n* things of which *n*₁ are of one kind, *n*₂ of a second kind, ..., and *n_k* of a *k*th kind is

 $\frac{n!}{n_1!n_2!\dots n_k!}$

Probability I

Dr. Cem Özdoğan

- The number of permutations of *n* distinct objects is *n*!.
- The number of permutations of *n* distinct objects taken *r* at a time is

$$P(n,r)=\frac{n!}{(n-r)!}$$

• The number of permutations of *n* distinct objects arranged in a circle is

$$\frac{n!}{n} = (n-1)!$$

 The number of permutations of *n* things of which n₁ are of one kind, n₂ of a second kind, ..., and n_k of a kth kind is

$$\frac{n!}{n_1!n_2!\dots n_k!}$$

• The number of arrangements of partitioning a set of *n* objects into *r* cells with *n*₁ elements in the first cell, *n*₂ elements in the second, and so forth, is

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \dots n_r!}, (\text{where } n_1 + n_2 + \dots + n_r = n)$$

Probability I

Dr. Cem Özdoğan

- The number of permutations of *n* distinct objects is *n*!.
- The number of permutations of *n* distinct objects taken *r* at a time is

$$P(n,r)=\frac{n!}{(n-r)!}$$

• The number of permutations of *n* distinct objects arranged in a circle is

$$\frac{n!}{n} = (n-1)!$$

 The number of permutations of *n* things of which n₁ are of one kind, n₂ of a second kind, ..., and n_k of a kth kind is

$$\frac{n!}{n_1!n_2!\dots n_k!}$$

 The number of arrangements of partitioning a set of *n* objects into *r* cells with n₁ elements in the first cell, n₂ elements in the second, and so forth, is

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \dots n_r!}, (where \ n_1 + n_2 + \dots + n_r = n)$$

The number of combinations of n distinct objects taken r at a time is

$$C(n,r) = \begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{r!(n-r)!}$$

Probability I

Dr. Cem Özdoğan

 Perhaps it was man's unquenchable thirst for gambling that led to the early development of probability theory.

Probability I

Dr. Cem Özdoğan

- Perhaps it was man's unquenchable thirst for gambling that led to the early development of probability theory.
- · What do we mean when we make the statements

Probability I

Dr. Cem Özdoğan

- Perhaps it was man's unquenchable thirst for gambling that led to the early development of probability theory.
- · What do we mean when we make the statements
 - John will probably win the tennis match.

Dr. Cem Özdoğan

- Perhaps it was man's unquenchable thirst for gambling that led to the early development of probability theory.
- · What do we mean when we make the statements
 - John will probably win the tennis match.
 - I have a fifty-fifty chance of getting an even number when a die is tossed.

Probability I

Dr. Cem Özdoğan

- Perhaps it was man's unquenchable thirst for gambling that led to the early development of probability theory.
- What do we mean when we make the statements
 - John will probably win the tennis match.
 - I have a fifty-fifty chance of getting an even number when a die is tossed.
 - I am not likely to win at bingo tonight.

Probability I

Dr. Cem Özdoğan

- Perhaps it was man's unquenchable thirst for gambling that led to the early development of probability theory.
- · What do we mean when we make the statements
 - John will probably win the tennis match.
 - I have a fifty-fifty chance of getting an even number when a die is tossed.
 - I am not likely to win at bingo tonight.
 - Most of our graduating class will likely be married within 3 years.

Probability I

Dr. Cem Özdoğan

- Perhaps it was man's unquenchable thirst for gambling that led to the early development of probability theory.
- · What do we mean when we make the statements
 - John will probably win the tennis match.
 - I have a fifty-fifty chance of getting an even number when a die is tossed.
 - I am not likely to win at bingo tonight.
 - Most of our graduating class will likely be married within 3 years.
- In each case, we are expressing an outcome of which we are <u>not certain</u>, but owing to past information or from an understanding of the structure of the experiment, we have some degree of confidence in the validity of the statement.

Probability I

Dr. Cem Özdoğan

- Perhaps it was man's unquenchable thirst for gambling that led to the early development of probability theory.
- What do we mean when we make the statements
 - John will probably win the tennis match.
 - I have a fifty-fifty chance of getting an even number when a die is tossed.
 - I am not likely to win at bingo tonight.
 - Most of our graduating class will likely be married within 3 years.
- In each case, we are expressing an outcome of which we are <u>not certain</u>, but owing to past information or from an understanding of the structure of the experiment, we have some degree of confidence in the validity of the statement.
- The likelihood of the occurrence of an event resulting from a statistical experiment is evaluated by means of a set of real numbers called weights or probabilities range from <u>0 to 1</u>.

Probability I

Dr. Cem Özdoğan

- Perhaps it was man's unquenchable thirst for gambling that led to the early development of probability theory.
- What do we mean when we make the statements
 - John will probably win the tennis match.
 - I have a fifty-fifty chance of getting an even number when a die is tossed.
 - I am not likely to win at bingo tonight.
 - Most of our graduating class will likely be married within 3 years.
- In each case, we are expressing an outcome of which we are <u>not certain</u>, but owing to past information or from an understanding of the structure of the experiment, we have some degree of confidence in the validity of the statement.
- The likelihood of the occurrence of an event resulting from a statistical experiment is evaluated by means of a set of real numbers called weights or probabilities range from 0 to 1.
- The probability is <u>a numerical measure</u> of the likelihood of occurrence of an event, denoted by *P*.

Probability I

Dr. Cem Özdoğan

- Perhaps it was man's unquenchable thirst for gambling that led to the early development of probability theory.
- What do we mean when we make the statements
 - John will probably win the tennis match.
 - I have a fifty-fifty chance of getting an even number when a die is tossed.
 - I am not likely to win at bingo tonight.
 - Most of our graduating class will likely be married within 3 years.
- In each case, we are expressing an outcome of which we are <u>not certain</u>, but owing to past information or from an understanding of the structure of the experiment, we have some degree of confidence in the validity of the statement.
- The likelihood of the occurrence of an event resulting from a statistical experiment is evaluated by means of a set of real numbers called weights or probabilities range from 0 to 1.
- The probability is <u>a numerical measure</u> of the likelihood of occurrence of an event, denoted by *P*.
- To every point in the sample space we assign a probability such that **the sum of all probabilities is 1**.

Probability I

Dr. Cem Özdoğan

 In many experiments, such as tossing a coin or a die, all the sample points have the <u>same</u> chance of occurring and are assigned equal probabilities.

Dr. Cem Özdoğan

- In many experiments, such as tossing a coin or a die, all the sample points have the <u>same</u> chance of occurring and are assigned equal probabilities.
- For points outside the sample space, i.e., for simple events that cannot possibly occur, we assign a probability of zero.

Probability I

Dr. Cem Özdoğan

- In many experiments, such as tossing a coin or a die, all the sample points have the <u>same</u> chance of occurring and are assigned equal probabilities.
- For points outside the sample space, i.e., for simple events that cannot possibly occur, we assign a probability of zero.
- Definition 2.8:

The probability of an event *A* is the sum of the weights of all sample points in *A*.

$$0 \leq P(A) \leq 1$$
, $P(\emptyset) = 0$, and $P(S) = 1$

If A_1, A_2, A_3, \ldots is a sequence of mutually exclusive events, then

$$P(A_1 \cup A_2 \cup A_3 \cup \ldots) = P(A_1) + P(A_2) + P(A_3) + \ldots$$

Probability I

Dr. Cem Özdoğan

- In many experiments, such as tossing a coin or a die, all the sample points have the <u>same</u> chance of occurring and are assigned equal probabilities.
- For points outside the sample space, i.e., for simple events that cannot possibly occur, we assign a probability of zero.
- Definition 2.8:

The probability of an event *A* is the sum of the weights of all sample points in *A*.

$$0 \leq P(A) \leq 1$$
, $P(\emptyset) = 0$, and $P(S) = 1$

If A_1, A_2, A_3, \ldots is a sequence of mutually exclusive events, then

$$P(A_1 \cup A_2 \cup A_3 \cup \ldots) = P(A_1) + P(A_2) + P(A_3) + \ldots$$

 In fact, P is a probability set function of the outcomes of the random experiment, which tells us how the probability is <u>distributed</u> over various subsets A of a sample space S.

Probability I

Dr. Cem Özdoğan

• Example 2.23: A coin is tossed twice.

Probability I

Dr. Cem Özdoğan

- Example 2.23: A coin is tossed twice.
 - What is the probability that at least one head occur?

Probability I

Dr. Cem Özdoğan

- Example 2.23: A coin is tossed twice.
 - What is the probability that at least one head occur?
 - We assign a probability w to each sample point. Then 4w = 1.

 $S = \{HH, HT, TH, TT\}, A = \{HH, HT, TH\}, and$

$$P(A) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

Dr. Cem Özdoğan

- Example 2.23: A coin is tossed twice.
 - What is the probability that at least one head occur?
 - We assign a probability w to each sample point. Then 4w = 1.

 $S = \{HH, HT, TH, TT\}, A = \{HH, HT, TH\}, and$

$$P(A) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

• Example 2.4: A die is loaded in such a way that an even number is twice as likely to occur as an odd number.

Probability I

Dr. Cem Özdoğan

- Example 2.23: A coin is tossed twice.
 - What is the probability that at least one head occur?
 - We assign a probability w to each sample point. Then 4w = 1.

$$S = \{HH, HT, TH, TT\}, A = \{HH, HT, TH\}, and$$

$$P(A) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

- Example 2.4: A die is loaded in such a way that an even number is twice as likely to occur as an odd number.
- If *E* is the event that a number less than 4 occurs on a single toss of the die, find *P*(*E*).

Probability I

Dr. Cem Özdoğan

- Example 2.23: A coin is tossed twice.
 - What is the probability that at least one head occur?
 - We assign a probability w to each sample point. Then 4w = 1.

$$S = \{HH, HT, TH, TT\}, A = \{HH, HT, TH\}, and$$

$$P(A) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

- Example 2.4: A die is loaded in such a way that an even number is twice as likely to occur as an odd number.
- If *E* is the event that a number less than 4 occurs on a single toss of the die, find *P*(*E*).
 - $S = \{1, 2, 3, 4, 5, 6\}$

Probability I

Dr. Cem Özdoğan

- Example 2.23: A coin is tossed twice.
 - What is the probability that at least one head occur?
 - We assign a probability w to each sample point. Then 4w = 1.

$$S = \{HH, HT, TH, TT\}, A = \{HH, HT, TH\}, and$$

$$P(A) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

- Example 2.4: A die is loaded in such a way that an even number is twice as likely to occur as an odd number.
- If *E* is the event that a number less than 4 occurs on a single toss of the die, find *P*(*E*).
 - $S = \{1, 2, 3, 4, 5, 6\}$
 - We assign a probability of *w* to each odd number and a probability 2*w* to each even number.

Probability I

Dr. Cem Özdoğan

- Example 2.23: A coin is tossed twice.
 - What is the probability that at least one head occur?
 - We assign a probability w to each sample point. Then 4w = 1.

$$S = \{HH, HT, TH, TT\}, A = \{HH, HT, TH\}, and$$

$$P(A) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

- Example 2.4: A die is loaded in such a way that an even number is twice as likely to occur as an odd number.
- If *E* is the event that a number less than 4 occurs on a single toss of the die, find *P*(*E*).
 - $S = \{1, 2, 3, 4, 5, 6\}$
 - We assign a probability of *w* to each odd number and a probability 2*w* to each even number.
 - Since

 $P(S) = 1, w+2w+w+2w+w+2w = 9w = 1 \Longrightarrow w = 1/9$

Probability I

Dr. Cem Özdoğan

- Example 2.23: A coin is tossed twice.
 - What is the probability that at least one head occur?
 - We assign a probability w to each sample point. Then 4w = 1.

$$S = \{HH, HT, TH, TT\}, A = \{HH, HT, TH\}, and$$

$$P(A) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

- Example 2.4: A die is loaded in such a way that an even number is twice as likely to occur as an odd number.
- If *E* is the event that a number less than 4 occurs on a single toss of the die, find *P*(*E*).
 - $S = \{1, 2, 3, 4, 5, 6\}$
 - We assign a probability of *w* to each odd number and a probability 2*w* to each even number.
 - Since

$$P(S) = 1, w + 2w + w + 2w + w + 2w = 9w = 1 \implies w = 1/9$$

 $P(A) = \frac{1}{2} + \frac{2}{2} + \frac{1}{2} = \frac{4}{2}$

Probability I

Dr. Cem Özdoğan

• Theorem 2.9:

If an experiment can result in any one of N different equally likely outcomes, and if exactly n of these outcomes correspond to event A, then the probability of event A is

$$P(A) = \frac{n}{N}$$

Probability I

Dr. Cem Özdoğan

Theorem 2.9:

If an experiment can result in any one of N different equally likely outcomes, and if exactly n of these outcomes correspond to event A, then the probability of event A is

$$P(A) = \frac{n}{N}$$

• Example 2.27: In a poker hand consisting of 5 cards, find the probability of holding 2 aces and 3 jacks.

$$P(C) = \frac{C(4,2) * C(4,3)}{C(52,5)} = \frac{\frac{4!}{2!2!} * \frac{4!}{3!1!}}{\frac{52!}{5!47!}} = \frac{24}{2598960} = 0.9x10^{-5}$$

Probability I

Dr. Cem Özdoğan

 If the outcomes of an experiment are not equally likely to occur, the probabilities must be assigned based on prior knowledge or experimental evidence. Dr. Cem Özdoğan

- If the outcomes of an experiment are not equally likely to occur, the probabilities must be assigned based on prior knowledge or experimental evidence.
- According to the relative frequency definition of probability, the true probabilities would be the fractions of events that occur in the long run.

Probability I

Dr. Cem Özdoğan

- If the outcomes of an experiment are not equally likely to occur, the probabilities must be assigned based on prior knowledge or experimental evidence.
- According to the relative frequency definition of probability, the true probabilities would be the fractions of events that occur in the long run.
- The use of intuition, personal beliefs, and other indirect information in arriving at probabilities is referred to as the subjective definition of probability.

Probability I

Dr. Cem Özdoğan

