
1 SYSTEMS PROGRAMMING LABORA-

TORY IX - Linux System Calls & Inline

Assembly Code

Examples&Exercises:

• Complete the following codes if necessary, then compile and run the
code.

• Analyze the code and output.

1. access: Testing File Permissions; check-access.c

• first execute with a non-existing file,

• then create a file and change permission bits to observe the be-
havior of the program,

• see the system calls by

$ strace check-access

study the output in detail.

2. fcntl: Locks and Other File Operations; lock-file.c

• execute without supplying a filename,

• execute in two different windows as

$ ./lock-file supplyafile

3. fsync: Flushing Disk Buffers ; write journal entry.c

• Complete the code,

• say you have a endless loop to produce the entries in the main
function,

• study the cases with and without fsync,

• observe the size changes in the journal in another window,

• can you estimate the buffer size for the without fsync case?

4. getrlimit and setrlimit: Resource Limits; limit-cpu.c

• see what are other possible resource limits by

1

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/check-access.c 
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/lock-file.c 
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/write_journal_entry.c 
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/limit-cpu.c 


$ man getrlimit

$ man setrlimit

• modify the code to print out these resource limits supplied as
defaults,

• interpret the output.

5. getrusage: Process Statistics; print-cpu-times.c

• Complete the code,

• see what are other possible process statistics by (see struct rusage)

$ man getrusage

• modify the code to print out these process statistics supplied as
defaults,

• interpret the output.

6. mprotect: Setting Memory Permissions; mprotect.c

• it is given for PROT NONE for no memory access,

• try the other memory protection flags PROT READ, PROT WRITE,
and PROT EXEC for read, write, and execute permission, respec-
tively.

7. readlink: Reading Symbolic Links; print-symlink.c

• study the cases;

– without a file,

– with an ordinary file (not a symbolic file),

– create a link by

$ ln -s arealfile supplyaname

$./print-symlink supplyaname

8. sysinfo: Obtaining System Statistics; sysinfo.c

• see what are other possible system statistics by (see struct sysinfo)

$ man sysinfo

• modify the code to print out these system statistics,

• interpret the output.

9. Inline Assembly Code (Example); bit-pos-asm.c, bit-pos-loop.c

2

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/print-cpu-times.c 
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/mprotect.c 
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/print-symlink.c 
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/sysinfo.c 
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/bit-pos-asm.c 
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/bit-pos-loop.c 


• compile and execute as the followings

$ gcc -O2 -o bit-pos-loop bit-pos-loop.c

$ gcc -O2 -o bit-pos-asm bit-pos-asm.c

$ time ./bit-pos-loop 250000000

$ time ./bit-pos-asm 250000000

• why the optimization level 2 is used?

• try the other levels and observe the execution times,

• analyze the results; which optimization level should be used and
why?

10. TO BE GRADED; modify the code lock-file.c such that

• we have two processes (either two threads or a forked child),

• these two processes have an access to same file to read and write,

• your program should investigate the following cases;

– one is locked the file by fcntl and the other tries to read and
write,

– one is locked the file by fcntl and the other also tries to lock
the file by fcntl then attempts to read and write.

• what are the possible outcomes and issues?

11. TO BE GRADED; modify the completed code; print-cpu-times.c such
that

• we have a parent and one child,

• get process statistics for both the parent and the child,

• interpret the output.

3

http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/lock-file.c 
http://siber.cankaya.edu.tr/SystemsProgramming/cfiles/print-cpu-times.c 

