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6.3

Mean of a Random Variable I

• Suppose that a probability distribution of a random
variable X is specified.
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6.3

Mean of a Random Variable I

• Suppose that a probability distribution of a random
variable X is specified.

• For a measure of central tendency of the random variable
X we use the terms expectation , expected value , and
average value for the same concept.
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6.3

Mean of a Random Variable I

• Suppose that a probability distribution of a random
variable X is specified.

• For a measure of central tendency of the random variable
X we use the terms expectation , expected value , and
average value for the same concept.

• Intuitively, the expected value of X is the average value
that the random variable takes on.
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6.3

Mean of a Random Variable I

• Suppose that a probability distribution of a random
variable X is specified.

• For a measure of central tendency of the random variable
X we use the terms expectation , expected value , and
average value for the same concept.

• Intuitively, the expected value of X is the average value
that the random variable takes on.

• However, some of the values of the random variable X
could be more (or less) probable than the other in the
distribution unless the random variable is distributed
uniformly.



Mathematical
Expectation

Dr. Cem Özdo ğan
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6.3

Mean of a Random Variable I

• Suppose that a probability distribution of a random
variable X is specified.

• For a measure of central tendency of the random variable
X we use the terms expectation , expected value , and
average value for the same concept.

• Intuitively, the expected value of X is the average value
that the random variable takes on.

• However, some of the values of the random variable X
could be more (or less) probable than the other in the
distribution unless the random variable is distributed
uniformly.

• Hence, in order to consider an average value of X we
need to take its probability into account.
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6.4

Mean of a Random Variable II

• If I repeat the experiment many times, what would be the
average number of an outcome of a random variable?
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6.4

Mean of a Random Variable II

• If I repeat the experiment many times, what would be the
average number of an outcome of a random variable?

• Definition 4.1 :
Let X be a random variable with probability distribution
f (x). The mean or expected values of X is

{

µ = E(X ) =
∑

x xf (x) if X is discrete
µ = E(X ) =

∫

∞

−∞
xf (x)dx if X is continuous

}
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6.4

Mean of a Random Variable II

• If I repeat the experiment many times, what would be the
average number of an outcome of a random variable?

• Definition 4.1 :
Let X be a random variable with probability distribution
f (x). The mean or expected values of X is

{

µ = E(X ) =
∑

x xf (x) if X is discrete
µ = E(X ) =

∫

∞

−∞
xf (x)dx if X is continuous

}

• The expected value is used
as a measure of centering or location of the distribution of
a random variable X .
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6.4

Mean of a Random Variable II

• If I repeat the experiment many times, what would be the
average number of an outcome of a random variable?

• Definition 4.1 :
Let X be a random variable with probability distribution
f (x). The mean or expected values of X is

{

µ = E(X ) =
∑

x xf (x) if X is discrete
µ = E(X ) =

∫

∞

−∞
xf (x)dx if X is continuous

}

• The expected value is used
as a measure of centering or location of the distribution of
a random variable X .

• By the uniform distribution assumption, i.e. all values of X
are equally likely to occur in population with size N,
f (x) = 1

N for all x ,

E(X ) =
∑

x

xf (x) =
∑

x

x(
1
N

) = (
1
N

)
∑

i

xi = µ = x̄
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6.5

Mean of a Random Variable III

• Example : If two coins are tossed 16 times and X is the
number of heads that occur per toss, then the value of X
can be 0, 1, 2.

0 ∗
4

16
+ 1 ∗

7
16

+ 2 ∗
5
16

=
17
16

= 1.0625
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6.5

Mean of a Random Variable III

• Example : If two coins are tossed 16 times and X is the
number of heads that occur per toss, then the value of X
can be 0, 1, 2.

• The experiment yields no heads, one head, and two heads
a total of 4, 7, and 5 times, respectively.

0 ∗
4

16
+ 1 ∗

7
16

+ 2 ∗
5
16

=
17
16

= 1.0625
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6.5

Mean of a Random Variable III

• Example : If two coins are tossed 16 times and X is the
number of heads that occur per toss, then the value of X
can be 0, 1, 2.

• The experiment yields no heads, one head, and two heads
a total of 4, 7, and 5 times, respectively.

• The average number of heads per toss is then

0 ∗
4

16
+ 1 ∗

7
16

+ 2 ∗
5
16

=
17
16

= 1.0625



Mathematical
Expectation

Dr. Cem Özdo ğan
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6.5

Mean of a Random Variable III

• Example : If two coins are tossed 16 times and X is the
number of heads that occur per toss, then the value of X
can be 0, 1, 2.

• The experiment yields no heads, one head, and two heads
a total of 4, 7, and 5 times, respectively.

• The average number of heads per toss is then

0 ∗
4

16
+ 1 ∗

7
16

+ 2 ∗
5
16

=
17
16

= 1.0625
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6.5

Mean of a Random Variable III

• Example : If two coins are tossed 16 times and X is the
number of heads that occur per toss, then the value of X
can be 0, 1, 2.

• The experiment yields no heads, one head, and two heads
a total of 4, 7, and 5 times, respectively.

• The average number of heads per toss is then

0 ∗
4

16
+ 1 ∗

7
16

+ 2 ∗
5

16

where 4
16 , 7

16 , 5
16 are relative

frequencies

0 ∗
4

16
+ 1 ∗

7
16

+ 2 ∗
5
16

=
17
16

= 1.0625
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6.5

Mean of a Random Variable III

• Example : If two coins are tossed 16 times and X is the
number of heads that occur per toss, then the value of X
can be 0, 1, 2.

• The experiment yields no heads, one head, and two heads
a total of 4, 7, and 5 times, respectively.

• The average number of heads per toss is then

0 ∗
4

16
+ 1 ∗

7
16

+ 2 ∗
5

16

where 4
16 , 7

16 , 5
16 are relative

frequencies

x 0 1 2
f (x) 4/16 7/16 5/16

0 ∗
4

16
+ 1 ∗

7
16

+ 2 ∗
5
16

=
17
16

= 1.0625
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6.6

Mean of a Random Variable IV

• Example 4.1 : A lot contain 4 good components and 3
defective components.
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6.6

Mean of a Random Variable IV

• Example 4.1 : A lot contain 4 good components and 3
defective components.

• A sample of 3 is taken by a quality inspector.
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Mathematical
Expectation
Mean of a Random Variable

Variance and Covariance

Means and Variance of
Linear Combinations of
Random Variables

Chebyshev’s Theorem

6.6

Mean of a Random Variable IV

• Example 4.1 : A lot contain 4 good components and 3
defective components.

• A sample of 3 is taken by a quality inspector.
• Find the expected value of the number of good components

in this sample.
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6.6

Mean of a Random Variable IV

• Example 4.1 : A lot contain 4 good components and 3
defective components.

• A sample of 3 is taken by a quality inspector.
• Find the expected value of the number of good components

in this sample.

• Solution: X represents the number of good components

f (x) =

(

4
x

)(

3
3 − x

)

(

7
3

) , x = 0, 1, 2, 3

µ = E(X ) = 0 ∗ f (0) + 1 ∗ f (1) + 2 ∗ f (2) + 3 ∗ f (3) =
12
7
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Mathematical
Expectation
Mean of a Random Variable

Variance and Covariance

Means and Variance of
Linear Combinations of
Random Variables

Chebyshev’s Theorem

6.7

Mean of a Random Variable V

• Example 4.3 : Let X be the random variable that denotes
the life in hours of a certain electronic device. The
probability density function is as the following.

f (x) =

{

20000
x3 , x > 100

0, elsewhere

}

Find the expected life of this type of device.
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6.7

Mean of a Random Variable V

• Example 4.3 : Let X be the random variable that denotes
the life in hours of a certain electronic device. The
probability density function is as the following.

f (x) =

{

20000
x3 , x > 100

0, elsewhere

}

Find the expected life of this type of device.

• Solution:

µ = E(X ) =

∫

∞

100
x

20000
x3 dx = −

20000
x

|∞100 = 200
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6.8

Mean of a Random Variable VI

• Mean of g(X ) (any real-valued function): If X is a discrete
random variable with f (x), for x = −1, 0, 1, 2, and
g(X ) = X 2 then

P[g(X ) = 0] = P(X = 0) = f (0),
P[g(X ) = 1] = P(X = −1) + P(X = 1) = f (−1) + f (1),
P[g(X ) = 4] = P(X = 2) = f (2),
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6.8

Mean of a Random Variable VI

• Mean of g(X ) (any real-valued function): If X is a discrete
random variable with f (x), for x = −1, 0, 1, 2, and
g(X ) = X 2 then

P[g(X ) = 0] = P(X = 0) = f (0),
P[g(X ) = 1] = P(X = −1) + P(X = 1) = f (−1) + f (1),
P[g(X ) = 4] = P(X = 2) = f (2),

• The probability distribution of g(X ) can be written
g(x) 0 1 4

P[g(X ) = 4] f(0) f(-1)+f(1) f(2)
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6.8

Mean of a Random Variable VI

• Mean of g(X ) (any real-valued function): If X is a discrete
random variable with f (x), for x = −1, 0, 1, 2, and
g(X ) = X 2 then

P[g(X ) = 0] = P(X = 0) = f (0),
P[g(X ) = 1] = P(X = −1) + P(X = 1) = f (−1) + f (1),
P[g(X ) = 4] = P(X = 2) = f (2),

• The probability distribution of g(X ) can be written
g(x) 0 1 4

P[g(X ) = 4] f(0) f(-1)+f(1) f(2)
•

E(g(X )) = 0 ∗ f (0) + 1 ∗ [f (−1) + f (1)] + 4 ∗ f (2)

= (−1)2 ∗ f (−1) + (0)2 ∗ f (0) + (1)2 ∗ f (1) + (2)2 ∗ f (2)
=

P

x g(x) ∗ f (x)
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6.9

Mean of a Random Variable VII

• Theorem 4.1: :
Let X be a random variable with probability distribution
f (x). The mean of the random variable g(X ) is
{

µg(X) = E [g(X )] =
∑

x g(x)f (x) if X is discrete
µg(X) = E [g(X )] =

∫

∞

−∞
g(x)f (x)dx if X is continuous

}
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6.9

Mean of a Random Variable VII

• Theorem 4.1: :
Let X be a random variable with probability distribution
f (x). The mean of the random variable g(X ) is
{

µg(X) = E [g(X )] =
∑

x g(x)f (x) if X is discrete
µg(X) = E [g(X )] =

∫

∞

−∞
g(x)f (x)dx if X is continuous

}

• Example 4.5 : Let X be a random variable with density
function

f (x) =

{

x2

3 , −1 < x < 2
0, elsewhere

}
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6.9

Mean of a Random Variable VII

• Theorem 4.1: :
Let X be a random variable with probability distribution
f (x). The mean of the random variable g(X ) is
{

µg(X) = E [g(X )] =
∑

x g(x)f (x) if X is discrete
µg(X) = E [g(X )] =

∫

∞

−∞
g(x)f (x)dx if X is continuous

}

• Example 4.5 : Let X be a random variable with density
function

f (x) =

{

x2

3 , −1 < x < 2
0, elsewhere

}

• Find the expected value of g(X ) = 4X + 3.
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6.9

Mean of a Random Variable VII

• Theorem 4.1: :
Let X be a random variable with probability distribution
f (x). The mean of the random variable g(X ) is
{

µg(X) = E [g(X )] =
∑

x g(x)f (x) if X is discrete
µg(X) = E [g(X )] =

∫

∞

−∞
g(x)f (x)dx if X is continuous

}

• Example 4.5 : Let X be a random variable with density
function

f (x) =

{

x2

3 , −1 < x < 2
0, elsewhere

}

• Find the expected value of g(X ) = 4X + 3.

• Solution:

E [g(X )] = E(4X + 3) =
1
3

∫ 2

−1
(4x3 + 3x2)dx = 8
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6.10

Mean of a Random Variable VIII

• Theorem 4.2: :
Let X and Y be random variables with joint probability
function f (x , y). The mean of the random variable g(X , Y )
is














µg(X ,Y ) = E [g(X , Y )] =
∑

x

∑

y g(x , y)f (x , y)

if X and Y are discrete
µg(X ,Y ) = E [g(X , Y )] =

∫

∞

−∞

∫

∞

−∞
g(x , y)f (x , y)dxdy

if X and Y are continuous
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Mathematical
Expectation
Mean of a Random Variable

Variance and Covariance

Means and Variance of
Linear Combinations of
Random Variables

Chebyshev’s Theorem

6.10

Mean of a Random Variable VIII

• Theorem 4.2: :
Let X and Y be random variables with joint probability
function f (x , y). The mean of the random variable g(X , Y )
is














µg(X ,Y ) = E [g(X , Y )] =
∑

x

∑

y g(x , y)f (x , y)

if X and Y are discrete
µg(X ,Y ) = E [g(X , Y )] =

∫

∞

−∞

∫

∞

−∞
g(x , y)f (x , y)dxdy

if X and Y are continuous















• Example 4.7 : Find E(Y/X ) for the density function

f (x , y) =

{

x(1+3y2)
4 , 0 < x < 2, , 0 < y < 1

0, elsewhere

}
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6.10

Mean of a Random Variable VIII

• Theorem 4.2: :
Let X and Y be random variables with joint probability
function f (x , y). The mean of the random variable g(X , Y )
is














µg(X ,Y ) = E [g(X , Y )] =
∑

x

∑

y g(x , y)f (x , y)

if X and Y are discrete
µg(X ,Y ) = E [g(X , Y )] =

∫

∞

−∞

∫

∞

−∞
g(x , y)f (x , y)dxdy

if X and Y are continuous















• Example 4.7 : Find E(Y/X ) for the density function

f (x , y) =

{

x(1+3y2)
4 , 0 < x < 2, , 0 < y < 1

0, elsewhere

}

• Solution:

E(
Y
X

) =

∫ 1

0

∫ 2

0

y
x

x(1 + 3y2)

4
dxdy =

5
8
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6.11

Mean of a Random Variable IX

• If g(X , Y ) = X is

E(X ) =

{
∑

x

∑

y xf (x , y) =
∑

x xg(x)
∫

∞

−∞

∫

∞

−∞
xf (x , y)dxdy =

∫

∞

−∞
xg(x)dx

}

where g(x) is the marginal distribution of X
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6.11

Mean of a Random Variable IX

• If g(X , Y ) = X is

E(X ) =

{
∑

x

∑

y xf (x , y) =
∑

x xg(x)
∫

∞

−∞

∫

∞

−∞
xf (x , y)dxdy =

∫

∞

−∞
xg(x)dx

}

where g(x) is the marginal distribution of X

• If g(X , Y ) = Y is

E(Y ) =

{
∑

x

∑

y yf (x , y) =
∑

y yh(y)
∫

∞

−∞

∫

∞

−∞
yf (x , y)dxdy =

∫

∞

−∞
yh(y)dy

}

where h(y) is the marginal distribution of Y
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6.12

Variance and Covariance I

• A mean does not give adequate description of the shape
of a random variable (probability distribution).
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6.12

Variance and Covariance I

• A mean does not give adequate description of the shape
of a random variable (probability distribution).

• We need to characterize the variability (or dispersion) of
the random variable X in the distribution.

Figure: Distributions with equal means and unequal dispersions.
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6.12

Variance and Covariance I

• A mean does not give adequate description of the shape
of a random variable (probability distribution).

• We need to characterize the variability (or dispersion) of
the random variable X in the distribution.

Figure: Distributions with equal means and unequal dispersions.

• Definition 4.3 :
Let X be a random variable with probability distribution
f (x) and mean µ. The variance of X is


σ
2 = E

ˆ

(X − µ)2˜

=
P

x(x − µ)2f (x), if X is discrete
σ

2 = E
ˆ

(X − µ)2˜

=
R

∞

−∞
(x − µ)2f (x)dx , if X is continuous

ff

σ is called the standard deviation of X .
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6.13

Variance and Covariance II

• Example 4.8 :Let the random variable X represent the
number of automobiles that are used for official business
purposes on any given workday.
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6.13

Variance and Covariance II

• Example 4.8 :Let the random variable X represent the
number of automobiles that are used for official business
purposes on any given workday.

• The probability distribution for company A and B is as
follows.
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Mathematical
Expectation
Mean of a Random Variable

Variance and Covariance

Means and Variance of
Linear Combinations of
Random Variables

Chebyshev’s Theorem

6.13

Variance and Covariance II

• Example 4.8 :Let the random variable X represent the
number of automobiles that are used for official business
purposes on any given workday.

• The probability distribution for company A and B is as
follows.
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6.13

Variance and Covariance II

• Example 4.8 :Let the random variable X represent the
number of automobiles that are used for official business
purposes on any given workday.

• The probability distribution for company A and B is as
follows.

x 1 2 3
f (x) 0.3 0.4 0.3
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Mathematical
Expectation
Mean of a Random Variable

Variance and Covariance

Means and Variance of
Linear Combinations of
Random Variables

Chebyshev’s Theorem

6.13

Variance and Covariance II

• Example 4.8 :Let the random variable X represent the
number of automobiles that are used for official business
purposes on any given workday.

• The probability distribution for company A and B is as
follows.

x 1 2 3
f (x) 0.3 0.4 0.3

x 0 1 2 3 4
f (x) 0.2 0.1 0.3 0.3 0.1



Mathematical
Expectation

Dr. Cem Özdo ğan
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6.13

Variance and Covariance II

• Example 4.8 :Let the random variable X represent the
number of automobiles that are used for official business
purposes on any given workday.

• The probability distribution for company A and B is as
follows.

x 1 2 3
f (x) 0.3 0.4 0.3

x 0 1 2 3 4
f (x) 0.2 0.1 0.3 0.3 0.1

• Show that the variance of the probability distribution for
company B is greater than that of company A.
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6.13

Variance and Covariance II

• Example 4.8 :Let the random variable X represent the
number of automobiles that are used for official business
purposes on any given workday.

• The probability distribution for company A and B is as
follows.

x 1 2 3
f (x) 0.3 0.4 0.3

x 0 1 2 3 4
f (x) 0.2 0.1 0.3 0.3 0.1

• Show that the variance of the probability distribution for
company B is greater than that of company A.

• Solution:

µA = E(X ) = 1 ∗ 0.3 + 2 ∗ 0.4 + 3 ∗ 0.3 = 2.0

σ
2
A =

3
X

x=1

(x−2.0)2f (x) = (1−2)2∗0.3+(2−2)2∗0.4+(3−2)2∗0.3 = 0.6

µB = 2.0 & σ2
B = 1.6
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6.14

Variance and Covariance III

• Theorem 4.2 :
The variance of a random variable X is

σ2 = E(X 2) − µ2
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6.14

Variance and Covariance III

• Theorem 4.2 :
The variance of a random variable X is

σ2 = E(X 2) − µ2

• Example 4.9 : Let the random variable X represent the
number of defective parts for a machine when 3 parts are
sampled from a production line and tested.
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6.14

Variance and Covariance III

• Theorem 4.2 :
The variance of a random variable X is

σ2 = E(X 2) − µ2

• Example 4.9 : Let the random variable X represent the
number of defective parts for a machine when 3 parts are
sampled from a production line and tested.

• Calculate σ2 using the following probability distribution.
x 0 1 2 3

f (x) 0.51 0.38 0.10 0.01
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6.14

Variance and Covariance III

• Theorem 4.2 :
The variance of a random variable X is

σ2 = E(X 2) − µ2

• Example 4.9 : Let the random variable X represent the
number of defective parts for a machine when 3 parts are
sampled from a production line and tested.

• Calculate σ2 using the following probability distribution.
x 0 1 2 3

f (x) 0.51 0.38 0.10 0.01
• Solution:

µ = E(X ) = 0 ∗ 0.51 + . . . = 0.61

E(X 2) =

3
∑

x=0

x2f (x) = 02 ∗ 0.51 + . . . = 0.87

σ2 = E(X 2) − µ2 = 0.87 − 0.612 = 0.4979



Mathematical
Expectation

Dr. Cem Özdo ğan
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6.15

Variance and Covariance IV
• Theorem 4.3 :

Let X be a random variable with probability distribution
f (x). The variance of the random variable g(X ) is
8

>

>

<

>

>

:

σ
2
g(X) = E

˘

[g(X ) − µg(X)]
2¯

=
P

x [g(X ) − µg(X)]
2
,

if X is discrete
σ

2
g(X) = E

˘

[g(X ) − µg(X)]
2¯

=
R

∞

−∞
[g(X ) − µg(X)]

2f (x)dx ,

if X is continuous

9

>

>

=

>

>

;
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6.15

Variance and Covariance IV
• Theorem 4.3 :

Let X be a random variable with probability distribution
f (x). The variance of the random variable g(X ) is
8

>

>

<

>

>

:

σ
2
g(X) = E

˘

[g(X ) − µg(X)]
2¯

=
P

x [g(X ) − µg(X)]
2
,

if X is discrete
σ

2
g(X) = E

˘

[g(X ) − µg(X)]
2¯

=
R

∞

−∞
[g(X ) − µg(X)]

2f (x)dx ,

if X is continuous

9

>

>

=

>

>

;

• Example 4.11 : Calculate the variance of g(X ) = 2X + 3,
where X is a random variable with probability distribution.

x 0 1 2 3
f (x) 1/4 1/8 1/2 1/8
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6.15

Variance and Covariance IV
• Theorem 4.3 :

Let X be a random variable with probability distribution
f (x). The variance of the random variable g(X ) is
8

>

>

<

>

>

:

σ
2
g(X) = E

˘

[g(X ) − µg(X)]
2¯

=
P

x [g(X ) − µg(X)]
2
,

if X is discrete
σ

2
g(X) = E

˘

[g(X ) − µg(X)]
2¯

=
R

∞

−∞
[g(X ) − µg(X)]

2f (x)dx ,

if X is continuous

9

>

>

=

>

>

;

• Example 4.11 : Calculate the variance of g(X ) = 2X + 3,
where X is a random variable with probability distribution.

x 0 1 2 3
f (x) 1/4 1/8 1/2 1/8

• Solution:

µ2X+3 = E(2X + 3) =
3
∑

x=0

(2X + 3)f (x) = 6

σ2
2X+3 = E

{

[2X + 3 − µ2X+3]
2} = E

{

[2X + 3 − 6]2
}

= E(4X 2 − 12X + 9) =
3
∑

x=0

(4X 2 − 12X + 9)f (x) = 4
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6.16

Variance and Covariance V

• Definition 4.4 :
Let X and Y be random variables with joint probability dis-
tribution f (x , y). The covariance of X and Y is
8

>

>

<

>

>

:

σXY = E [(X − µX )(Y − µY )] =
P

x
P

y (x − µX )(y − µY )f (x , y),

if X and Y are discrete
σXY = E [(X − µX )(Y − µY )] =
R

∞

−∞

R

∞

−∞
(x − µX )(y − µY )f (x , y)dxdy , if X andY are continuous

9

>

>

=

>

>

;
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6.16

Variance and Covariance V

• Definition 4.4 :
Let X and Y be random variables with joint probability dis-
tribution f (x , y). The covariance of X and Y is
8

>

>

<

>

>

:

σXY = E [(X − µX )(Y − µY )] =
P

x
P

y (x − µX )(y − µY )f (x , y),

if X and Y are discrete
σXY = E [(X − µX )(Y − µY )] =
R

∞

−∞

R

∞

−∞
(x − µX )(y − µY )f (x , y)dxdy , if X andY are continuous

9

>

>

=

>

>

;

• The covariance between two random variables is a
measurement of the nature of the association between
the two.
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Mathematical
Expectation
Mean of a Random Variable

Variance and Covariance

Means and Variance of
Linear Combinations of
Random Variables

Chebyshev’s Theorem

6.16

Variance and Covariance V

• Definition 4.4 :
Let X and Y be random variables with joint probability dis-
tribution f (x , y). The covariance of X and Y is
8

>

>

<

>

>

:

σXY = E [(X − µX )(Y − µY )] =
P

x
P

y (x − µX )(y − µY )f (x , y),

if X and Y are discrete
σXY = E [(X − µX )(Y − µY )] =
R

∞

−∞

R

∞

−∞
(x − µX )(y − µY )f (x , y)dxdy , if X andY are continuous

9

>

>

=

>

>

;

• The covariance between two random variables is a
measurement of the nature of the association between
the two.

• The sign of the covariance indicates whether the
relationship between two dependent random variables is
positive or negative.
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6.16

Variance and Covariance V

• Definition 4.4 :
Let X and Y be random variables with joint probability dis-
tribution f (x , y). The covariance of X and Y is
8

>

>

<

>

>

:

σXY = E [(X − µX )(Y − µY )] =
P

x
P

y (x − µX )(y − µY )f (x , y),

if X and Y are discrete
σXY = E [(X − µX )(Y − µY )] =
R

∞

−∞

R

∞

−∞
(x − µX )(y − µY )f (x , y)dxdy , if X andY are continuous

9

>

>

=

>

>

;

• The covariance between two random variables is a
measurement of the nature of the association between
the two.

• The sign of the covariance indicates whether the
relationship between two dependent random variables is
positive or negative.

• When X and Y are statistically independent, it can be
shown that the covariance is zero.
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6.16

Variance and Covariance V

• Definition 4.4 :
Let X and Y be random variables with joint probability dis-
tribution f (x , y). The covariance of X and Y is
8

>

>

<

>

>

:

σXY = E [(X − µX )(Y − µY )] =
P

x
P

y (x − µX )(y − µY )f (x , y),

if X and Y are discrete
σXY = E [(X − µX )(Y − µY )] =
R

∞

−∞

R

∞

−∞
(x − µX )(y − µY )f (x , y)dxdy , if X andY are continuous

9

>

>

=

>

>

;

• The covariance between two random variables is a
measurement of the nature of the association between
the two.

• The sign of the covariance indicates whether the
relationship between two dependent random variables is
positive or negative.

• When X and Y are statistically independent, it can be
shown that the covariance is zero.

• The converse, however, is not generally true. Two
variables may have zero covariance and still not be
statistically independent.
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6.17

Variance and Covariance VI

• The covariance only describe the linear relationship
between two random variables.
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6.17

Variance and Covariance VI

• The covariance only describe the linear relationship
between two random variables.

• If a covariance between X and Y is zero, X and Y may
have a nonlinear relationship, which means that they are
not necessarily independent.
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6.17

Variance and Covariance VI

• The covariance only describe the linear relationship
between two random variables.

• If a covariance between X and Y is zero, X and Y may
have a nonlinear relationship, which means that they are
not necessarily independent.

• Theorem 4.4 :
The covariance of two random variables X and Y with
means µX and µY respectively, is given by

σXY = E(XY ) − µX µY
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6.18

Variance and Covariance VII

• Definition 4.5 :
Let X and Y be random variables with covariance σXY and
standard deviations σX and σY . The correlation coeffi-
cient of X and Y is

ρXY =
σXY

σX σY
, −1 ≤ ρXY ≤ 1
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6.18

Variance and Covariance VII

• Definition 4.5 :
Let X and Y be random variables with covariance σXY and
standard deviations σX and σY . The correlation coeffi-
cient of X and Y is

ρXY =
σXY

σX σY
, −1 ≤ ρXY ≤ 1

• Exact linear dependency: Y = a + bX

ρXY = 1, if b > 0 ; ρXY = −1, if b < 0
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6.19

Means and Variance of Linear Combinations of Random
Variables I

• Some useful properties that will simplify the calculations of
means and variances of random variables.
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6.19

Means and Variance of Linear Combinations of Random
Variables I

• Some useful properties that will simplify the calculations of
means and variances of random variables.

• These properties will permit us to deal with expectations in
terms of other parameters that are either known or are
easily computed.
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6.19

Means and Variance of Linear Combinations of Random
Variables I

• Some useful properties that will simplify the calculations of
means and variances of random variables.

• These properties will permit us to deal with expectations in
terms of other parameters that are either known or are
easily computed.

• Theorem 4.5 :
If a and b are constants, then

E(aX + b) = aE(X ) + b
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6.19

Means and Variance of Linear Combinations of Random
Variables I

• Some useful properties that will simplify the calculations of
means and variances of random variables.

• These properties will permit us to deal with expectations in
terms of other parameters that are either known or are
easily computed.

• Theorem 4.5 :
If a and b are constants, then

E(aX + b) = aE(X ) + b

• Corollary 4.1: E(b) = b
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6.19

Means and Variance of Linear Combinations of Random
Variables I

• Some useful properties that will simplify the calculations of
means and variances of random variables.

• These properties will permit us to deal with expectations in
terms of other parameters that are either known or are
easily computed.

• Theorem 4.5 :
If a and b are constants, then

E(aX + b) = aE(X ) + b

• Corollary 4.1: E(b) = b

• Corollary 4.2: E(aX ) = aE(X )
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6.20

Means and Variance of Linear Combinations of Random
Variables II

• Example 4.16 : Applying Theorem 4.5 to the continuous
random variable g(X ) = 4X + 3, the density function of X
is as follows.

f (x) =

{

x2

3 for − 1 < x < 2
0, elsewhere

}
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6.20

Means and Variance of Linear Combinations of Random
Variables II

• Example 4.16 : Applying Theorem 4.5 to the continuous
random variable g(X ) = 4X + 3, the density function of X
is as follows.

f (x) =

{

x2

3 for − 1 < x < 2
0, elsewhere

}

• Solution:

E(4X + 3) = 4E(X ) + 3 = 4

(

∫ 2

−1
x

x2

3
dx

)

+ 3 = 8
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6.20

Means and Variance of Linear Combinations of Random
Variables II

• Example 4.16 : Applying Theorem 4.5 to the continuous
random variable g(X ) = 4X + 3, the density function of X
is as follows.

f (x) =

{

x2

3 for − 1 < x < 2
0, elsewhere

}

• Solution:

E(4X + 3) = 4E(X ) + 3 = 4

(

∫ 2

−1
x

x2

3
dx

)

+ 3 = 8

• Theorem 4.6 :

E [g(X ) ± h(X )] = E [g(X )] ± E [h(X )]
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Mathematical
Expectation
Mean of a Random Variable

Variance and Covariance

Means and Variance of
Linear Combinations of
Random Variables

Chebyshev’s Theorem

6.21

Means and Variance of Linear Combinations of Random
Variables III

• Theorem 4.7 :

E [g(X , Y ) ± h(X , Y )] = E [g(X , Y )] ± E [h(X , Y )]
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6.21

Means and Variance of Linear Combinations of Random
Variables III

• Theorem 4.7 :

E [g(X , Y ) ± h(X , Y )] = E [g(X , Y )] ± E [h(X , Y )]

• Corollary 4.3: Setting g(X , Y ) = g(X ) and
h(X , Y ) = h(Y ).

E [g(X ) ± h(Y )] = E [g(X )] ± E [h(Y )]
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6.21

Means and Variance of Linear Combinations of Random
Variables III

• Theorem 4.7 :

E [g(X , Y ) ± h(X , Y )] = E [g(X , Y )] ± E [h(X , Y )]

• Corollary 4.3: Setting g(X , Y ) = g(X ) and
h(X , Y ) = h(Y ).

E [g(X ) ± h(Y )] = E [g(X )] ± E [h(Y )]

• Corollary 4.4: Setting g(X , Y ) = X and h(X , Y ) = Y .

E [X ± Y ] = E(X ) ± E(Y )
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6.21

Means and Variance of Linear Combinations of Random
Variables III

• Theorem 4.7 :

E [g(X , Y ) ± h(X , Y )] = E [g(X , Y )] ± E [h(X , Y )]

• Corollary 4.3: Setting g(X , Y ) = g(X ) and
h(X , Y ) = h(Y ).

E [g(X ) ± h(Y )] = E [g(X )] ± E [h(Y )]

• Corollary 4.4: Setting g(X , Y ) = X and h(X , Y ) = Y .

E [X ± Y ] = E(X ) ± E(Y )

• Theorem 4.7 :
Let X and Y be two independent random variables. Then

E(XY ) = E(X )E(Y )
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6.21

Means and Variance of Linear Combinations of Random
Variables III

• Theorem 4.7 :

E [g(X , Y ) ± h(X , Y )] = E [g(X , Y )] ± E [h(X , Y )]

• Corollary 4.3: Setting g(X , Y ) = g(X ) and
h(X , Y ) = h(Y ).

E [g(X ) ± h(Y )] = E [g(X )] ± E [h(Y )]

• Corollary 4.4: Setting g(X , Y ) = X and h(X , Y ) = Y .

E [X ± Y ] = E(X ) ± E(Y )

• Theorem 4.7 :
Let X and Y be two independent random variables. Then

E(XY ) = E(X )E(Y )

• Corollary 4.5: Let X and Y be two independent random
variables, Then σXY = 0



Mathematical
Expectation

Dr. Cem Özdo ğan
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6.21

Means and Variance of Linear Combinations of Random
Variables III

• Theorem 4.7 :

E [g(X , Y ) ± h(X , Y )] = E [g(X , Y )] ± E [h(X , Y )]

• Corollary 4.3: Setting g(X , Y ) = g(X ) and
h(X , Y ) = h(Y ).

E [g(X ) ± h(Y )] = E [g(X )] ± E [h(Y )]

• Corollary 4.4: Setting g(X , Y ) = X and h(X , Y ) = Y .

E [X ± Y ] = E(X ) ± E(Y )

• Theorem 4.7 :
Let X and Y be two independent random variables. Then

E(XY ) = E(X )E(Y )

• Corollary 4.5: Let X and Y be two independent random
variables, Then σXY = 0

• E(XY ) = E(X )E(Y ) for independent variables
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6.21

Means and Variance of Linear Combinations of Random
Variables III

• Theorem 4.7 :

E [g(X , Y ) ± h(X , Y )] = E [g(X , Y )] ± E [h(X , Y )]

• Corollary 4.3: Setting g(X , Y ) = g(X ) and
h(X , Y ) = h(Y ).

E [g(X ) ± h(Y )] = E [g(X )] ± E [h(Y )]

• Corollary 4.4: Setting g(X , Y ) = X and h(X , Y ) = Y .

E [X ± Y ] = E(X ) ± E(Y )

• Theorem 4.7 :
Let X and Y be two independent random variables. Then

E(XY ) = E(X )E(Y )

• Corollary 4.5: Let X and Y be two independent random
variables, Then σXY = 0

• E(XY ) = E(X )E(Y ) for independent variables
• σXY = E(XY ) − E(X )E(Y ) = 0
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6.22

Means and Variance of Linear Combinations of Random
Variables IV

• Example 4.19 : In producing gallium-arsenide microchips,
it is known that the ratio between gallium and arsenide is
independent of producing a high percentage of workable
wafers.
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6.22

Means and Variance of Linear Combinations of Random
Variables IV

• Example 4.19 : In producing gallium-arsenide microchips,
it is known that the ratio between gallium and arsenide is
independent of producing a high percentage of workable
wafers.

• Let X denote the ratio of gallium to arsenide and Y denote
the percentage of workable wafers retrieved during a
1-hour period.
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6.22

Means and Variance of Linear Combinations of Random
Variables IV

• Example 4.19 : In producing gallium-arsenide microchips,
it is known that the ratio between gallium and arsenide is
independent of producing a high percentage of workable
wafers.

• Let X denote the ratio of gallium to arsenide and Y denote
the percentage of workable wafers retrieved during a
1-hour period.

• X and Y are independent random variables with the joint
density being known as

f (x) =

{

x(1+3y2)
4 for 0 < x < 2, 0 < y < 1

0, elsewhere

}

Illustrate that E(XY ) = E(X )E(Y ).
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6.23

Means and Variance of Linear Combinations of Random
Variables V

• Solution:

E(XY ) =

Z 1

0

Z 2

0
xyf (x , y)dxdy =

Z 1

0

Z 2

0
xy

x(1 + 3y2)

4
dxdy =

5
6

E(X ) =

Z 1

0

Z 2

0
xf (x , y)dxdy =

Z 1

0

Z 2

0
x

x(1 + 3y2)

4
dxdy =

4
3

E(Y ) =

Z 1

0

Z 2

0
yf (x , y)dxdy =

Z 1

0

Z 2

0
y

x(1 + 3y2)

4
dxdy =

5
8

(E(XY ) =)
5
6

=
4
3
∗

5
8

(= E(X ) ∗ E(Y ))
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6.24

Means and Variance of Linear Combinations of Random
Variables VI

• Theorem 4.9 :
If a and b are constants, then

σ2
aX+b = a2σ2

X = a2σ2
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6.24

Means and Variance of Linear Combinations of Random
Variables VI

• Theorem 4.9 :
If a and b are constants, then

σ2
aX+b = a2σ2

X = a2σ2

• Corollary 4.6: σ2
X+b = σ2

X = σ2
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6.24

Means and Variance of Linear Combinations of Random
Variables VI

• Theorem 4.9 :
If a and b are constants, then

σ2
aX+b = a2σ2

X = a2σ2

• Corollary 4.6: σ2
X+b = σ2

X = σ2

• The variance is unchanged if a constant is added to or
subtracted from a random variable.
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6.24

Means and Variance of Linear Combinations of Random
Variables VI

• Theorem 4.9 :
If a and b are constants, then

σ2
aX+b = a2σ2

X = a2σ2

• Corollary 4.6: σ2
X+b = σ2

X = σ2

• The variance is unchanged if a constant is added to or
subtracted from a random variable.

• The addition or subtraction of a constant simply shifts the
values of X to the right/left but does not change their
variability.
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6.24

Means and Variance of Linear Combinations of Random
Variables VI

• Theorem 4.9 :
If a and b are constants, then

σ2
aX+b = a2σ2

X = a2σ2

• Corollary 4.6: σ2
X+b = σ2

X = σ2

• The variance is unchanged if a constant is added to or
subtracted from a random variable.

• The addition or subtraction of a constant simply shifts the
values of X to the right/left but does not change their
variability.

• Corollary 4.7: σ2
aX = a2σ2

X = a2σ2
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6.24

Means and Variance of Linear Combinations of Random
Variables VI

• Theorem 4.9 :
If a and b are constants, then

σ2
aX+b = a2σ2

X = a2σ2

• Corollary 4.6: σ2
X+b = σ2

X = σ2

• The variance is unchanged if a constant is added to or
subtracted from a random variable.

• The addition or subtraction of a constant simply shifts the
values of X to the right/left but does not change their
variability.

• Corollary 4.7: σ2
aX = a2σ2

X = a2σ2

• The variance is multiplied or divided by the square of the
constant.
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6.25

Means and Variance of Linear Combinations of Random
Variables VII

• Theorem 4.10 :
If X and Y are random variables with joint probability dis-
tribution f (x , y), then

σ2
aX+bY = a2σ2

X + b2σ2
Y + 2abσXY



Mathematical
Expectation

Dr. Cem Özdo ğan
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6.25

Means and Variance of Linear Combinations of Random
Variables VII

• Theorem 4.10 :
If X and Y are random variables with joint probability dis-
tribution f (x , y), then

σ2
aX+bY = a2σ2

X + b2σ2
Y + 2abσXY

• Corollary 4.8: If X and Y are independent random
variables, then

σ2
aX+bY = a2σ2

X + b2σ2
Y
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6.25

Means and Variance of Linear Combinations of Random
Variables VII

• Theorem 4.10 :
If X and Y are random variables with joint probability dis-
tribution f (x , y), then

σ2
aX+bY = a2σ2

X + b2σ2
Y + 2abσXY

• Corollary 4.8: If X and Y are independent random
variables, then

σ2
aX+bY = a2σ2

X + b2σ2
Y

• Corollary 4.9: If X and Y are independent random
variables, then

σ2
aX−bY = a2σ2

X + b2σ2
Y
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6.25

Means and Variance of Linear Combinations of Random
Variables VII

• Theorem 4.10 :
If X and Y are random variables with joint probability dis-
tribution f (x , y), then

σ2
aX+bY = a2σ2

X + b2σ2
Y + 2abσXY

• Corollary 4.8: If X and Y are independent random
variables, then

σ2
aX+bY = a2σ2

X + b2σ2
Y

• Corollary 4.9: If X and Y are independent random
variables, then

σ2
aX−bY = a2σ2

X + b2σ2
Y

• Corollary 4.10: If X1, X2, . . . Xn are independent random
variables, then

σ2
a1X1+a2X2+...anXn

= a2
1σ

2
X1

+ a2
2σ

2
X2

+ . . . + a2
nσ

2
Xn
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6.26

Means and Variance of Linear Combinations of Random
Variables VIII

• Example 4.20 : X and Y are random variables with
variances σ2

X = 2, σ2
Y = 2, and covariance σXY = −2,
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6.26

Means and Variance of Linear Combinations of Random
Variables VIII

• Example 4.20 : X and Y are random variables with
variances σ2

X = 2, σ2
Y = 2, and covariance σXY = −2,

• Find the variance of the random variable Z = 3X − 4Y + 8
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Mathematical
Expectation
Mean of a Random Variable

Variance and Covariance

Means and Variance of
Linear Combinations of
Random Variables

Chebyshev’s Theorem

6.26

Means and Variance of Linear Combinations of Random
Variables VIII

• Example 4.20 : X and Y are random variables with
variances σ2

X = 2, σ2
Y = 2, and covariance σXY = −2,

• Find the variance of the random variable Z = 3X − 4Y + 8
• Solution:

σ2
Z = σ2

3X−4Y+8 = σ2
3X−4Y (by Theorem 4.9)

= 9σ2
X + 16σ2

Y − 24σXY (by Theorem 4.10)

= 130
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6.26

Means and Variance of Linear Combinations of Random
Variables VIII

• Example 4.20 : X and Y are random variables with
variances σ2

X = 2, σ2
Y = 2, and covariance σXY = −2,

• Find the variance of the random variable Z = 3X − 4Y + 8
• Solution:

σ2
Z = σ2

3X−4Y+8 = σ2
3X−4Y (by Theorem 4.9)

= 9σ2
X + 16σ2

Y − 24σXY (by Theorem 4.10)

= 130

• Example 4.21 : Let X and Y denote the amount of two
different types of impurities in a batch of a certain
chemical product.
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6.26

Means and Variance of Linear Combinations of Random
Variables VIII

• Example 4.20 : X and Y are random variables with
variances σ2

X = 2, σ2
Y = 2, and covariance σXY = −2,

• Find the variance of the random variable Z = 3X − 4Y + 8
• Solution:

σ2
Z = σ2

3X−4Y+8 = σ2
3X−4Y (by Theorem 4.9)

= 9σ2
X + 16σ2

Y − 24σXY (by Theorem 4.10)

= 130

• Example 4.21 : Let X and Y denote the amount of two
different types of impurities in a batch of a certain
chemical product.

• Suppose that X and Y are independent random variables
with variances σ2

X = 2, σ2
Y = 3
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6.26

Means and Variance of Linear Combinations of Random
Variables VIII

• Example 4.20 : X and Y are random variables with
variances σ2

X = 2, σ2
Y = 2, and covariance σXY = −2,

• Find the variance of the random variable Z = 3X − 4Y + 8
• Solution:

σ2
Z = σ2

3X−4Y+8 = σ2
3X−4Y (by Theorem 4.9)

= 9σ2
X + 16σ2

Y − 24σXY (by Theorem 4.10)

= 130

• Example 4.21 : Let X and Y denote the amount of two
different types of impurities in a batch of a certain
chemical product.

• Suppose that X and Y are independent random variables
with variances σ2

X = 2, σ2
Y = 3

• Find the variance of the random variable Z = 3X − 2Y + 5
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6.26

Means and Variance of Linear Combinations of Random
Variables VIII

• Example 4.20 : X and Y are random variables with
variances σ2

X = 2, σ2
Y = 2, and covariance σXY = −2,

• Find the variance of the random variable Z = 3X − 4Y + 8
• Solution:

σ2
Z = σ2

3X−4Y+8 = σ2
3X−4Y (by Theorem 4.9)

= 9σ2
X + 16σ2

Y − 24σXY (by Theorem 4.10)

= 130

• Example 4.21 : Let X and Y denote the amount of two
different types of impurities in a batch of a certain
chemical product.

• Suppose that X and Y are independent random variables
with variances σ2

X = 2, σ2
Y = 3

• Find the variance of the random variable Z = 3X − 2Y + 5
• Solution:

σ2
Z = σ2

3X−2Y+5 = σ2
3X−2Y (by Theorem 4.9)

= 9σ2
X + 4σ2

Y (by Corollary 4.9)

= 30
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6.27

Chebyshev’s Theorem I

• If a random variable has a small variance or standard
deviation, we would expect most of the values to be
grouped around the mean
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6.27

Chebyshev’s Theorem I

• If a random variable has a small variance or standard
deviation, we would expect most of the values to be
grouped around the mean

• A large variance indicates a greater variability, so the area
of distribution should be spread out more.



Mathematical
Expectation

Dr. Cem Özdo ğan
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6.27

Chebyshev’s Theorem I

• If a random variable has a small variance or standard
deviation, we would expect most of the values to be
grouped around the mean

• A large variance indicates a greater variability, so the area
of distribution should be spread out more.
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6.27

Chebyshev’s Theorem I

• If a random variable has a small variance or standard
deviation, we would expect most of the values to be
grouped around the mean

• A large variance indicates a greater variability, so the area
of distribution should be spread out more.

Figure: Variability of continuous
observations about the mean.
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6.27

Chebyshev’s Theorem I

• If a random variable has a small variance or standard
deviation, we would expect most of the values to be
grouped around the mean

• A large variance indicates a greater variability, so the area
of distribution should be spread out more.

Figure: Variability of continuous
observations about the mean.

Figure: Variability of discrete
observations about the: mean.
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6.28

Chebyshev’s Theorem II
• Theorem 4.11 :

(Chebyshev’s theorem ) The probability that any random
variable X will assume a value within k standard deviation
of the mean is at least 1 − 1/k2. That is

P(µ − kσ < X < µ + kσ) ≥ 1 −
1
k2
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6.28

Chebyshev’s Theorem II
• Theorem 4.11 :

(Chebyshev’s theorem ) The probability that any random
variable X will assume a value within k standard deviation
of the mean is at least 1 − 1/k2. That is

P(µ − kσ < X < µ + kσ) ≥ 1 −
1
k2

• Example 4.22 : A random variable X has a mean µ = 8, a
variance σ2 = 9, and an unknown probability distribution.
Find
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6.28

Chebyshev’s Theorem II
• Theorem 4.11 :

(Chebyshev’s theorem ) The probability that any random
variable X will assume a value within k standard deviation
of the mean is at least 1 − 1/k2. That is

P(µ − kσ < X < µ + kσ) ≥ 1 −
1
k2

• Example 4.22 : A random variable X has a mean µ = 8, a
variance σ2 = 9, and an unknown probability distribution.
Find

• P(−4 < X < 20)

P(µ − kσ < X < µ + kσ) ≥ 1 −
1
k2

P(−4 < X < 20) = P(8 − 4 ∗ 3 < X < 8 + 4 ∗ 3) ≥ 1 −
1
42

=
15
16
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Mathematical
Expectation
Mean of a Random Variable

Variance and Covariance

Means and Variance of
Linear Combinations of
Random Variables

Chebyshev’s Theorem

6.28

Chebyshev’s Theorem II
• Theorem 4.11 :

(Chebyshev’s theorem ) The probability that any random
variable X will assume a value within k standard deviation
of the mean is at least 1 − 1/k2. That is

P(µ − kσ < X < µ + kσ) ≥ 1 −
1
k2

• Example 4.22 : A random variable X has a mean µ = 8, a
variance σ2 = 9, and an unknown probability distribution.
Find

• P(−4 < X < 20)

P(µ − kσ < X < µ + kσ) ≥ 1 −
1
k2

P(−4 < X < 20) = P(8 − 4 ∗ 3 < X < 8 + 4 ∗ 3) ≥ 1 −
1
42

=
15
16

• P(|X − 8| ≥ 6)

P(|X − 8| ≥ 6) = 1 − P(|X − 8| < 6) = 1 − P(−6 < X − 8 < 6)

= 1−P(8−6 < X < 6+8) = 1−P(8−2∗3 < X < 8+2∗3) ≤
1
22

=
1
4
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6.29

Chebyshev’s Theorem III

• The Chebyshev inequality is a useful tool as well as a
relation that connects the variance of a distribution with
the intuitive notation of dispersion in a distribution.
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6.29

Chebyshev’s Theorem III

• The Chebyshev inequality is a useful tool as well as a
relation that connects the variance of a distribution with
the intuitive notation of dispersion in a distribution.

• For any population or sample, this provides that the
minimum probability of the data within kσ from the mean µ

is 1 − 1
k2 .
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6.29

Chebyshev’s Theorem III

• The Chebyshev inequality is a useful tool as well as a
relation that connects the variance of a distribution with
the intuitive notation of dispersion in a distribution.

• For any population or sample, this provides that the
minimum probability of the data within kσ from the mean µ

is 1 − 1
k2 .

• The use of Chebyshev’s theorem;
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6.29

Chebyshev’s Theorem III

• The Chebyshev inequality is a useful tool as well as a
relation that connects the variance of a distribution with
the intuitive notation of dispersion in a distribution.

• For any population or sample, this provides that the
minimum probability of the data within kσ from the mean µ

is 1 − 1
k2 .

• The use of Chebyshev’s theorem;
• holds for any distribution of observations
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6.29

Chebyshev’s Theorem III

• The Chebyshev inequality is a useful tool as well as a
relation that connects the variance of a distribution with
the intuitive notation of dispersion in a distribution.

• For any population or sample, this provides that the
minimum probability of the data within kσ from the mean µ

is 1 − 1
k2 .

• The use of Chebyshev’s theorem;
• holds for any distribution of observations
• gives a lower bound only
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Chebyshev’s Theorem III

• The Chebyshev inequality is a useful tool as well as a
relation that connects the variance of a distribution with
the intuitive notation of dispersion in a distribution.

• For any population or sample, this provides that the
minimum probability of the data within kσ from the mean µ

is 1 − 1
k2 .

• The use of Chebyshev’s theorem;
• holds for any distribution of observations
• gives a lower bound only
• is suitable to situations where the form of the distribution is

unknown (a distribution-free result)
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