Muller's Method

Figure 3.8: Parabola $ a\nu ^2 + b\nu + c=p_2(\nu )$
\includegraphics[scale=0.6]{figures/1-19}

$\displaystyle \nu_{1,2}=\frac{2c}{-b\pm\sqrt{b^2-4ac}},
$

$\displaystyle \nu=x-x_0,
$

$\displaystyle root=x_0-\frac{2c}{b\pm\sqrt{b^2-4ac}}
$

See Figs. 3.9-3.10 that an example is given

Figure 3.9: An example of the use of Muller's method.
\includegraphics[scale=0.6]{figures/1-20}

Figure 3.10: Cont. An example of the use of Muller's method.
\includegraphics[scale=0.6]{figures/1-21}

An algorithm for Muller's method :

\fbox{\parbox{10cm}{
Given the points $x_2,x_0,x_1$ in increasing value,\\
Eva...
...ubscripts so that $x_0$, is in the middle.)\\
Until $\vert f(x_r)\vert<Ftol$
}}

Cem Ozdogan 2011-12-27