Least-Squares Polynomials


\begin{displaymath}\overbrace{\left[
\begin{array}{rrrrrl}
N & \sum x_i & \sum x...
... x_i^2Y_i\\
\vdots \\
\sum x_i^n Y_i\\
\end{array} \right]\end{displaymath}     (5.7)

All the summations in Eqs. 5.6 and 5.7 run from 1 to $ N$.

 $&bull#bullet;$
We can rewrite Eq. 5.7 in matrix form, as

$\displaystyle AA^Ta = Ba= Ay
$

1
$ AA^T=B$. To find the solution (with MATLAB) $ » a = Ay\textbackslash A*transpose(A)
$

\begin{displaymath}
\overbrace{\left[
\begin{array}{rrrrr}
1 & 1 & 1 & \ldots &...
...^n & x_2^n & x_3^n & \ldots & x_N^n\\
\end{array} \right]}^A*
\end{displaymath}

\begin{displaymath}
\overbrace{\left[
\begin{array}{rrrrr}
1 & x_1 & x_1^2 & \l...
...& x_N & x_N^2 & \ldots & x_N^n \\
\end{array} \right]}^{A^T}=
\end{displaymath}

\begin{displaymath}
\underbrace{\left[
\begin{array}{rrrrrl}
N & \sum x_i & \sum...
... x_i^{n+3} & \ldots & \sum x_i^{2n}\\
\end{array} \right]}_B
\end{displaymath}

2
$ A^Ta=y$

\begin{displaymath}
\overbrace{\left[
\begin{array}{rrrrr}
1 & x_1 & x_1^2 & \l...
...& x_N & x_N^2 & \ldots & x_N^n \\
\end{array} \right]}^{A^T}*
\end{displaymath}

\begin{displaymath}
\overbrace{\left[
\begin{array}{r}
a_0\\
a_1\\
a_2\\
\ldots\\
a_n\\
\end{array} \right]}^{a}=
\end{displaymath}

\begin{displaymath}
\overbrace{\left[
\begin{array}{r}
y_1\\
y_2\\
y_3\\
\ldots\\
y_N\\
\end{array} \right]}^{y}
\end{displaymath}

 $&bull#bullet;$
That is

\begin{displaymath}
\begin{array}{l}
a_0+a_1x_1+a_2x_1^2+\ldots+a_nx_1^n=y_1\\
...
...dots\\
a_0+a_1x_N+a_2x_N^2+\ldots+a_nx_N^n=y_N \\
\end{array}\end{displaymath}

 $&bull#bullet;$
Least-squares polynomials with all $ x$-values (from given $ xy$-pair data) are inserted.

Figure 5.8: Figure for the data to illustrate curve fitting.
\includegraphics[scale=0.4]{figures/3-13}


Figure 5.9: The graph of $ V_\theta /V_\infty $ vs $ R/C$.
\includegraphics[scale=0.4]{figures/3-16}



Subsections
Cem Ozdogan 2011-12-27