Lecture 6 Mathematical Expectation

Ceng272 Statistical Computations at March 22, 2010

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

Chebyshev's Theorem

Dr. Cem Özdoğan Computer Engineering Department Çankaya University

Contents

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables Chebyshev's Theorem

1 Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables Chebyshev's Theorem

• Suppose that a probability distribution of a random variable *X* is specified.

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- Suppose that a probability distribution of a random variable *X* is specified.
- For a measure of central tendency of the random variable X we use the terms expectation, expected value, and average value for the same concept.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- Suppose that a probability distribution of a random variable *X* is specified.
- For a measure of central tendency of the random variable X we use the terms expectation, expected value, and average value for the same concept.
- Intuitively, the expected value of X is the average value that the random variable takes on.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- Suppose that a probability distribution of a random variable *X* is specified.
- For a measure of central tendency of the random variable X we use the terms expectation, expected value, and average value for the same concept.
- Intuitively, the expected value of X is the average value that the random variable takes on.
- However, some of the values of the random variable X could be more (or less) probable than the other in the distribution unless the random variable is distributed uniformly.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- Suppose that a probability distribution of a random variable *X* is specified.
- For a measure of central tendency of the random variable X we use the terms expectation, expected value, and average value for the same concept.
- Intuitively, the expected value of X is the average value that the random variable takes on.
- However, some of the values of the random variable *X* could be more (or less) probable than the other in the distribution unless the random variable is distributed uniformly.
- Hence, in order to consider an **average** value of X we need to take its probability into account.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• If I repeat the experiment many times, what would be the average number of an outcome of a random variable?

Mathematical

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- If I repeat the experiment many times, what would be the average number of an outcome of a random variable?
- Definition 4.1:

Let X be a random variable with probability distribution f(x). The **mean** or **expected values** of X is

 $\left\{ \begin{array}{l} \mu = E(X) = \sum_{x} xf(x) \text{ if } X \text{ is discrete} \\ \mu = E(X) = \int_{-\infty}^{\infty} xf(x) dx \text{ if } X \text{ is continuous} \end{array} \right\}$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- If I repeat the experiment many times, what would be the average number of an outcome of a random variable?
- Definition 4.1:

Let X be a random variable with probability distribution f(x). The **mean** or **expected values** of X is

 $\left\{ \begin{array}{l} \mu = E(X) = \sum_{x} xf(x) \text{ if } X \text{ is discrete} \\ \mu = E(X) = \int_{-\infty}^{\infty} xf(x) dx \text{ if } X \text{ is continuous} \end{array} \right\}$

• The expected value is used as a measure of centering or location of the distribution of a random variable *X*. Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- If I repeat the experiment many times, what would be the average number of an outcome of a random variable?
- Definition 4.1:

Let X be a random variable with probability distribution f(x). The **mean** or **expected values** of X is

 $\left\{ \begin{array}{l} \mu = E(X) = \sum_{x} xf(x) \text{ if } X \text{ is discrete} \\ \mu = E(X) = \int_{-\infty}^{\infty} xf(x) dx \text{ if } X \text{ is continuous} \end{array} \right\}$

- The expected value is used as a measure of centering or location of the distribution of a random variable *X*.
- By the <u>uniform distribution</u> assumption, i.e. all values of X are equally likely to occur in population with size N,
 f(x) = ¹/_N for all x,

$$E(X) = \sum_{x} xf(x) = \sum_{x} x(\frac{1}{N}) = (\frac{1}{N}) \sum_{i} x_{i} = \mu = \bar{x}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Example: If two coins are tossed 16 times and X is the number of heads that occur per toss, then the value of X can be 0, 1, 2.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

$$0 * \frac{4}{16} + 1 * \frac{7}{16} + 2 * \frac{5}{16} = \frac{17}{16} = 1.0625$$

- Example: If two coins are tossed 16 times and X is the number of heads that occur per toss, then the value of X can be 0, 1, 2.
- The experiment yields no heads, one head, and two heads a total of 4, 7, and 5 times, respectively.

$$0 * \frac{4}{16} + 1 * \frac{7}{16} + 2 * \frac{5}{16} = \frac{17}{16} = 1.0625$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- Example: If two coins are tossed 16 times and X is the number of heads that occur per toss, then the value of X can be 0, 1, 2.
- The experiment yields no heads, one head, and two heads a total of 4, 7, and 5 times, respectively.
- The average number of heads per toss is then

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

$$0 * \frac{4}{16} + 1 * \frac{7}{16} + 2 * \frac{5}{16} = \frac{17}{16} = 1.0625$$

- Example: If two coins are tossed 16 times and X is the number of heads that occur per toss, then the value of X can be 0, 1, 2.
- The experiment yields no heads, one head, and two heads a total of 4, 7, and 5 times, respectively.
- The average number of heads per toss is then

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

$$0 * \frac{4}{16} + 1 * \frac{7}{16} + 2 * \frac{5}{16} = \frac{17}{16} = 1.0625$$

- **Example**: If two coins are tossed 16 times and X is the number of heads that occur per toss, then the value of X can be 0, 1, 2.
- The experiment yields no heads, one head, and two heads a total of 4, 7, and 5 times, respectively.
- The average number of heads per toss is then

$$0*\frac{4}{16}+1*\frac{7}{16}+2*\frac{5}{16}$$

where $\frac{4}{16}, \frac{7}{16}, \frac{5}{16}$ are relative frequencies

$$0 * \frac{4}{16} + 1 * \frac{7}{16} + 2 * \frac{5}{16} = \frac{17}{16} = 1.0625$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- **Example**: If two coins are tossed 16 times and X is the number of heads that occur per toss, then the value of X can be 0, 1, 2.
- The experiment yields no heads, one head, and two heads a total of 4, 7, and 5 times, respectively.

х

 $f(\mathbf{x})$

0

4/16

1 7/16 2

5/16

The average number of heads per toss is then

$$0*\frac{4}{16}+1*\frac{7}{16}+2*\frac{5}{16}$$

where $\frac{4}{16}$, $\frac{7}{16}$, $\frac{5}{16}$ are relative frequencies

$$0 * \frac{4}{16} + 1 * \frac{7}{16} + 2 * \frac{5}{16} = \frac{17}{16} = 1.0625$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• **Example 4.1**: A lot contain 4 good components and 3 defective components.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- Example 4.1: A lot contain 4 good components and 3 defective components.
 - A sample of 3 is taken by a quality inspector.

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- **Example 4.1**: A lot contain 4 good components and 3 defective components.
 - A sample of 3 is taken by a quality inspector.
 - Find the expected value of the number of good components in this sample.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- **Example 4.1**: A lot contain 4 good components and 3 defective components.
 - A sample of 3 is taken by a quality inspector.
 - Find the expected value of the number of good components in this sample.
- Solution: X represents the number of good components

$$f(x) = \frac{\begin{pmatrix} 4 \\ x \end{pmatrix} \begin{pmatrix} 3 \\ 3-x \end{pmatrix}}{\begin{pmatrix} 7 \\ 3 \end{pmatrix}}, x = 0, 1, 2, 3$$

$$\mu = E(X) = 0 * f(0) + 1 * f(1) + 2 * f(2) + 3 * f(3) = \frac{12}{7}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• **Example 4.3**: Let *X* be the random variable that denotes the life in hours of a certain electronic device. The probability density function is as the following.

$$f({m x}) = \left\{ egin{array}{cc} rac{20000}{x^3}, & {m x} > 100 \ 0, & elsewhere \end{array}
ight\}$$

Find the expected life of this type of device.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• **Example 4.3**: Let X be the random variable that denotes the life in hours of a certain electronic device. The probability density function is as the following.

$$f({m x})=\left\{egin{array}{cc} rac{20000}{x^3}, & {m x}>100\ 0, & elsewhere \end{array}
ight\}$$

Find the expected life of this type of device.

• Solution:

$$\mu = E(X) = \int_{100}^{\infty} x \frac{20000}{x^3} dx = -\frac{20000}{x} |_{100}^{\infty} = 200$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Mean of g(X) (any real-valued function): If X is a discrete random variable with f(x), for x = -1, 0, 1, 2, and $g(X) = X^2$ then

$$P[g(X) = 0] = P(X = 0) = f(0),$$

$$P[g(X) = 1] = P(X = -1) + P(X = 1) = f(-1) + f(1),$$

$$P[g(X) = 4] = P(X = 2) = f(2),$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Mean of g(X) (any real-valued function): If X is a discrete random variable with f(x), for x = -1, 0, 1, 2, and $g(X) = X^2$ then

$$P[g(X) = 0] = P(X = 0) = f(0),$$

$$P[g(X) = 1] = P(X = -1) + P(X = 1) = f(-1) + f(1),$$

$$P[g(X) = 4] = P(X = 2) = f(2),$$

• The probability distribution of g(X) can be written

g(x)	0	1	4
P[g(X) = 4]	f(0)	f(-1)+f(1)	f(2)

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

-

• Mean of g(X) (any real-valued function): If X is a discrete random variable with f(x), for x = -1, 0, 1, 2, and $g(X) = X^2$ then

$$P[g(X) = 0] = P(X = 0) = f(0),$$

$$P[g(X) = 1] = P(X = -1) + P(X = 1) = f(-1) + f(1),$$

$$P[g(X) = 4] = P(X = 2) = f(2),$$

• The probability distribution of g(X) can be written

g(x)	0	1	4
P[g(X) = 4]	f(0)	f(-1)+f(1)	f(2)

$$E(g(X)) = 0 * f(0) + 1 * [f(-1) + f(1)] + 4 * f(2)$$

= (-1)² * f(-1) + (0)² * f(0) + (1)² * f(1) + (2)² * f(2)
= $\sum_{x} g(x) * f(x)$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Theorem 4.1::

Let X be a random variable with probability distribution f(x). The mean of the random variable g(X) is

 $\begin{cases} \mu_{g(X)} = E[g(X)] = \sum_{x} g(x)f(x) \text{ if } X \text{ is discrete} \\ \mu_{g(X)} = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx \text{ if } X \text{ is continuous} \end{cases}$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Theorem 4.1::

Let X be a random variable with probability distribution f(x). The mean of the random variable g(X) is

 $\begin{cases} \mu_{g(X)} = E[g(X)] = \sum_{x} g(x)f(x) \text{ if } X \text{ is discrete} \\ \mu_{g(X)} = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx \text{ if } X \text{ is continuous} \end{cases}$

• **Example 4.5**: Let *X* be a random variable with density function

$$f(\mathbf{x}) = \left\{ egin{array}{cc} rac{\mathbf{x}^2}{3}, & -1 < \mathbf{x} < \mathbf{2} \ 0, & \textit{elsewhere} \end{array}
ight\}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Theorem 4.1::

Let X be a random variable with probability distribution f(x). The mean of the random variable g(X) is

 $\begin{cases} \mu_{g(X)} = E[g(X)] = \sum_{x} g(x)f(x) \text{ if } X \text{ is discrete} \\ \mu_{g(X)} = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx \text{ if } X \text{ is continuous} \end{cases}$

• **Example 4.5**: Let *X* be a random variable with density function

$$f(x) = \left\{ egin{array}{cc} rac{x^2}{3}, & -1 < x < 2 \ 0, & elsewhere \end{array}
ight\}$$

• Find the expected value of g(X) = 4X + 3.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Theorem 4.1::

Let X be a random variable with probability distribution f(x). The mean of the random variable g(X) is

 $\begin{cases} \mu_{g(X)} = E[g(X)] = \sum_{x} g(x)f(x) \text{ if } X \text{ is discrete} \\ \mu_{g(X)} = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx \text{ if } X \text{ is continuous} \end{cases}$

• **Example 4.5**: Let *X* be a random variable with density function

$$f(\mathbf{x}) = \left\{ egin{array}{cc} rac{\mathbf{x}^2}{3}, & -1 < \mathbf{x} < 2 \ 0, & \textit{elsewhere} \end{array}
ight\}$$

- Find the expected value of g(X) = 4X + 3.
- Solution:

$$E[g(X)] = E(4X+3) = \frac{1}{3} \int_{-1}^{2} (4x^3 + 3x^2) dx = 8$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Theorem 4.2::

Let X and Y be random variables with joint probability function f(x, y). The mean of the random variable g(X, Y) is

 $\begin{cases} \mu_{g(X,Y)} = E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f(x,y) \\ \text{if } X \text{ and } Y \text{ are discrete} \\ \mu_{g(X,Y)} = E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dxdy \\ \text{if } X \text{ and } Y \text{ are continuous} \end{cases}$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Theorem 4.2::

Let X and Y be random variables with joint probability function f(x, y). The mean of the random variable g(X, Y) is

$$\begin{array}{l} \mu_{g(X,Y)} = E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f(x,y) \\ \text{if } X \text{ and } Y \text{ are discrete} \\ \mu_{g(X,Y)} = E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dxdy \\ \text{if } X \text{ and } Y \text{ are continuous} \end{array}$$

• **Example 4.7**: Find E(Y/X) for the density function

$$f(x,y) = \left\{ egin{array}{c} rac{x(1+3y^2)}{4}, & 0 < x < 2, \ , 0 < y < 1 \ 0, & elsewhere \end{array}
ight\}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Theorem 4.2::

Let X and Y be random variables with joint probability function f(x, y). The mean of the random variable g(X, Y) is

$$\begin{array}{l} \mu_{g(X,Y)} = E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f(x,y) \\ \text{if } X \text{ and } Y \text{ are discrete} \\ \mu_{g(X,Y)} = E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dxdy \\ \text{if } X \text{ and } Y \text{ are continuous} \end{array}$$

• **Example 4.7**: Find E(Y/X) for the density function

$$f(x, y) = \begin{cases} \frac{x(1+3y^2)}{4}, & 0 < x < 2, \ , 0 < y < 1 \\ 0, & elsewhere \end{cases}$$

• Solution:

$$E(\frac{Y}{X}) = \int_0^1 \int_0^2 \frac{y}{x} \frac{x(1+3y^2)}{4} dx dy = \frac{5}{8}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• If g(X, Y) = X is

$$E(X) = \begin{cases} \sum_{x} \sum_{y} xf(x,y) = \sum_{x} xg(x) \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y) dx dy = \int_{-\infty}^{\infty} xg(x) dx \end{cases}$$

where g(x) is the marginal distribution of X

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

$$E(X) = \begin{cases} \sum_{x} \sum_{y} xf(x,y) = \sum_{x} xg(x) \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y) dx dy = \int_{-\infty}^{\infty} xg(x) dx \end{cases}$$

where g(x) is the marginal distribution of X • If g(X, Y) = Y is

$$E(Y) = \left\{ \begin{array}{l} \sum_{x} \sum_{y} yf(x,y) = \sum_{y} yh(y) \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y) dx dy = \int_{-\infty}^{\infty} yh(y) dy \end{array} \right\}$$

where h(y) is the marginal distribution of Y

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of Random Variables

Variance and Covariance I

• A mean does not give adequate description of the shape of a random variable (probability distribution).

Mathematical Expectation

Dr. Cem Özdoğan

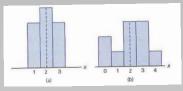
Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- A mean does not give adequate description of the shape of a random variable (probability distribution).
- We need to characterize the variability (or dispersion) of the random variable *X* in the distribution.





Mathematical

Expectation

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- A mean does not give adequate description of the shape of a random variable (probability distribution).
- We need to characterize the variability (or dispersion) of the random variable *X* in the distribution.

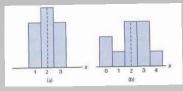


Figure: Distributions with equal means and unequal dispersions.

Definition 4.3:

Let X be a random variable with probability distribution f(x) and mean μ . The **variance** of X is

$$\begin{cases} \sigma^2 = E\left[(X - \mu)^2\right] = \sum_x (x - \mu)^2 f(x), \text{ if } X \text{ is discrete} \\ \sigma^2 = E\left[(X - \mu)^2\right] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx, \text{ if } X \text{ is continuous} \end{cases}$$

 σ is called the **standard deviation** of *X*.

Dr. Cem Özdoğan

Mathematical Expectation Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Example 4.8:Let the random variable X represent the number of automobiles that are used for official business purposes on any given workday.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- Example 4.8:Let the random variable X represent the number of automobiles that are used for official business purposes on any given workday.
- The probability distribution for company A and B is as follows.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- Example 4.8:Let the random variable X represent the number of automobiles that are used for official business purposes on any given workday.
- The probability distribution for company A and B is as follows.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- Example 4.8:Let the random variable X represent the number of automobiles that are used for official business purposes on any given workday.
- The probability distribution for company A and B is as follows.

X	x 1		3	
$f(\mathbf{x})$	0.3	0.4	0.3	

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- Example 4.8:Let the random variable X represent the number of automobiles that are used for official business purposes on any given workday.
- The probability distribution for company A and B is as follows.

x	1	2	3	
$f(\mathbf{x})$	0.3	0.4	0.3	

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- Example 4.8:Let the random variable X represent the number of automobiles that are used for official business purposes on any given workday.
- The probability distribution for company A and B is as follows.

x	1	2	3	X	0	1	2	3
$f(\mathbf{x})$	0.3	0.4	0.3	$f(\mathbf{x})$	0.2	0.1	0.3	0.3

• Show that the variance of the probability distribution for company B is greater than that of company A.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

4

0.1

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- Example 4.8:Let the random variable X represent the number of automobiles that are used for official business. purposes on any given workday.
- The probability distribution for company A and B is as follows

				X					
$f(\mathbf{x})$	0.3	0.4	0.3	$f(\mathbf{x})$	0.2	0.1	0.3	0.3	0.1

 Show that the variance of the probability distribution for company B is greater than that of company A.

Solution:

 $\mu_A = E(X) = 1 * 0.3 + 2 * 0.4 + 3 * 0.3 = 2.0$

$$\sigma_A^2 = \sum_{x=1}^{3} (x-2.0)^2 f(x) = (1-2)^2 * 0.3 + (2-2)^2 * 0.4 + (3-2)^2 * 0.3 = 0.6$$

$$\mu_B = 2.0 \& \sigma_B^2 = 1.6$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.2:

The **variance** of a random variable *X* is

$$\sigma^2 = \boldsymbol{E}(\boldsymbol{X}^2) - \mu^2$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.2:

The **variance** of a random variable *X* is

$$\sigma^2 = E(X^2) - \mu^2$$

• Example 4.9: Let the random variable X represent the number of defective parts for a machine when 3 parts are sampled from a production line and tested.

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.2:

The **variance** of a random variable *X* is

$$\sigma^2 = E(X^2) - \mu^2$$

- Example 4.9: Let the random variable X represent the number of defective parts for a machine when 3 parts are sampled from a production line and tested.
- Calculate σ^2 using the following probability distribution.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.2:

The **variance** of a random variable *X* is

$$\sigma^2 = E(X^2) - \mu^2$$

- Example 4.9: Let the random variable X represent the number of defective parts for a machine when 3 parts are sampled from a production line and tested.
- Calculate σ^2 using the following probability distribution.

X	0	1	2	3
$f(\mathbf{x})$	0.51	0.38	0.10	0.01

• Solution:

$$\mu = E(X) = 0 * 0.51 + \ldots = 0.61$$

$$E(X^2) = \sum_{x=0}^{3} x^2 f(x) = 0^2 * 0.51 + \dots = 0.87$$

$$\sigma^2 = E(X^2) = \mu^2 = 0.87 - 0.61^2 = 0.4979$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.3:

Let X be a random variable with probability distribution f(x). The variance of the random variable g(X) is

$$\begin{aligned} \sigma_{g(X)}^2 &= E\left\{ [g(X) - \mu_{g(X)}]^2 \right\} = \sum_{x} [g(X) - \mu_{g(X)}]^2, \\ \text{if } X \text{ is discrete} \\ \sigma_{g(X)}^2 &= E\left\{ [g(X) - \mu_{g(X)}]^2 \right\} = \int_{-\infty}^{\infty} [g(X) - \mu_{g(X)}]^2 f(x) dx \\ \text{if } X \text{ is continuous} \end{aligned}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.3:

Let X be a random variable with probability distribution f(x). The variance of the random variable g(X) is

$$\sigma_{g(X)}^{2} = E \left\{ [g(X) - \mu_{g(X)}]^{2} \right\} = \sum_{x} [g(X) - \mu_{g(X)}]^{2},$$

if X is discrete
$$\sigma_{g(X)}^{2} = E \left\{ [g(X) - \mu_{g(X)}]^{2} \right\} = \int_{-\infty}^{\infty} [g(X) - \mu_{g(X)}]^{2} f(x) dx$$

if X is continuous

• **Example 4.11**: Calculate the variance of g(X) = 2X + 3, where X is a random variable with probability distribution.

X	0	1	2	3
$f(\mathbf{x})$	1/4	1/8	1/2	1/8

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.3:

Let X be a random variable with probability distribution f(x). The variance of the random variable g(X) is

$$\begin{aligned} \sigma_{g(X)}^2 &= E\left\{ [g(X) - \mu_{g(X)}]^2 \right\} = \sum_{X} [g(X) - \mu_{g(X)}]^2, \\ \text{if } X \text{ is discrete} \\ \sigma_{g(X)}^2 &= E\left\{ [g(X) - \mu_{g(X)}]^2 \right\} = \int_{-\infty}^{\infty} [g(X) - \mu_{g(X)}]^2 f(X) dX \\ \text{if } X \text{ is continuous} \end{aligned}$$

• **Example 4.11**: Calculate the variance of g(X) = 2X + 3, where X is a random variable with probability distribution.

X	0	1	2	3
$f(\mathbf{x})$	1/4	1/8	1/2	1/8

• Solution:

$$\mu_{2X+3} = E(2X+3) = \sum_{x=0}^{3} (2X+3)f(x) = 6$$

$$\sigma_{2X+3}^2 = E\left\{ [2X+3-\mu_{2X+3}]^2 \right\} = E\left\{ [2X+3-6]^2 \right\}$$

$$= E(4X^2 - 12X + 9) = \sum_{x=0}^{3} (4X^2 - 12X + 9)f(x) = 4$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• **Definition 4.4**: Let *X* and *Y* be random variables with joint probability distribution f(x, y). The covariance of *X* and *Y* is $\begin{cases}
\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \sum_x \sum_y (x - \mu_X)(y - \mu_Y)f(x, y), \\
if X and Y are discrete \\
\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \\
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y)f(x, y)dxdy, if X and Y are continuous
\end{cases}$ Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

Definition 4.4:

Let X and Y be random variables with joint probability distribution f(x, y). The covariance of X and Y is

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \sum_x \sum_y (x - \mu_X)(y - \mu_Y)f(x, y),$$

if X and Y are discrete
$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y)f(x, y)dxdy,$$
if X and Y are continuous

 The covariance between two random variables is a measurement of the nature of the association between the two.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Definition 4.4:

Let X and Y be random variables with joint probability distribution f(x, y). The covariance of X and Y is

 $\begin{cases} \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \sum_x \sum_y (x - \mu_X)(y - \mu_Y)f(x, y), \\ \text{if } X \text{ and } Y \text{ are discrete} \\ \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y)f(x, y)dxdy, \text{ if } X \text{ and } Y \text{ are continuous} \end{cases}$

- The covariance between two random variables is a measurement of the nature of the association between the two.
- The **sign** of the covariance indicates whether the relationship between two dependent random variables is positive or negative.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation Mean of a Bandom Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Definition 4.4:

Let X and Y be random variables with joint probability distribution f(x, y). The covariance of X and Y is

 $\begin{cases} \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \sum_x \sum_y (x - \mu_X)(y - \mu_Y)f(x, y), \\ \text{if } X \text{ and } Y \text{ are discrete} \\ \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y)f(x, y)dxdy, \text{ if } X \text{ and } Y \text{ are continuous} \end{cases}$

- The covariance between two random variables is a measurement of the nature of the association between the two.
- The **sign** of the covariance indicates whether the relationship between two dependent random variables is positive or negative.
- When X and Y are statistically independent, it can be shown that the covariance is zero.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Definition 4.4:

Let X and Y be random variables with joint probability distribution f(x, y). The covariance of X and Y is

 $\begin{cases} \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \sum_x \sum_y (x - \mu_X)(y - \mu_Y)f(x, y), \\ \text{if } X \text{ and } Y \text{ are discrete} \\ \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y)f(x, y)dxdy, \text{ if } X \text{ and } Y \text{ are continuous} \end{cases}$

- The covariance between two random variables is a measurement of the nature of the **association** between the two.
- The **sign** of the covariance indicates whether the relationship between two dependent random variables is positive or negative.
- When X and Y are statistically independent, it can be shown that the covariance is zero.
- The converse, however, is not generally true. Two variables may have zero covariance and still not be statistically independent.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• The covariance only describe the linear relationship between two random variables.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- The covariance only describe the linear relationship between two random variables.
- If a covariance between X and Y is zero, X and Y may have a nonlinear relationship, which means that they are not necessarily independent.

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- The covariance only describe the linear relationship between two random variables.
- If a covariance between X and Y is zero, X and Y may have a nonlinear relationship, which means that they are not necessarily independent.
- Theorem 4.4:

The covariance of two random variables *X* and *Y* with means μ_X and μ_Y respectively, is given by

 $\sigma_{XY} = \boldsymbol{E}(XY) - \mu_X \mu_Y$

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Definition 4.5:

Let *X* and *Y* be random variables with covariance σ_{XY} and standard deviations σ_X and σ_Y . The **correlation coefficient** of *X* and *Y* is

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}, \ -1 \le \rho_{XY} \le 1$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

Definition 4.5:

Let *X* and *Y* be random variables with covariance σ_{XY} and standard deviations σ_X and σ_Y . The **correlation coefficient** of *X* and *Y* is

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}, \ -1 \le \rho_{XY} \le 1$$

• Exact linear dependency: Y = a + bX

$$\rho_{XY} = 1, \text{ if } b > 0 \ ; \ \rho_{XY} = -1, \text{ if } b < 0$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Some useful properties that will simplify the calculations of means and variances of random variables.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- Some useful properties that will simplify the calculations of means and variances of random variables.
- These properties will permit us to deal with expectations in terms of other parameters that are either known or are easily computed.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation Mean of a Bandom Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- Some useful properties that will simplify the calculations of means and variances of random variables.
- These properties will permit us to deal with expectations in terms of other parameters that are either known or are easily computed.
- Theorem 4.5:

If a and b are constants, then

E(aX+b)=aE(X)+b

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- Some useful properties that will simplify the calculations of means and variances of random variables.
- These properties will permit us to deal with expectations in terms of other parameters that are either known or are easily computed.
- Theorem 4.5:

If a and b are constants, then

$$E(aX+b)=aE(X)+b$$

• Corollary 4.1: E(b) = b

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- Some useful properties that will simplify the calculations of means and variances of random variables.
- These properties will permit us to deal with expectations in terms of other parameters that are either known or are easily computed.
- Theorem 4.5:

If a and b are constants, then

$$E(aX+b)=aE(X)+b$$

- Corollary 4.1: *E*(*b*) = *b*
- Corollary 4.2: E(aX) = aE(X)

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• **Example 4.16**: Applying Theorem 4.5 to the continuous random variable g(X) = 4X + 3, the density function of X is as follows.

$$f(x) = \begin{cases} \frac{x^2}{3} \text{ for } -1 < x < 2\\ 0, \text{ elsewhere} \end{cases}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• **Example 4.16**: Applying Theorem 4.5 to the continuous random variable g(X) = 4X + 3, the density function of X is as follows.

$$f(x) = \left\{ \begin{array}{l} \frac{x^2}{3} \text{ for } -1 < x < 2\\ 0, \text{ elsewhere} \end{array} \right\}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

Chebyshev's Theorem

Solution:

$$E(4X+3) = 4E(X) + 3 = 4\left(\int_{-1}^{2} x \frac{x^{2}}{3} dx\right) + 3 = 8$$

• **Example 4.16**: Applying Theorem 4.5 to the continuous random variable g(X) = 4X + 3, the density function of X is as follows.

$$f(x) = \left\{ \begin{array}{l} \frac{x^2}{3} \text{ for } -1 < x < 2\\ 0, \text{ elsewhere} \end{array} \right\}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

Chebyshev's Theorem

Solution:

$$E(4X+3) = 4E(X) + 3 = 4\left(\int_{-1}^{2} x \frac{x^{2}}{3} dx\right) + 3 = 8$$

Theorem 4.6:

 $E[g(X) \pm h(X)] = E[g(X)] \pm E[h(X)]$

• Theorem 4.7:

$$E[g(X, Y) \pm h(X, Y)] = E[g(X, Y)] \pm E[h(X, Y)]$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

Theorem 4.7:

$$E[g(X, Y) \pm h(X, Y)] = E[g(X, Y)] \pm E[h(X, Y)]$$

• Corollary 4.3: Setting g(X, Y) = g(X) and h(X, Y) = h(Y).

 $E[g(X) \pm h(Y)] = E[g(X)] \pm E[h(Y)]$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of

Random Variables

• Theorem 4.7:

$$E[g(X, Y) \pm h(X, Y)] = E[g(X, Y)] \pm E[h(X, Y)]$$

• Corollary 4.3: Setting g(X, Y) = g(X) and h(X, Y) = h(Y).

$$E[g(X) \pm h(Y)] = E[g(X)] \pm E[h(Y)]$$

• Corollary 4.4: Setting g(X, Y) = X and h(X, Y) = Y.

 $E[X \pm Y] = E(X) \pm E(Y)$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.7:

$$E[g(X, Y) \pm h(X, Y)] = E[g(X, Y)] \pm E[h(X, Y)]$$

• Corollary 4.3: Setting g(X, Y) = g(X) and h(X, Y) = h(Y).

 $E[g(X) \pm h(Y)] = E[g(X)] \pm E[h(Y)]$

• Corollary 4.4: Setting g(X, Y) = X and h(X, Y) = Y.

 $E[X \pm Y] = E(X) \pm E(Y)$

<u>Theorem 4.7:</u>

Let X and Y be two independent random variables. Then

E(XY) = E(X)E(Y)

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.7:

$$E[g(X, Y) \pm h(X, Y)] = E[g(X, Y)] \pm E[h(X, Y)]$$

• Corollary 4.3: Setting g(X, Y) = g(X) and h(X, Y) = h(Y).

$$E[g(X) \pm h(Y)] = E[g(X)] \pm E[h(Y)]$$

• Corollary 4.4: Setting g(X, Y) = X and h(X, Y) = Y.

$$E[X \pm Y] = E(X) \pm E(Y)$$

Theorem 4.7:

Let X and Y be two independent random variables. Then

$$E(XY) = E(X)E(Y)$$

• Corollary 4.5: Let X and Y be two independent random variables, Then $\sigma_{XY} = 0$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.7:

$$E[g(X, Y) \pm h(X, Y)] = E[g(X, Y)] \pm E[h(X, Y)]$$

• Corollary 4.3: Setting g(X, Y) = g(X) and h(X, Y) = h(Y).

 $E[g(X) \pm h(Y)] = E[g(X)] \pm E[h(Y)]$

• Corollary 4.4: Setting g(X, Y) = X and h(X, Y) = Y.

 $E[X \pm Y] = E(X) \pm E(Y)$

<u>Theorem 4.7:</u>

Let X and Y be two independent random variables. Then

E(XY) = E(X)E(Y)

- Corollary 4.5: Let X and Y be two independent random variables, Then $\sigma_{XY} = 0$
 - E(XY) = E(X)E(Y) for independent variables

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.7:

$$E[g(X, Y) \pm h(X, Y)] = E[g(X, Y)] \pm E[h(X, Y)]$$

• Corollary 4.3: Setting g(X, Y) = g(X) and h(X, Y) = h(Y).

$$E[g(X) \pm h(Y)] = E[g(X)] \pm E[h(Y)]$$

• Corollary 4.4: Setting g(X, Y) = X and h(X, Y) = Y.

$$E[X \pm Y] = E(X) \pm E(Y)$$

• Theorem 4.7:

Let X and Y be two independent random variables. Then

$$E(XY) = E(X)E(Y)$$

- Corollary 4.5: Let X and Y be two independent random variables, Then $\sigma_{XY} = 0$
 - E(XY) = E(X)E(Y) for independent variables
 - $\sigma_{XY} = E(XY) E(X)E(Y) = 0$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• **Example 4.19**: In producing gallium-arsenide microchips, it is known that the ratio between gallium and arsenide is independent of producing a high percentage of workable wafers.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- **Example 4.19**: In producing gallium-arsenide microchips, it is known that the ratio between gallium and arsenide is independent of producing a high percentage of workable wafers.
- Let X denote the ratio of gallium to arsenide and Y denote the percentage of workable wafers retrieved during a 1-hour period.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- **Example 4.19**: In producing gallium-arsenide microchips, it is known that the ratio between gallium and arsenide is independent of producing a high percentage of workable wafers.
- Let X denote the ratio of gallium to arsenide and Y denote the percentage of workable wafers retrieved during a 1-hour period.
- X and Y are independent random variables with the joint density being known as

$$f(x) = \begin{cases} \frac{x(1+3y^2)}{4} \text{ for } 0 < x < 2, \ 0 < y < 1 \\ 0, \ \text{elsewhere} \end{cases}$$

Illustrate that E(XY) = E(X)E(Y).

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of

Random Variables

• Solution:

$$E(XY) = \int_0^1 \int_0^2 xyf(x, y) dxdy = \int_0^1 \int_0^2 xy \frac{x(1+3y^2)}{4} dxdy = \frac{5}{6}$$
$$E(X) = \int_0^1 \int_0^2 xf(x, y) dxdy = \int_0^1 \int_0^2 x \frac{x(1+3y^2)}{4} dxdy = \frac{4}{3}$$
$$E(Y) = \int_0^1 \int_0^2 yf(x, y) dxdy = \int_0^1 \int_0^2 y \frac{x(1+3y^2)}{4} dxdy = \frac{5}{8}$$
$$(E(XY) =)\frac{5}{6} = \frac{4}{3} * \frac{5}{8} (= E(X) * E(Y))$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.9:

If a and b are constants, then

$$\sigma_{aX+b}^2 = a^2 \sigma_X^2 = a^2 \sigma^2$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.9:

If a and b are constants, then

$$\sigma_{aX+b}^2 = a^2 \sigma_X^2 = a^2 \sigma^2$$

• Corollary 4.6: $\sigma_{X+b}^2 = \sigma_X^2 = \sigma^2$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.9:

If a and b are constants, then

$$\sigma_{aX+b}^2 = a^2 \sigma_X^2 = a^2 \sigma^2$$

• Corollary 4.6: $\sigma_{X+b}^2 = \sigma_X^2 = \sigma^2$

• The variance is unchanged if a constant is added to or subtracted from a random variable.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.9:

If a and b are constants, then

$$\sigma_{aX+b}^2 = a^2 \sigma_X^2 = a^2 \sigma^2$$

• Corollary 4.6: $\sigma_{X+b}^2 = \sigma_X^2 = \sigma^2$

- The variance is unchanged if a constant is added to or subtracted from a random variable.
- The addition or subtraction of a constant simply shifts the values of *X* to the right/left but does not change their variability.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.9:

If a and b are constants, then

$$\sigma_{aX+b}^2 = a^2 \sigma_X^2 = a^2 \sigma^2$$

- Corollary 4.6: $\sigma_{X+b}^2 = \sigma_X^2 = \sigma^2$
 - The variance is unchanged if a constant is added to or subtracted from a random variable.
 - The addition or subtraction of a constant simply shifts the values of X to the right/left but does not change their variability.
- Corollary 4.7: $\sigma_{aX}^2 = a^2 \sigma_X^2 = a^2 \sigma^2$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.9:

If a and b are constants, then

$$\sigma_{aX+b}^2 = a^2 \sigma_X^2 = a^2 \sigma^2$$

• Corollary 4.6:
$$\sigma_{X+b}^2 = \sigma_X^2 = \sigma^2$$

- The variance is unchanged if a constant is added to or subtracted from a random variable.
- The addition or subtraction of a constant simply shifts the values of X to the right/left but does not change their variability.
- Corollary 4.7: $\sigma_{aX}^2 = a^2 \sigma_X^2 = a^2 \sigma^2$
 - The variance is multiplied or divided by the square of the constant.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.10:

If X and Y are random variables with joint probability distribution f(x, y), then

$$\sigma_{aX+bY}^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_{XY}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.10:

If X and Y are random variables with joint probability distribution f(x, y), then

$$\sigma_{aX+bY}^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_{XY}$$

• Corollary 4.8: If X and Y are independent random variables, then

$$\sigma_{aX+bY}^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.10:

If X and Y are random variables with joint probability distribution f(x, y), then

$$\sigma_{aX+bY}^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_{XY}$$

• Corollary 4.8: If X and Y are independent random variables, then

$$\sigma_{aX+bY}^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2$$

• Corollary 4.9: If X and Y are independent random variables, then

$$\sigma_{aX-bY}^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.10:

If X and Y are random variables with joint probability distribution f(x, y), then

$$\sigma_{aX+bY}^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_{XY}$$

• Corollary 4.8: If X and Y are independent random variables, then

$$\sigma_{aX+bY}^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2$$

• Corollary 4.9: If *X* and *Y* are independent random variables, then

$$\sigma_{aX-bY}^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2$$

• Corollary 4.10: If *X*₁, *X*₂, ..., *X_n* are independent random variables, then

$$\sigma_{a_1X_1+a_2X_2+...a_nX_n}^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• **Example 4.20**: X and Y are random variables with variances $\sigma_X^2 = 2$, $\sigma_Y^2 = 2$, and covariance $\sigma_{XY} = -2$,

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- **Example 4.20**: X and Y are random variables with variances $\sigma_X^2 = 2$, $\sigma_Y^2 = 2$, and covariance $\sigma_{XY} = -2$,
- Find the variance of the random variable Z = 3X 4Y + 8

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of Linear Combinations of

Random Variables

- **Example 4.20**: X and Y are random variables with variances $\sigma_X^2 = 2$, $\sigma_Y^2 = 2$, and covariance $\sigma_{XY} = -2$,
- Find the variance of the random variable Z = 3X 4Y + 8
- Solution:

 $\sigma_{Z}^{2} = \sigma_{3X-4Y+8}^{2} = \sigma_{3X-4Y}^{2} \text{ (by Theorem 4.9)}$ = $9\sigma_{X}^{2} + 16\sigma_{Y}^{2} - 24\sigma_{XY} \text{ (by Theorem 4.10)}$ = 130

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable

Variance and Covariance Means and Variance of

Linear Combinations of Random Variables

- **Example 4.20**: *X* and *Y* are random variables with variances $\sigma_X^2 = 2$, $\sigma_Y^2 = 2$, and covariance $\sigma_{XY} = -2$,
- Find the variance of the random variable Z = 3X 4Y + 8
- Solution:

 $\sigma_{Z}^{2} = \sigma_{3X-4Y+8}^{2} = \sigma_{3X-4Y}^{2} \text{ (by Theorem 4.9)}$ = $9\sigma_{X}^{2} + 16\sigma_{Y}^{2} - 24\sigma_{XY} \text{ (by Theorem 4.10)}$ = 130

• Example 4.21: Let X and Y denote the amount of two different types of impurities in a batch of a certain chemical product.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation Mean of a Bandom Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- **Example 4.20**: *X* and *Y* are random variables with variances $\sigma_X^2 = 2$, $\sigma_Y^2 = 2$, and covariance $\sigma_{XY} = -2$,
- Find the variance of the random variable Z = 3X 4Y + 8
- Solution:

 $\sigma_Z^2 = \sigma_{3X-4Y+8}^2 = \sigma_{3X-4Y}^2$ (by Theorem 4.9) = $9\sigma_X^2 + 16\sigma_Y^2 - 24\sigma_{XY}$ (by Theorem 4.10) = 130

- Example 4.21: Let X and Y denote the amount of two different types of impurities in a batch of a certain chemical product.
- Suppose that X and Y are independent random variables with variances $\sigma_X^2 = 2$, $\sigma_Y^2 = 3$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- **Example 4.20**: *X* and *Y* are random variables with variances $\sigma_X^2 = 2$, $\sigma_Y^2 = 2$, and covariance $\sigma_{XY} = -2$,
- Find the variance of the random variable Z = 3X 4Y + 8
- Solution:

 $\sigma_Z^2 = \sigma_{3X-4Y+8}^2 = \sigma_{3X-4Y}^2$ (by Theorem 4.9) = $9\sigma_X^2 + 16\sigma_Y^2 - 24\sigma_{XY}$ (by Theorem 4.10) = 130

- Example 4.21: Let X and Y denote the amount of two different types of impurities in a batch of a certain chemical product.
- Suppose that X and Y are independent random variables with variances $\sigma_X^2 = 2$, $\sigma_Y^2 = 3$
- Find the variance of the random variable Z = 3X 2Y + 5

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- **Example 4.20**: *X* and *Y* are random variables with variances $\sigma_X^2 = 2$, $\sigma_Y^2 = 2$, and covariance $\sigma_{XY} = -2$,
- Find the variance of the random variable Z = 3X 4Y + 8
- Solution:

 $\sigma_Z^2 = \sigma_{3X-4Y+8}^2 = \sigma_{3X-4Y}^2$ (by Theorem 4.9) = $9\sigma_X^2 + 16\sigma_Y^2 - 24\sigma_{XY}$ (by Theorem 4.10) = 130

- Example 4.21: Let X and Y denote the amount of two different types of impurities in a batch of a certain chemical product.
- Suppose that X and Y are independent random variables with variances $\sigma_X^2 = 2$, $\sigma_Y^2 = 3$
- Find the variance of the random variable Z = 3X 2Y + 5
- Solution:

 $\sigma_Z^2 = \sigma_{3X-2Y+5}^2 = \sigma_{3X-2Y}^2 \text{ (by Theorem 4.9)}$ $= 9\sigma_X^2 + 4\sigma_Y^2 \text{ (by Corollary 4.9)}$ = 30

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation Mean of a Random Variable

Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

 If a random variable has a small variance or standard deviation, we would expect most of the values to be grouped around the mean

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

- If a random variable has a small variance or standard deviation, we would expect most of the values to be grouped around the mean
- A large variance indicates a greater variability, so the area of distribution should be spread out more.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- If a random variable has a small variance or standard deviation, we would expect most of the values to be grouped around the mean
- A large variance indicates a greater variability, so the area of distribution should be spread out more.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- If a random variable has a small variance or standard deviation, we would expect most of the values to be grouped around the mean
- A large variance indicates a greater variability, so the area of distribution should be spread out more.

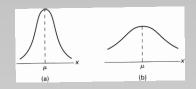


Figure: Variability of continuous observations about the mean.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- If a random variable has a small variance or standard deviation, we would expect most of the values to be grouped around the mean
- A large variance indicates a greater variability, so the area of distribution should be spread out more.

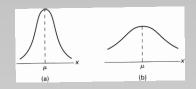




Figure: Variability of continuous observations about the mean.

Figure: Variability of discrete observations about the: mean.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Theorem 4.11:

(**Chebyshev's theorem**) The probability that any random variable *X* will assume a value within *k* standard deviation of the mean is at least $1 - 1/k^2$. That is

$$P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance

Means and Variance of Linear Combinations of Random Variables

• Theorem 4.11:

(**Chebyshev's theorem**) The probability that any random variable *X* will assume a value within *k* standard deviation of the mean is at least $1 - 1/k^2$. That is

$$P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

• **Example 4.22**: A random variable X has a mean $\mu = 8$, a variance $\sigma^2 = 9$, and an unknown probability distribution. Find

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Theorem 4.11:

(**Chebyshev's theorem**) The probability that any random variable *X* will assume a value within *k* standard deviation of the mean is at least $1 - 1/k^2$. That is

$$P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

- **Example 4.22**: A random variable X has a mean $\mu = 8$, a variance $\sigma^2 = 9$, and an unknown probability distribution. Find
- P(-4 < X < 20)

$$P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$
$$P(-4 < X < 20) = P(8 - 4 * 3 < X < 8 + 4 * 3) \ge 1 - \frac{1}{4^2} = \frac{15}{16}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• Theorem 4.11:

(**Chebyshev's theorem**) The probability that any random variable *X* will assume a value within *k* standard deviation of the mean is at least $1 - 1/k^2$. That is

$$P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

• **Example 4.22**: A random variable *X* has a mean $\mu = 8$, a variance $\sigma^2 = 9$, and an unknown probability distribution. Find

$$P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

$$P(-4 < X < 20) = P(8 - 4 * 3 < X < 8 + 4 * 3) \ge 1 - \frac{1}{4^2} = \frac{15}{16}$$
• $P(|X - 8| \ge 6)$

$$P(|X - 8| \ge 6) = 1 - P(|X - 8| < 6) = 1 - P(-6 < X - 8 < 6)$$

$$= 1 - P(8 - 6 < X < 6 + 8) = 1 - P(8 - 2 + 3 < X < 8 + 2 + 3) \le \frac{1}{2^2} = \frac{1}{4}$$

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

• The Chebyshev inequality is a useful tool as well as a relation that connects the variance of a distribution with the intuitive notation of dispersion in a distribution.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of

Linear Combinations of Random Variables

- The Chebyshev inequality is a useful tool as well as a relation that connects the variance of a distribution with the intuitive notation of dispersion in a distribution.
- For any population or sample, this provides that the minimum probability of the data within $k\sigma$ from the mean μ is $1 \frac{1}{k^2}$.

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- The Chebyshev inequality is a useful tool as well as a relation that connects the variance of a distribution with the intuitive notation of dispersion in a distribution.
- For any population or sample, this provides that the minimum probability of the data within $k\sigma$ from the mean μ

is $1 - \frac{1}{k^2}$.

• The use of Chebyshev's theorem;

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- The Chebyshev inequality is a useful tool as well as a relation that connects the variance of a distribution with the intuitive notation of dispersion in a distribution.
- For any population or sample, this provides that the minimum probability of the data within $k\sigma$ from the mean μ

is $1 - \frac{1}{k^2}$.

- The use of Chebyshev's theorem;
 - holds for any distribution of observations

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- The Chebyshev inequality is a useful tool as well as a relation that connects the variance of a distribution with the intuitive notation of dispersion in a distribution.
- For any population or sample, this provides that the minimum probability of the data within $k\sigma$ from the mean μ

is $1 - \frac{1}{k^2}$.

- The use of Chebyshev's theorem;
 - holds for any distribution of observations
 - gives a lower bound only

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables

- The Chebyshev inequality is a useful tool as well as a relation that connects the variance of a distribution with the intuitive notation of dispersion in a distribution.
- For any population or sample, this provides that the minimum probability of the data within $k\sigma$ from the mean μ

is $1 - \frac{1}{k^2}$.

- The use of Chebyshev's theorem;
 - · holds for any distribution of observations
 - gives a lower bound only
 - is suitable to situations where the form of the distribution is <u>unknown</u> (a distribution-free result)

Mathematical Expectation

Dr. Cem Özdoğan

Mathematical Expectation

Mean of a Random Variable Variance and Covariance Means and Variance of Linear Combinations of Random Variables