
Çankaya University
Graduate School of Natural and Applied Sciences

CENG 505 Parallel Computing I
Homework 1

Instructor	:	Doç. Dr. Cem Özdoğan
Student	:	Mustafa Tan Atagören 200771004

Contents
What Is GPGPU	1
Why GPGPU	2
Computational requirements are large	2
Parallelism is substantial	2
Throughput is more important than latency	2
GPU Architecture	3
The Graphics Pipeline	3
Computing On GPU	4
Programming A GPGPU (Old)	4
Programming A GPGPU (New)	4
GPGPU Software Environments	6
OpenCL	6
Brook GPU	6
CUDA	6
STREAM	6
Future Of GPGPU	7
NVIDIA TESLA	7
AMD FUSION	7

1

[bookmark: _Toc283367925]What Is GPGPU

GPGPU stands for General-Purpose computation on Graphics Processing Units, also known as GPU Computing. Graphics Processing Units (GPUs) are high performance many-core processors are capable of very high computation and data throughput. GPU typically handles computation only for computer graphics to perform computation in applications traditionally handled by the CPU.
Once specially designed for computer graphics and difficult to program, today’s GPU’s are general-purpose parallel processors with support for accessible programming languages such as C developers who port their applications to GPUs for optimized CPU applications.
The main idea under GPGPU is being capable of handling general computational tasks like parallel program execution which are generally handled by CPU. GPGPU is optimized to handle non graphic graphics data by the addition of programmable stages and higher precision arithmetic to the rendering pipelines.
The model for GPU computing is to use a CPU and GPU together in a heterogeneous co-processing computing model. The sequential part of the application runs on the CPU and the computationally-intensive part is accelerated by the GPU. From the user’s perspective, the application just runs faster because it is using the high-performance of the GPU to boost performance.
[image:]

[bookmark: _Toc283367926]Why GPGPU
Parallelism is the future of computing and GPGPU is designed for highly paralel. If GPU take some share of computation load from CPU, many applications can be benefitted in speed-up .
Also in GPGPU programming model, the application developers modify their application and map them to the GPU. The rest of the application remains on the CPU. Mapping a function to the GPU involves rewriting the function to expose the parallelism in the function and adding “C” keywords to move data to and from the GPU. The developer is tasked with launching 10s of 1000s of threads simultaneously. The GPU hardware manages the threads and does thread scheduling.
The GPU is designed for a particular class of applications with the following characteristics,
[bookmark: _Toc283367927]Computational requirements are large
Real-time rendering requires billions of pixels per second,and each pixel requires hundreds or more operations.
GPUs must deliver an enormous amount of compute performance to satisfy the demand of complex real-time applications.

[bookmark: _Toc283367928]Parallelism is substantial
Fortunately, the graphics pipeline is well suited for parallelism. Operations on vertices and fragments are well matched to finegrained closely coupled programmable paralel compute units, which in turn are applicable to many other computational domains.

[bookmark: _Toc283367929]Throughput is more important than latency
GPU implementations of the graphics pipeline prioritize throughput over latency. The human visual system operates on millisecond time scales, while operations within a modern processor take nanoseconds.

As a consequence, the graphics pipeline is quite deep, perhaps hundreds to thousands of cycles, with thousands of primitives in flight at any given time. The pipeline is also feed-forward, removing the penalty of control hazards, further allowing optimal throughput of primitives through the pipeline. This emphasis on throughput is characteristic of applications in other areas as well.

[bookmark: _Toc283367930]GPU Architecture
Over the past few years, the GPU has evolved from a fixed-function special-purpose processor into a full-fledged parallel programmable processor with additional fixed-function special-purpose functionality. More than ever, the programmable aspects of the processor have taken center stage.
[bookmark: _Toc283367931]The Graphics Pipeline
The input to the GPU is a list of geometric primitives, typically triangles, in a 3-D world coordinate system. Through many steps, those primitives are shaded and mapped onto the screen, where they are assembled to create a final picture. It is instructive to first explain the specific steps in the canonical pipeline before showing how the pipeline has become programmable.

Vertex Operations: The input primitives are formed from individual vertices. Each vertex must be transformed into screen space and shaded, typically through computing their interaction with the lights in the scene. Because typical scenes have tens to hundreds of thousands of vertices, and each vertex can be computed independently, this stage is well suited for parallel hardware.

Primitive Assembly: The vertices are assembled into triangles, the fundamental hardware-supported primitive in today’s GPUs.

Rasterization: Rasterization is the process of determining which screen-space pixel locations are covered by each triangle. Each triangle generates a primitive called a Bfragment[at each screen-space pixel location that it covers. Because many triangles may overlap at any pixel location, each pixel’s color value may be computed from several fragments.

Fragment Operations: Using color information from the vertices and possibly fetching additional data from globalmemory in the form of textures (images that are mapped onto surfaces), each fragment is shaded to determine its final color. Just as in the vertex stage, each fragment can be computed in parallel. This stage is typically the most computationally demanding stage in the graphics pipeline.

Composition: Fragments are assembled into a final image with one color per pixel, usually by keeping the closest fragment to the camera for each pixel location.
[bookmark: _Toc283367932]Computing On GPU
The programmable units of the GPU follow a singleprogram multiple-data (SPMD) programming model. For efficiency, the GPU processes many elements (vertices or fragments) in parallel using the same program. Each element is independent from the other elements, and in the base programming model, elements cannot communicate with each other. All GPU programs must be structured
[bookmark: _Toc283367933]Programming A GPGPU (Old)
Making this pipeline to perform general-purpose computation involves the exact same steps but different terminology. A motivating example is a fluid simulation computed over a grid: at each time step, we compute the next state of the fluid for each grid point from the current state at its grid point and at the grid points of its neighbors.

1) The programmer specifies a geometric primitive that covers a computation domain of interest. The
rasterizer generates a fragment at each pixel location covered by that geometry. (In our example, our primitive must cover a grid of fragments equal to the domain size of our fluid simulation.)

2) Each fragment is shaded by an SPMD generalpurpose fragment program. (Each grid point runs the same program to update the state of its fluid.)

3) The fragment program computes the value of the fragment by a combination of math operations and Bgather[accesses from global memory. (Each grid point can access the state of its neighbors from the previous time step in computing its current value.)

4) The resulting buffer in global memory can then be used as an input on future passes. (The current state of the fluid will be used on the next time step.)
[bookmark: _Toc283367934]Programming A GPGPU (New)
One of the historical difficulties in programming GPGPU applications has been that despite their general-purpose tasks’ having nothing to do with graphics, the applications still had to be programmed using graphics APIs. In addition, the program had to be structured in terms of the graphics pipeline, with the programmable units only accessible as an intermediate step in that pipeline, when the programmer would almost certainly prefer to Access the programmable units directly. Today, GPU computing applications are structured in the following way.

1) The programmer directly defines the computation domain of interest as a structured grid of threads.

2) An SPMD general-purpose program computes the value of each thread.

3) The value for each thread is computed by a combination of math operations and both Bgather[(read) accesses from and Bscatter[(write) accesses to global memory. Unlike in the previous two methods, the same buffer can be used for both reading and writing, allowing more flexible algorithms (for example, in-place algorithms that use less memory).

4) The resulting buffer in global memory can then be used as an input in future computation. This programming model is a powerful one for several reasons.

First, it allows the hardware to fully exploit the application’s data parallelism by explicitly specifying that parallelism in the program.

Next, it strikes a careful balance between generality (a fully programmable routine at each element) and restrictions to ensure good performance (the SPMD model, the restrictions on branching for efficiency, restrictions on data communication between elements and between kernels/passes, and so on). Finally, its direct access to the programmable units eliminates much of the complexity faced by previous GPGPU programmers in coopting the graphics interface for general-purpose programming.

 As a result, programs are more often expressed in a familiar programming language (such as NVIDIA’s C-like syntax in their CUDA programming environment) and are simpler and easier to build and debug (and are becoming more so as the programming tools mature).

 The result is a programming model that allows its users to take full advantage of the GPU’s powerful hardware but also permits an increasingly high-level programming model that enables productive authoring of complex applications.

[bookmark: _Toc283367935]GPGPU Software Environments

[bookmark: _Toc283367936]OpenCL
OpenCL (Open Computing Language) is the first open, royalty-free standard for general-purpose parallel programming of heterogeneous systems. OpenCL provides a uniform programming environment for software developers to write efficient, portable code for high-performance compute servers, desktop computer systems and handheld devices using a diverse mix of multi-core CPUs, GPUs, Cell-type architectures and other parallel processors such as DSPs.
[bookmark: _Toc283367937]Brook GPU
Brook for GPUs, also known as BrookGPU, was developed at Stanford University. It is a compiler and runtime implementation of the Brook stream program language for graphics hardware. BrookGPU is implemented as an extension to the C programming language, and compiles to various backends. It supports NVIDIA and ATI GPUs on Windows and Linux.
[bookmark: _Toc283367938]CUDA
CUDA is a parallel computing architecture and programming model developed by NVIDIA. The CUDA architecture includes an assembly language (PTX) and compilation technology that is the basis on which multiple parallel language and API interfaces are built on NVIDIA GPUs, including C (C++) for CUDA, OpenCL, Fortran, and DirectX Compute Shaders. C for CUDA uses the standard C language with extensions, and exposes hardware features that are not available in traditional OpenGL or Direct3D (other than Compute Shaders). The most important of these new features are shared memory, which can greatly improve the performance of bandwidth-limited applications; double precision floating point arithmetic; and an arbitrary load/store memory model, which enables many new algorithms which were previously difficult or impossible to implement on the GPU.
[bookmark: _Toc283367939]STREAM
ATI Stream technology is a set of advanced hardware and software technologies that enable AMD graphics processors (GPU), working in concert with the system’s central processor (CPU), to accelerate many applications beyond just graphics. This enables better balanced platforms capable of running demanding computing tasks faster than ever.

[bookmark: _Toc283367940]Future Of GPGPU

For future the most important improvements willl be in increasing the bandwidth path between CPU and GPU and tightly coupled GPU and CPU. The lead companies about computer graphics in the world are working about this issue.
[bookmark: _Toc283367941]NVIDIA TESLA
The NVIDIA® Tesla™ 20-series is designed from the ground up for high performance computing (HPC). Based on the next generation CUDA GPU architecture codenamed "Fermi", it supports many "must have" features for technical and enterprise computing. These include ECC protection for uncompromised accuracy and data reliability, support for C++, and double precision floating-point performance. When compared to the latest quad-core CPU, Tesla 20-series GPU computing processors deliver equivalent performance at 1/20th the power consumption and 1/10th the cost.
[bookmark: _Toc283367942]AMD FUSION
AMD Fusion is the codename for a future next-generation microprocessor design and a product of the merger between AMD and ATI, combining general processor execution as well as 3D geometry processing and other functions of modern GPUs into a single package.[1] This technology is expected to debut in the first half of 2011, as a successor of the AMD K10 microarchitecture which is AMD's latest microarchitecture.

References

· http://www.nvidia.com/object/GPU_Computing.html
· http://en.wikipedia.org/wiki/GPGPU
· http://www.gpucomputing.net/?q=node/1053
· http://gpgpu.org/
· http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx
· http://www.computer.org/portal/web/csdl/doi/10.1109/SC.2010.51

Input of Geometric Primitives

Vertex Operations

Primitive Assembly

Rasterization

Fragment Operation

Composition

Screen Output

image1.png

