
1 SYSTEMS PROGRAMMING LABORA-

TORY IV - Processes

Examples&Exercises:

• Complete the following codes if necessary, then compile and run the
code.

• Analyze the code and output.

1. Using fork and exec Together,fork-exec.c

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

/* Spawn a child process running a new program. PROGRAM is the name

of the program to run; the path will be searched for this program.

ARG_LIST is a NULL-terminated list of character strings to be

passed as the program’s argument list. Returns the process id of

the spawned process. */

int spawn (char* program, char** arg_list)

{

pid_t child_pid;

/* Duplicate this process. */

child_pid = fork ();

if (child_pid != 0)

/* This is the parent process. */

return child_pid;

else {

/* Now execute PROGRAM, searching for it in the path. */

execvp (program, arg_list);

/* The execvp function returns only if an error occurs. */

fprintf (stderr, "an error occurred in execvp\n");

abort ();

}

}

int main ()

{

/* The argument list to pass to the "ls" command. */

char* arg_list[] = {

"ls", /* argv[0], the name of the program. */

"-l",

1

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/fork-exec.c

"/",

NULL /* The argument list must end with a NULL. */

};

/* Spawn a child process running the "ls" command. Ignore the

returned child process id. */

spawn ("ls", arg_list);

printf ("done with main program\n");

return 0;

}

2. Using a Signal Handler; complete the following program sigusr1.c

#include <signal.h>

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

#include <unistd.h>

sig_atomic_t sigusr1_count = 0;

void handler (int signal_number)

{

++sigusr1_count;

}

int main ()

{

struct sigaction sa;

memset (&sa, 0, sizeof (sa));

sa.sa_handler = &handler;

sigaction (SIGUSR1, &sa, NULL);

/* Do some lengthy stuff here. */

/* ... */

printf ("SIGUSR1 was raised %d times\n", sigusr1_count);

return 0;

}

3. The wait System Calls; complete the following program wait1.c

int main ()

{

2

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/sigusr1.ct
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/wait1.c

int child_status;

/* The argument list to pass to the "ls" command. */

char* arg_list[] = {

"ls", /* argv[0], the name of the program. */

"-l",

"/",

NULL /* The argument list must end with a NULL. */

};

/* Spawn a child process running the "ls" command. Ignore the

returned child process ID. */

spawn ("ls", arg_list);

/* Wait for the child process to complete. */

wait (&child_status);

if (WIFEXITED (child_status))

printf ("the child process exited normally, with exit code %d\n",

WEXITSTATUS (child_status));

else

printf ("the child process exited abnormally\n");

return 0;

}

4. Making a Zombie Process, zombie.c

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

int main ()

{

pid_t child_pid;

/* Create a child process. */

child_pid = fork ();

if (child_pid > 0) {

/* This is the parent process. Sleep for a minute. */

sleep (60);

}

else {

/* This is the child process. Exit immediately. */

exit (0);

}

return 0;

}

3

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/zombie.c

• Run it, and while it’s still running, list the processes on the system
by invoking the following command in another window:

$ ps -e -o pid,ppid,stat,cmd

5. Cleaning Up Children Asynchronously; complete the following program
cleaning.c

#include <signal.h>

#include <string.h>

#include <sys/types.h>

#include <sys/wait.h>

sig_atomic_t child_exit_status;

void clean_up_child_process (int signal_number)

{

/* Clean up the child process. */

int status;

wait (&status);

/* Store its exit status in a global variable. */

child_exit_status = status;

}

int main ()

{

/* Handle SIGCHLD by calling clean_up_child_process. */

struct sigaction sigchld_action;

memset (&sigchld_action, 0, sizeof (sigchld_action));

sigchld_action.sa_handler = &clean_up_child_process;

sigaction (SIGCHLD, &sigchld_action, NULL);

/* Now do things, including forking a child process. */

/* ... */

return 0;

}

6. The child demo1.c Program, child demo1.c

• Use the Makefile to compile and run the code.

• The program child demo1.c demonstrates the child library by
invoking four child processes that do little other than announce
their existence, sleep a random amount of time, and then die.

4

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/cleaning.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/child_demo1.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/Makefile

• Processes that die are automatically restarted.

• For no especially good reason, it installs signal handlers for sev-
eral common signals and responds to those signals by doing a
longjmp() and then killing the children.

child.c, child.h

• The library (child.c) contains functions to spawn a set number of
child processes, to replace these processes when they die, and to
send signals to these processes.

• It also includes a function that implements a safer and more flex-
ible replacement for the system() and popen() standard library
functions.

• The type child fp t defines a pointer to a function that will be
executed in the child process. The two arguments are a pointer
to the child info t structure that describes the child and an ar-
bitrary (user defined) void pointer.

• The data structure child info t has information about a particu-
lar child process, including its process id (pid), its parent process
id (ppid), its process number (zero through the number of child
processes in a given group), and a pointer to the function to be
executed.

• The data structure child group info t contains information about
a group of child processes. The member nchildren defines how
many processes are listed in the child array.

• The data structure child groups t defines multiple groups; each
group may be running a different function. Member ngroups in-
dicates how many groups are defined in the array group of type
child group info t. This allows functions that wait for or ma-
nipulate dissimilar child processes.

• The function child create() creates an individual child process.
The third argument, private p, is a user defined void pointer that
is passed to the created child function.

• The function child group create() creates between ”min” and
”max” copies of a child process (currently the number created will
equal ”min”).

• The function child groups keepalive() replaces children from
one or more groups of children when they terminate for any reason.

5

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/child.c
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/child.h

• The function child group signal() sends a signal to all children
in a single group.

• The function child groups kill() counts the number of children
by sending them signal 0, sends each of them SIGTERM, and
waits until they all die or a couple minutes have elapsed, at which
time it aborts them using SIGKILL.

• The function child pipeve() is a replacement for system() and
popen().

7. Rewrite the Makefile so that all the C-codes for today’s lab can be
compiled.

6

	SYSTEMS PROGRAMMING LABORATORY IV - Processes

