Nonlinear Systems

Figure 3.13: A pair of equations.
\includegraphics[scale=0.6]{figures/1-31}

$ f(r,s)=0=f(x_i,y_i)+f_x(x_i,y_i)(r-x_i)+f_y(x_i,y_i)(s-y_i)+\ldots$
$ g(r,s)=0=g(x_i,y_i)+g_x(x_i,y_i)(r-x_i)+g_y(x_i,y_i)(s-y_i)+\ldots$

$ \bullet$ Truncating both series gives
$ 0=f(x_i,y_i)+f_x(x_i,y_i)(r-x_i)+f_y(x_i,y_i)(s-y_i)$
$ 0=g(x_i,y_i)+g_x(x_i,y_i)(r-x_i)+g_y(x_i,y_i)(s-y_i)$

$ \bullet$ which we can rewrite as
$ f_x(x_i,y_i)\Delta x_i+f_y(x_i,y_i)\Delta y_i=-f(x_i,y_i)$
$ g_x(x_i,y_i)\Delta x_i+g_y(x_i,y_i)\Delta y_i=-g(x_i,y_i)$

Example:

$ f(x, y) = 4 - x^2-y^2=0$
$ g(x, y) = 1 -e^x - y =0$

The partial derivatives are

$\displaystyle f_x=-2x,f_y=-2y,
$

$\displaystyle g_x=-e^x,g_y=-1
$

$ \bullet$ Beginning with $ x_0 = 1, y_0 = - 1.7$, we solve

 
$ -2\Delta x_0+3.4\Delta y_0=-0.1100$
$ -2.7183 \Delta x_0 - 1.0 \Delta y_0 = 0.0183$

$ \bullet$ This gives

 
$ \Delta x_0=0.0043$,
$ \Delta y_0=-0.0298$

$ \bullet$ from which

 
$ x_1 = 1.0043$,
$ y_1=-1.7298$.



Subsections
Cem Ozdogan 2011-12-27